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The present work reports a tripodal scaffold for bis(terpyridine)-
Fe(i) oligomer wires on an Au(111) surface: the tripodal scaffold
realised both orthogonality of the oligomer wires, and fast inter-
facial electron transfer through the oligomer wires.

The gold-thiol protocol is the most widely and frequently used
procedure for the preparation of self-assembled monolayers
(SAMs). It produces dense and ordered monolayers of adsorbates
in a short time without a laborious process." The Au-S bond
forms a good molecular junction between adsorbates and gold
electrodes, providing high electrical conductivity” and rapid inter-
facial electron transfer.® Taking advantage of the virtues of the
gold-thiol protocol, we fabricated bis(terpyridine)-M [M = Fe(u)
and Co(m)] complex oligomer wires on terpyridine-terminated
gold-thiol SAMs, and observed excellent long-range intrawire
electron transport (Scheme 1a).* One of the drawbacks of the
gold-thiol protocol is that the adsorbates possess inclined con-
figurations. For example, the tilt angle of benzenethiol was
reported to range from 30° to 76°.°> Several efforts have been
made to compensate for this weakness. Tripodal surface attaching
molecules possessing three thiol, thioacetate, or sulfide groups
have been synthesized and chemisorbed on gold surfaces.® This
series of tripodal ligands highlights the firm and perpendicular
chemisorption of adsorbates, however, no attention has been paid
to functionality, including the pursuit of good junctions with a
gold electrode for fast interfacial electron transfer phenomena.
The purpose of this work was to realise a tripodal scaffold for
bis(terpyridine)-Fe(u) complex oligomer wires that would afford
both vertical configuration and fast interfacial electron transfer. To
achieve this, we designed a tripodal terpyridine anchor ligand Ay
(obtained as the form of thioacetate-protected Ar—Ac, Scheme 1b)
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1 Electronic supplementary information (ESI) available: Experimental details,
IR spectra of solids Ay and Ay on a gold substrate (Fig. S1), estimation of the
length of Au-[Ar(FeLy),] (n = 5 and 40, Fig. S2), and current (i)-time (¢) and (b) In
i~t plots for Au-[Aq(FeLy;), FeT'] and Au-[A*(FeLy), ,FeT"] (Fig. S3 and S4). See
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with two distinctive concepts. One is the employment of an sp® Si
atom as the origin of the tripodal architecture. The sp® Si is known
to show o-7 conjugation with aromatic substituents.” We expected
that this feature of Si could accelerate interfacial electron transfer.
The other concept involves the attaching entity; a n-conjugated
benzenethiol group is employed. We note that all tripodal adsor-
bates reported thus far adopted non-n-conjugated aliphatic thiol
groups,’® such as benzenemethanethiol®*” and adamantylthiol.*
The n-conjugated benzenethiol group was also expected to increase
the interfacial electron transfer rate.

Scheme 2 shows the synthetic procedure for A—Ac; see the ESI for
details.T Then we considered the optimal conditions for the for-
mation of SAMs of Ay on a gold electrode surface using X-ray
photoelectron spectroscopy (XPS). Solid A;-Ac showed a doublet at
163.5 eV (doublet a, Fig 1a). This is typical of the S 2p;,,/S 2ps, couple
with the 1:2 area ratio for an acetyl-protected thiol group.® On the
other hand, a gold substrate immersed into a chloroform solution of
Ar-Ac for 3 hours showed that two additional doublets emerged at
162.9 eV and 161.7 eV (doublets b and ¢, respectively; Fig. 1b). An
increase in immersion time to 3 days showed the disappearance of
doublet a, but doublets b and ¢ were persistent. The area ratio
between doublets b and ¢ was 1:2 (Fig. 1c). IR-ATR spectroscopy for
an Au substrate immersed in a chloroform solution of A—Ac for
3 days (Fig. S1b, ESIT) showed neither C—O stretching of the thio-
acetate group (1704 cm™ " for Aq-Ac; Fig. S1a, ESIt) nor S-H stretching
(ca. 2580 cm ™). The IR-ATR spectroscopy result helped us assign the
two new peaks in XPS as follows. Doublet ¢ was attributable to a
tightly bound Au-S species, because its binding energy was com-
parable to the reported values for a SAM of benzenethiol (162.0 eV).'
On the other hand, we attributed doublet b to a weakly bound Au-S
species. The immobilisation of Ay on the Au(111) surface with the
three sulphur atoms was reflected in the orthogonality of the
bis(terpyridine)-Fe(u) oligomer wires constructed on Ay (vide infra).

Single molecules of Ay were identified in an STM image of a
sparse SAM of immobilised Ay (Fig. 2).

Next we fabricated bis(terpyridine)-Fe(u) oligomer wires on the
SAM of Ay. Scheme 1a illustrates the schematic procedure (see the
ESIf for details). Hereafter, the bis(terpyridine)-Fe(u) oligomer wire
with n layers is abbreviated as Au-[Ar(FeLg),]. First, we verified

This journal is © The Royal Society of Chemistry 2013
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Scheme 1 (a) Bottom-up fabrication of bis(terpyridine)-Fe(i) oligomer wires Au-[Ar(FeLy),] and Au-[Ar(FeLy),_1FeT"]. (b) Anchor (A), bridging (L), and terminal (T)
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Fig. 1 Experimental (black) and simulated (red) XPS focusing of the S2p region. (a)
Solid ArAc; (b) SAM of Ar (immersion time: 3 h); (c) SAM of At (immersion time: 3 d).
The simulated spectra were reproduced by pair(s) of doublets. Orange, green, and
blue doublets correspond to doublet a, doublet b, and doublet ¢, respectively.

Fig. 2 STM topological image of a SAM of Ag sparsely immobilised on an
Au(111) surface.

the quantitative formation of the bis(terpyridine)-Fe(u) unit
by means of cyclic voltammetry. Fig. 3a shows voltammo-
grams of Au-{Ar(FeLy),] (n = 1, 2, 4, 6, 8, and 10). The
voltammograms feature a reversible redox wave at 0.64 V vs.

This journal is © The Royal Society of Chemistry 2013
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Fig. 3 (a) Cyclic voltammograms of Au-[Ar(FeLy),] (n =1, 2, 4, 6,8, and 10) in
1 M BusNClO4—dichloromethane at a scan rate of 0.1 V s~ ". (b) I'[Fe(tpy),]-n plot.

ferrocenium/ferrocene (Fc'/Fc), assignable to the Fe(ur)/Fe(n) redox
couple of the bis(terpyridine)-Fe unit.* Fig. 3b shows surface
coverage of the bis(terpyridine)-Fe unit, I'[Fe(tpy),], determined
by the quantity of the electricity of the redox wave depicted in
Fig. 3a. A linear relationship between I" and 7 confirms that the
bottom-up fabrication of Au-{Ay(FeLy),] proceeded quantitatively.

We verified the orthogonal configuration of Au-[Aq(FeLy),] by
means of atomic force microscopy (AFM) and cross-sectional
scanning electron microscopy (SEM). Fig. 4 shows AFM topological
and phase images of Au-[A(FeLy)s] after scratching using an AFM
tip. From the topological image the depth of the tip was found to
be 9-10 nm. This value was in good agreement with the height of
Au-[Aq(FeLy)s] estimated by molecular modelling (Fig. S2, ESIT).
In addition, Au-[Ar(FeLy)s0] Was subjected to cross-sectional
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Fig. 4 (a) AFM topological and (b) phase images of Au-[Ar(Fely)s] after
scratching using an AFM tip. The white dashed squares indicate the scratched
area. (c) Cross-sectional analysis of image (a) at the intersecting white line.
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Fig. 6 Inke—d plots for Au-[Ar(FeLy),_1FeT"] (red) and Au-[A%(FeLy),_,FeT']
(green). Dashed lines were obtained by least-squares fitting and solid lines by
fitting assuming that both plots had the same slope (—0.018 A~").

SEM (Fig. 5), from which the thickness of the [Ar(FeLy)y0] film
was found to be 66 nm, also consistent with the molecular
modelling (Fig. S2, ESIY).

Finally, intrawire electron transport behaviour was investigated.
We prepared ferrocene-terminated bis(terpyridine)-Fe(u) oligomer
wires, Au-{Aq(FeLy),_.FeT'] (n = 1-4), and the redox reaction
between ferrocene and a gold electrode was monitored by means
of potential-step chronoamperometry (PSCA). The electron transfer
rate constant for the one-dimensional molecular wire is as follows:"*

ket = ko exp(—pd) (1)
where k.. is the rate constant for the electron transfer between the
redox site and the electrode, d is the electron transfer distance
along the molecular wire, k2, is the zero-distance rate constant,
and ¢ is the distance attenuation factor. Large k% and small ¢
indicate that the molecular wire can achieve good electron
transport. In this context, PCSA can extract k.. experimentally:

i = ipexp(—ked) (2)

where i, is the current flow at ¢ = 0. Fig. S3 (ESIf) shows current-time
(i¢) and Ini~¢ plots for Au-JA{FeLy),_FeT"] (n = 1-4). The slope of
the Ini—¢ plot gives k., and Fig. 6 shows a Ink.—d plot for Au-
[Aq(FeLyy),,_(FeT"] (n = 1-4). Fig. 6 also includes plots for Fe(tpy), oligo-
mer wires underlain by another anchor ligand, Au-[A*(FeLyy),_FeT"]
(see Fig. S4, ESIf for it and In i plots). The slope of the In k—d plot
gives % whereas the intercept of the vertical axis corresponds to In &%
We reported previously that ¢ was independent of the anchor ligand
(A).* The present results agree with this finding, showing that the
two Ink.—d plots possess the same ﬁd value, 0.018 A%, On the
other hand, In k% of Au-[Aq(FeLy),_ FeT"] is greater than that of
Au-[A*(FeLy),_(FeT']. It is surprising that Ay features rapid
electron transport despite lacking manifest n-conjugation.
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As indicated in the introductory section, the o-m conjugation
between the Si centre and arenes could account for the fast
electron transport. Another possibility is that an electron goes
through the three benzenethiol legs in Au-[Ag(FeLy),_,FeT']. We
reported previously that doubly-anchored biferrocene on an
Au(111) surface through Au-S bonds underwent a faster inter-
facial electron transfer than in the singly-anchored case."

In conclusion, we designed and synthesised tripodal terpyridine
ligand Ay (A1-Ac). The SAM formation of Ay on a gold electrode
surface was optimized to ensure that all S atoms of Ay were
chemisorbed. We constructed bis(terpyridine)-Fe(u) oligomer wires
on the SAM of Aq, the orthogonality of which was confirmed by
means of AFM and cross-sectional SEM. Ay realised fast intrawire
electron transfer behaviour, showing a large k2, value.
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