DOI: 10.1002/chem.200900623

Dynamic Molecular Tweezers Composed of Dibenzocyclooctatetraene Units: Synthesis, Properties, and Thermochromism in Host–Guest Complexes

Tomohiko Nishiuchi,^[a] Yoshiyuki Kuwatani,^[b] Tohru Nishinaga,^[a] and Masahiko Iyoda^{*[a]}

Abstract: Novel dynamic molecular tweezers (DMTs) 3a, 3b, 4a, 4b, and 5b, composed of two tub-shaped dibenzocyclooctatetraene (DBCOT) units, were designed and synthesized. The cyclooctatetraene (COT) rings of these DMTs readily invert in solution, and the molecular structure shows rigid syn and anti forms in an equilibrium mixture in solution. The svn and anti conformers can be observed by NMR. The isomerization barriers of 3a, 3b, 4a, 4b, and 5b are in the range of 16.5-21.3 kcalmol⁻¹, depending on steric repulsion between substituents of the COT rings and protons of the central benzene ring. These DMTs form complexes with 2,3-dichloro-5,6-dicyano1,4-benzoquinone (DDQ) and 1,2,4,5tetracyano-benzene (TCNB) in solution and in the solid state. The binding abilities of these DMTs increase with electron-donating substituents on COT, which increase the electron densities of the cavity of the *syn* form, as supported by theoretical calculations. In addition, elongation of the terminal alkoxy chains of the DMTs was found to cause the enhancement of van der Waals contact with guest molecules.

Keywords: cyclooctatetraene • density functional calculations • hostguest systems • molecular tweezers • thermochemistry Therefore, **5b**, which has CH_2OMe groups on the COT rings and longer ethoxy groups on the terminal benzene rings, showed the highest electron density of the cavity and hence the highest binding ability with the electron-deficient guest molecules. Interestingly, solutions of 3b, 4b, and 5b show thermochromism in the presence of DDQ. A solution of 3b or 4b with DDO in CHCl₃ is green due to charge-transfer interaction at room temperature and the color changes from green to yellow upon heating to 60°C and from green to blue upon cooling to -40 °C, whereas the high complexation ability of 5b with DDQ only shows a change in the shade of blue.

Introduction

Belt-shaped conjugated systems have been attracting the attention of not only synthetic^[1-3] but also theoretical chemists.^[4] One of the most interesting properties of belt-shaped molecules is a host–guest interaction in supramolecular chemistry.^[5] Because molecular belts have a preorganized

[a] T. Nishiuchi, Prof. Dr. T. Nishinaga, Prof. Dr. M. Iyoda Department of Chemistry Graduate School of Science and Engineering Tokyo Metropolitan University Hachioji, Tokyo 192-0397 (Japan) Fax: (+81) 042-677-2525 E-mail: iyoda@tmu.ac.jp
[b] Dr. Y. Kuwatani

VSN Inc. Nishimiyahara 2-1-3, Yodogawa-Ku, Osaka 532-0004 (Japan)

6838 -

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.200900623.

and defined space inside the molecules, they function as a host molecule and form molecular complexes with a number of different guests.^[6] Although cyclacenes, the basic belt-shaped units of (n,0) carbon nanotubes,^[7] have also been theoretically investigated and proposed as an interesting synthetic target,^[8] no cyclacenes have been prepared to date, presumably due to their internal strain.^[9]

As analogous systems, Gleiter and co-workers recently reported metal complexes of a belt-like molecule, $[4,8]_3$ cyclacene (beltene)^[10] and $[6.8]_3$ cyclacene **1**.^[11] In these molecules, tub-shaped cyclooctatetraene (COT) rings are fused with planar four- or six-membered rings. Thus, the internal strain of the beltene and **1** is small and hence beltene and **1** are stable in light and air.

Although the beltene and 1 have unique structures, the cavity of these molecules is too small to include any guest from a viewpoint of host-guest chemistry. In this regard, the cleft-shaped molecule 2, which is a partial structure of 1 with two dibenzocyclooctatetraene (DBCOT) units, is interesting. Molecule 2 is considered to exist as an equilibrium mixture of *syn* and *anti* forms owing to ring inversion of

DBCOT ($\Delta G^{\pm} = 12 \text{ kcal mol}^{-1}$).^[12] Furthermore, because the face-to-face distance of the two terminal benzene rings in the syn form is calculated to be 6.6 Å in a preliminary model structure at the PM3 level, 2 can function as molecular tweezers to incorporate a planar guest between the two benzene rings.^[13] With regard to molecular tweezers, Klärner's and Harmata's groups extensively investigated various systems with a rigid cleft structure,^[14,15] whereas Fukazawa's group investigated flexible systems.^[16] Unlike the presence of various stable conformations for Fukazawa's molecules, the most remarkable characteristic of the 2 molecular tweezers is that 2 takes only two conformers, i.e., the syn and anti forms. Among the two conformers, only the syn form functions as a molecular tweezers that interconvert with the anti form. Thus, 2 can act as a new host molecule for dynamic molecular recognition,^[17] and it thus has potential for use as a molecular switch.^[18]

Herein, we report the results of our investigations on the synthesis, structure, and unique binding behavior of dynamic molecular tweezers (DMTs) **3a**, **3b**, **4a**, **4b**, and **5b**. The

binding abilities of these DMTs are strongly dependent on both substituents of the terminal benzene rings and two COT units. Furthermore, fine-tuning of the charge-transfer interaction of the DMTs and DDQ in CHCl₃ solutions has successfully led unique thermochromism.^[19]

Results and Discussion

Synthesis of molecular tweezers 3a, 3b, 4a, 4b, and 5b: The key step in the synthesis of these compounds is the formation of COT rings. Although a variety of simple methods for the preparation of COT and its derivatives have been reported,^[20] we employed a stepwise pathway to construct COT rings of DMTs as shown in Scheme 1. The stepwise reactions enabled us to introduce substituent groups at the de-

sired positions. First, 7a and 7b were prepared from 6 and two 2-bromo-4,5-dialkoxybenzaldehydes by the Sonogashira reaction. The two acetylene units of 7a and 7b were reduced to cis olefins by partial hydrogenation using Pd on BaSO₄ to afford 8a and 8b, respectively. Next, 10a and 10b were prepared by deprotection of the tert-butyldimethylsilyl groups in 8a and 8b, followed by mesylation of the hydroxyl groups in 9a and 9b. When 10a and 10b were reacted with NaCN, the formation of cyclized eight-membered ring compounds was observed by ¹H NMR.^[21] Therefore, a mixture of linear and cyclized compounds was used for the next condensation reaction by DBU without purification to produce molecular tweezers 3a and 3b in 63 and 58% yields from 10a and 10b, respectively. The dialdehydes 4a and 4b were synthesized by reduction of 3a and 3b using DIBAL-H to afford 4a and 4b in 40 and 81% yields, respectively. The low yield of 4a is probably due to the low solubility of 3a. The methoxymethyl derivative 5b was obtained from 4b in 68% yield.

Structural properties of 3a, 3b, 4a, 4b, and 5b: To estimate the relative energies (E_{rel}) of the syn and anti forms, optimization of the molecular structures of 3b, 4b and 5b were performed at the B3LYP/6-31G(d) level^[22] (Table 1). From the calculations, these $E_{\rm rel}$ values are very small, and almost no difference in energy was observed between the syn and anti forms. In the ¹H NMR spectra of DMTs at room temperature, both syn and anti forms were observed independently. As shown in Table 1, the observed differences in free energy (ΔG°) between syn and anti isomers are small (<1 kcalmol⁻¹), but slightly larger than the calculated results. On the NMR timescale, exchange rates of syn and anti isomers of these DMTs are slow at room temperature owing to steric repulsion between COT substituents and protons of the central benzene ring. Therefore, we performed VT ¹H NMR and determined the isomerization barriers of these DMTs. Although both syn and anti forms of 3b were observed at 30°C (Figure 1), the signals of the syn and anti forms gradually coalesced to give signals assigned as the molecule with an apparent C_2 symmetry at higher temperatures. As shown in Table 2, the isomerization barriers (ΔG^{\dagger}) of **3a** and **3b** are 16.5 kcalmol⁻¹, whereas the barriers of **4a**, **4b**, and **5b** are approximately 21.0 kcal mol⁻¹. These results indicate that the steric repulsion of the CN group is smaller than that of the CHO and CH₂OMe groups due to the linear structure of the CN group. In addition, the theoretical calculations for the inversion barriers (ΔE) of **3'**, **4'**, and **5'**, which were estimated by the energy difference between the tub and planar structures, gave values (3': 14.1, 4': 20.1, 5': 20.6 kcalmol⁻¹) similar to the observed inversion barriers of 3a, 3b, 4a, 4b, and 5b.

Among these DMTs, single crystals of **4a** were obtained from DMF, and the crystal structure of **4a**·2 DMF was determined by X-ray analysis (Figure 2). Although the *syn* form of **4a** is slightly more stable than the *anti* form of **4a** in DMF solution, **4a** takes the *anti* form in the solid state. The dihedral angle between the central and terminal benzene

Scheme 1. Synthesis of dynamic molecular tweezers 3a, 3b, 4a, 4b, and 5b.

Table 1. Calculated relative energies $(E^{\text{rel}})^{[a]}$ and observed free energies $(\Delta G^{\circ})^{[b]}$ of *anti* and *syn* isomers of **3b**, **4b**, and **5b**.

[a] Calculated at the B3LYP/6-31G(d) level. [b] Determined by $^1\!H\,NMR$ measurements in CDCl3.

Figure 1. VT ¹H NMR spectra of **3b** (500 MHz in CDCl₂CDCl₂).

Table 2. Isomerization barriers (ΔG^*) and coalescence temperatures (T_c) of **3a**, **3b**, **4a**, **4b**, and **5b**, and calculated inversion barriers (ΔE^*) of DBCOT derivatives of **3'**, **4'**, and **5'**.

		3': R = CN 4': R = CHO 5': R = CH₂OMe	
	$\Delta G^{*} [ext{kcal mol}^{-1}]$	$T_{\rm C}$ [°C]	ΔE^{+} [kcal mol ⁻¹]
3a	16.5	50	-
3b	16.5	50	-
3'	_	-	14.1
4a	21.2	135	-
4b	20.8	130	-
4′	-	_	20.1

Figure 2. Crystal structures of 4a: a) ellipsoid drawing, b) side view, c) packing structures of 4a (wireframe) with DMF (CPK model).

rings is 95.9°, which is slightly narrower than in the case of the parent DBCOT (99°).^[23] As shown in Figure 2 c, DMF was incorporated in the cavity formed by two adjacent 4a molecules.

Binding properties of DMTs: The binding abilities and behaviors of DMTs 3–5 with various π acceptors were investigated by analyzing UV/Vis and ¹H NMR spectra. Among π acceptors, these DMTs formed host–guest complexes in solution with 1,2,4,5-tetracyanobenzene (TCNB), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), and 1,3,5-trinitrobenzene (TNB), whereas no complexation was observed with other small acceptors such as 7,7,8,8-tetracyano-*p*-quinodimethane (TCNQ), TCNQ-F₄, pyridinium salts, and viologen. In particular, the CT interaction between these DMTs and DDQ caused a color change from green to blue. The UV/Vis titration of **3b** with DDQ is shown in Figure 3. The CT

Figure 3. UV/Vis titration of **3b** with DDQ (**3b**: 0.5 mM). The concentrations of DDQ used are (from bottom to top) 0.0, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 4.0, 5.0 mM. The insert is a Job's plot ([**3b**] + [DDQ]=1.0 mM) at 640 nm (solvent: CHCl₃).

absorption of **3b** with DDQ appeared at 640 nm (Figure 3a), and Job's plot ($[\mathbf{3b}] + [DDQ] = 1.0 \text{ mM}$) at 640 nm indicates the formation of a 1:1 complex (Figure 3b).

The ¹H NMR titration experiments are also useful for investigating the binding behavior and binding constants of DMTs. The experiment of **3b** with DDQ is shown in Figure 4 as a representative result. Although no shift of the *anti* protons was observed as the concentration of DDQ increased, the *syn* protons gradually shifted to either the upper or lower field. The complexation-induced shift (CIS) of the terminal benzene protons H_e and H_f is 0.28 ppm, and the relative intensities of the *syn* peaks gradually increased. These results indicate that the equilibrium is shifted toward the *syn* isomer by the addition of DDQ and that only the *syn* isomer forms the 1:1 complex with DDQ.

Table 3 summarizes the binding constants $K_{\rm C}$ of DMTs with TCNB, DDQ, or 1,3,5-trinitrobenzene (TNB)^[24] together with thermodynamic parameters $\Delta H_{\rm DDQ}$ and $\Delta S_{\rm DDQ}$ of the complexation with DDQ. Irrespective of slight structural differences among DMTs **3a**, **3b**, **4a**, **4b**, and **5b**, the binding constants were increased by elongation of terminal alkoxy chains from OMe to OEt groups and by increasing the electron-donating ability of COT substituents from CN, CHO to CH₂OMe groups. Thus **5b** has the highest binding constants.

The ΔH_{DDQ} of **3b** and **4b**, which have OEt groups, shows more favorable binding with DDQ by 1.2-1.4 kcalmol⁻¹ compared to the binding of 3a and 4a, which have OMe groups. On the other hand, the ΔS_{DDO} terms for **3b** and **4b** are less favorable than those of **3a** and **4a** by 0.7 and 1.6 eu, respectively. These results indicate that the van der Waals interaction between terminal alkoxy chains of DMTs and DDQ was increased by the elongation of the chains from OMe to OEt, whereas increased flexibilities of these alkoxy chains resulted in the negatively larger ΔS_{DDO} terms. Moreover, the $\Delta H_{\rm DDO}$ values of **4a** and **4b**, which have CHO groups, show more favorable binding with DDQ than those of 3a and 3b, which have CN groups, by about 1.0 kcalmol⁻¹, and also **5b**, which has CH₂OMe groups, shows more favorable binding with DDQ than 4b by about 1.7 kcalmol⁻¹. From these results, we thought COT substituents of CN, CHO, and CH₂OMe were likely to affect the electron densities of the binding sites in DMTs.

In order to estimate the electrostatic effect on the binding of DMTs with guest molecules, we optimized the structures of the *syn* form (B3LYP/6-31G* level) and calculated the electrostatic potential surfaces (ESPs) of **3b**, **4b**, and **5b** (Figure 5). From these ESPs, the electron densities of the cavities of **3b**, **4b**, and **5b** show marked differences, and the negative character of the central and terminal benzene rings increases in the order of **3b** < **4b** < **5b**. Therefore, it is clear that these differences in ESP affect the binding ability (ΔH) with electron-deficient guest molecules. This electrostatic effect of substituents on COT units efficiently extended into whole molecules, indicating that the COT units are effectively conjugated with the central and terminal benzene rings, in spite of the bending π systems.

On the other hand, the ΔS_{DDQ} values of **3b**, **4b**, and **5b** decrease in the order of $\mathbf{3b} > \mathbf{4b} > \mathbf{5b}$. If *syn* forms of the DMTs have the preorganization effect^[25] derived from the cavity sizes, ΔS_{DDQ} values have to increase in the order of $\mathbf{3b} < \mathbf{4b} < \mathbf{5b}$ because the cavity sizes of DMTs (the distance between both terminal oxygen atoms from theoretical calculation) decrease in the order of $\mathbf{3b}$ (9.293 Å) > **4b** (9.147 Å) > **5b** (8.631 Å). Therefore, in this case, the preorganization effect caused by the cavity sizes seems not to be important and flexibilities of the COT substituents are considered to be a more effective factor in the ΔS_{DDQ} terms. This can be rationalized by decreasing the flexibilities of COT substituents upon complexation with guest molecules.

The structures of the complexes of TCNB@4b and TCNB@5b were determined by X-ray crystallography and

Figure 4. The NMR titration of **3b** with DDQ (**3b**: 1 mM, solvent: CDCl₃).

Table 3. Binding constants of $K_{\rm C}$ [M^{-1}] of DMTs with TCNB, DDQ, or TNB together with thermodynamic parameters of $\Delta H_{\rm DDQ}$ [kcalmol⁻¹] and $\Delta S_{\rm DDQ}$ [calmol⁻¹ K^{-1}] of DDQ complex.^[24]

Substrate	3a	3b	4a	4b	5b
TCNB	< 300	530	730	1100	10000 ^[a]
DDQ	40	240	70	360	1570
TNB	_[b]	_[b]	_[b]	28	35
$\Delta H_{ m DDO}$	-2.4	-3.6	-3.2	-4.6	-6.3
$\Delta S_{\rm DDQ}$	-0.8	-1.5	-2.4	-4.0	-7.0

[a] Determined by UV/Vis titration (solvent: $CHCl_3$). [b] The K_C value could not be determine because the interaction was very weak.

Figure 5. Electrostatic potential surfaces and the values of molecular electrostatic potentials (MEPs, calculated position of MEP is 2.0 Å above the central benzene ring) of **3b**, **4b**, and **5b** (B3LYP/6-31G*//B3LYP/6-31G*).

the results of TCNB@4b are shown in Figure 6. As shown in Figure 6b, TCNB and terminal benzene rings stack through π - π interactions at a distance of 3.33–3.40 Å, and the dihe-

Figure 6. Crystal structures of TCNB@**4b**: a) ellipsoid drawing, b) side view, c) top view, d) packing structures.

dral angles between terminal and central benzene rings in **4b** are about 90°. Moreover, the distance between the proton of TCNB and the central benzene ring of **4b** is 2.54 Å, indicating the presence of a CH- π interaction (Figure 6c). The CH- π interaction would result in improved binding of TCNB than DDQ, in spite of it being the weaker acceptor. In the packing structure, two complexes stack through π - π interactions, and the chloroform molecules from the recrystallizing solvent are located on the opposite side of the TCNB (Figure 6d). The terminal ethoxy groups

of **4b** were found to cover the guest molecule of TCNB, suggesting that the ethoxy chains play an important role in the binding of the guest molecule as observed in the binding study.

Although many molecular tweezers have been reported, most studies focus on the relationship between the π plane area of recognition sites and the binding ability because compounds with a rigid and wide π plane readily interact with many electron-deficient molecules by π - π and/or CT interactions. From this point of view, our synthesized DMTs show unique molecular recognition by means of not only π - π , CH- π , and CT interactions, but also by van der Waals interactions between flexible alkoxy chains.

Thermochromic properties of DDQ@DMT complexes: Although 3b and 4b have a lower binding ability than 5b owing to electron-withdrawing substituents on the COT units, it is interesting that these solutions of DDQ complexes exhibit thermochromic properties. Figure 7 shows solutions of 3b, 4b, and 5b with DDQ in $CHCl_3$ at various temperatures.

Figure 7. Solutions of **3b**, **4b**, and **5b** with DDQ in CHCl₃ (DDQ: 1 mM, DMTs: 1 mM) at variable temperatures (60 to -40° C).

The solutions of 3b and 4b with DDQ in CHCl₃ are green at room temperature. However, the color gradually changes from green to yellow upon heating to 60 °C and from green to blue upon cooling to -40 °C. On the other hand, **5b** with DDQ only shows a change in the shade of blue. This thermochromism has a good response to changes in temperature. A CHCl₃ solution of DDQ is yellow and that of the DDQ@DMT complex is blue. Therefore, the principle of this thermochromism is related to the mixing ratio of yellow and blue; the color is decided by the molar

Table 4. The ratio of [DDQ@DMTs]/[DDQ] (DDQ: 1 mм, DMTs: 1 mм) in CHCl₃ solutions calculated by means of a van't Hoff plot.^[26]

T [⁰C]	[DDQ@3b]/[DDQ]	[DDQ@4b]/[DDQ]	[DDQ@5b]/[DDQ]
60	0.10	0.12	0.31
40	0.14	0.18	0.50
20	0.20	0.28	0.85
0	0.30	0.45	1.39
-20	0.46	0.74	2.34
-40	0.70	1.24	4.61

ratio of the DDQ@DMT complex to free DDQ. Table 4 shows the molar ratio of DDQ@3b, DDQ@4b, and DDQ@5b complexes to free DDQ ([DDQ@DMTs]/[DDQ]) in CHCl₃ at temperatures between 60 °C and -40 °C.

As shown in Figure 7 and Table 4, the solution was yellow at a ratio below 0.14, green at a ratio range of 0.18 to 0.28, and blue at a ratio over 0.30. From these results, the COT substituents adequately tuned not only the binding ability but also the thermochromism.

The CT bands of the complexes of **3b** (640 nm), **4b** (655 nm), and **5b** (680 nm) with DDQ at 20 °C showed redshifts according to the donating ability of the substituents on the COT rings. These results are consistent with Mulliken charge–transfer theory,^[27] namely, $h\nu_{\rm CT} = IP - EA - e_0^2/\epsilon r$, where *IP*, *EA*, and $e_0^2/\epsilon r$ denote the first ionization energy of the donor, the electron affinity of the acceptor, and the electrostatic work term, respectively, where ϵ is the dielectric constant of the solvent, and *r* is the plane-to-plane distance between donor and acceptor.^[28] On the other hand, as shown in Figure 8, the absorption maxima of the CT band

Figure 8. VT UV/Vis spectra of **5b** with DDQ (**5b**: 0.5 mm, DDQ: 0.5 mm, CHCl₃) at 60°C to -40°C.

Chem. Eur. J. 2009, 15, 6838-6847

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

of **5b** in DDQ solution shifted to a longer wavelength from 665 to 715 nm with decreasing temperature. Similar redshifts were also observed in the case of **3b** (630 \rightarrow 680 nm) and **4b** (635 \rightarrow 690 nm). The reason for this redshift is not clear. One possible explanation could be a reduction in the distance between DDQ and the terminal aromatic rings of DMTs due to suppression of the thermal vibrations of the complex, which may affect the electrostatic work term ($e_0^2/\epsilon r$). Irrespective of the presence of redshifts in the CT bands, these CT absorptions cause a similar blue color.

Conclusions

In summary, we synthesized novel dynamic molecular tweezers 3a, 3b, 4a, 4b, and 5b composed of two DBCOT units. These DMTs form an equilibrium mixture of anti and syn isomers in solution and these isomers were observed independently in NMR spectra at room temperature. The isomerization barriers of the anti and syn forms depend on the bulkiness of the COT substituents. From the investigations of binding behavior of DMTs, only the syn form could interact with guest molecules such as DDQ and TCNB, and the electron-donating substituents on the COT rings and elongation of terminal alkoxy groups were found to enhance the binding abilities. In particular, in spite of 3b and 4b having a lower binding ability than 5b, both DDO@3b and DDQ@4b solutions show clear thermochromism from yellow to green and green to blue, depending on the molar ratio of [DDQ@DMTs]/[DDQ]. The unique thermochromism mechanism owes principally to dynamic molecular recognition, and, to our knowledge, this type of thermochromism has not been previously reported.

Experimental Section

General: ¹H NMR and ¹³C NMR spectra were recorded on a JEOL LA-500 instrument (¹H: 500 MHz; ¹³C{¹H}: 125 MHz) at 23 °C unless stated otherwise. Chemical shift values are given in δ (ppm) relative to internal SiMe₄ or residual solvent. Mass spectra were recorded on SHIMADZU GCMS-QP2010 and KRATOS AXIMA-CFR instruments. Only the more intense or structurally diagnostic mass spectral fragment ion peaks are reported. Electronic spectra were recorded on a SHIMADZU UV-VIS-NIR scanning spectrophotometer (Model UV-3101-PC). Melting points were determined with a Yanaco MP-500D melting point apparatus. Elemental analyses were performed in the microanalysis laboratory of Tokyo Metropolitan University. Column chromatography was carried out on Merck silica gel60, 70-230 mesh ASTM, and Daiso silica gel 1001W. All solvents were dried by conventional procedures and distilled before use. DDQ was purified by column chromatography on silica gel with CHCl₂/EtOAc (v/v=10:1) and recrystallized from CHCl₂. Commercially available TNB was dissolved in CH2Cl2 and dried with MgSO4. All other commercially available materials were of reagent grade, unless stated otherwise.

Computational methods: All calculations were conducted with Gaussian 03 programs. The geometries were optimized with the restricted Becke hybrid (B3LYP) at the 6-31G(d) level.

Bis-1,4-(*tert*-butyldimethylsiloxymethyl)-bis-2,5-(2'-formyl-4',5'-dimeth-oxyphenyl-ethynyl)benzene (7a): A mixture of $6^{[29]}$ (6.22 g, 15.0 mmol),

2-bromo-4,5-dimethoxybenzaldehyde (7.72 g, 31.5 mmol), $[Pd(PPh_3)_4]$ (345 mg, 0.3 mmol), and CuI (114 mg, 0.6 mmol) in Et₃N (150 mL) was stirred for 1 h under an argon atmosphere at 75 °C. A mixture of CHCl₃ and aq. NH₄Cl solution was added into the reaction mixture, which was then separated. The organic layer was washed with 2*M* HCl, water, and brine and then dried over magnesium sulfate. After evaporation of the solvent, the residue was purified by column chromatography (silica gel, benzene). Recrystallization from ether/hexane gave **7a**. Yield: 9.70 g, 13.05 mmol (87.0%); yellow crystals; m.p. 208–209°C; MS (LDI-TOF): m/z: 742 [M]⁺; ¹H NMR (CDCl₃): δ = 10.50 (s, 2 H), 7.70 (s, 2 H), 7.45 (s, 2 H),7.05 (s, 2 H), 4.96 (s, 4 H), 4.01 (s, 6 H), 3.98 (s, 6 H), 0.98 (s, 18 H), 0.16 ppm (s, 12 H); ¹³C NMR (CDCl₃): δ = 190.0, 153.6, 150.0, 141.8, 130.2, 129.7, 121.2, 120.1, 114.3, 108.3, 92.4, 91.3, 63.2, 56.3, 56.2, 26.0, 18.5, -5.2 ppm; elemental analysis calcd (%) for C₄₂H₅₄O₈Si₂: C 67.89, H 7.33; found: C 67.70, H 7.19.

Bis-1,4-(*tert*-butyldimethylsiloxymethyl)-bis-2,5-(2'-formyl-4',5'-diethoxyphenyl-ethynyl)benzene (7b): Compound 7b was prepared by a procedure similar to that used for 7a. Yield: 11.7 g, 14.7 mmol, 98.0%; yellow crystals; m.p. 180–182 °C; MS (LDI-TOF): m/z: 798 $[M]^+$; ¹H NMR (CDCl₃): δ =10.47 (s, 2H), 7.69 (s, 2H), 7.43 (s, 2H),7.03 (s, 2H), 4.95 (s, 4H), 4.22 (q, J=7.0 Hz, 4H), 4.20 (q, J=7.0 Hz, 4H), 1.53 (t, J=7.0 Hz, 3H), 1.50 (t, J=7.0 Hz, 3H), 0.97 (s, 18H), 0.15 ppm (s, 12H); ¹³C NMR (CDCl₃): δ =190.0, 153.3, 149.5, 141.8, 129.9, 129.6, 120.9, 120.1, 115.4, 109.5, 92.2, 91.4, 64.8, 64.6, 63.1, 26.0, 18.5, 14.5, -5.2 ppm; elemental analysis calcd (%) for C₄₆H₆₂O₈Si₂: C 69.13, H 7.82; found: C 69.09; H 7.82.

Bis-1,4-(tert-butyldimethylsiloxymethyl)-bis-2,5-(2'-formyl-4',5'-dimethoxyphenyl-ethenyl)benzene (8a): A mixture of 7a (0.74 g, 1.0 mmol), Pd on BaSO₄ (0.5 g), and quinoline (1 mL) in THF (25 mL) was stirred for 3 h at room temperature under an H₂ atmosphere. After Pd on BaSO₄ was removed by filtration, the solution was concentrated. The residue was dissolved in CH2Cl2, washed with 2M HCl and water, and dried over magnesium sulfate. After evaporation of solvent, the residue was purified by column chromatography (silica gel, CHCl₃). Recrystallization from CH2Cl2/hexane gave 8a. Yield: 0.67 g, 0.89 mmol (89.7%); yellow crystals; m.p. 172–173 °C; MS (EI): m/z: 746 $[M]^+$; ¹H NMR (CDCl₃): $\delta =$ 10.15 (s, 2H), 7.31 (s, 2H), 7.08 (d, J=12.2 Hz, 2H), 7.06 (s, 1H), 6.84 (d, J=11.9 Hz, 2H), 6.55 (s, 2H), 4.48 (s, 4H), 3.90 (s, 6H), 3.57 (s, 6H), 0.80 (s, 18H), -0.07 ppm (s, 12H); ¹³C NMR (CDCl₃): $\delta = 189.9$, 153.3, 148.5, 137.8, 135.2, 133.4, 130.8, 128.2, 126.63, 126.60, 112.4, 109.7 , 62.8, 55.9, 55.9, 25.8, 18.2, -5.6 ppm; elemental analysis calcd (%) for C42H58O8Si2: C 67.52, H 7.83; found: C 67.46, H 7.81.

Bis-1,4-(*tert*-butyldimethylsiloxymethyl)-bis-2,5-(2'-formyl-4',5'-diethoxyphenyl-ethenyl)benzene (8b): Compound 8b was prepared by a procedure similar to that used for 8a. Yield: 1.35 g, 1.68 mmol, 84.0%; yellow crystals; m.p. 130–131 °C; MS (EI): m/z: 802 $[M]^+$; ¹H NMR (CDCl₃): δ =10.15 (s, 2H), 7.30 (s, 2H), 7.09 (d, J=12.2 Hz, 2H),7.04 (s, 2H), 6.80 (d, J=12.2 Hz, 2H), 6.50 (s, 2H), 4.47 (s, 4H), 4.11 (q, J=7.0 Hz, 4H), 3.74 (q, J=7.0 Hz, 4H), 1.45 (t, J=7.0 Hz, 6H), 1.22 (t, J=7.0 Hz, 6H), 0.80 (s, 18H), -0.07 ppm (s, 12H); ¹³C NMR (CDCl₃): δ =190.0, 152.8, 148.0, 137.7, 134.8, 133.5, 130.5, 128.1, 127.0, 126.4, 113.6 111.2, 64.23, 64.16, 62.8, 25.8, 18.2, 14.6, 14.2, -5.6 ppm; elemental analysis calcd (%) for C₄₆H₆₆O₈Si₂: C 68.79, H 8.28; found: C 68.75, H 8.30.

Bis-1,4-(2'-formyl-4',5'-dimethoxyphenylethenyl)-bis-2,5-(hydroxymethyl)benzene (9a): A solution of **8a** (3.74 g, 5.0 mmol) and 2 M HCl (20 mL) in THF (100 mL) was stirred for 1 h at room temperature, and then hexane (200 mL) was added. The resulting white precipitate (**9a**) was filtered and rinsed with EtOH and ether to give **9a**. Yield: 2.20 g, 4.24 mmol (84.8%); white powder; m.p. 221–223 °C; MS (EI): *m/z*: 518 [*M*]+; ¹H NMR ([D₆]DMSO): δ =10.05 (s, 2H), 7.28 (s, 2H), 7.16 (d, *J*= 12.2 Hz, 2H), 7.00 (s, 1H), 6.88 (d, *J*=11.9 Hz, 2H), 6.67 (s, 2H), 4.97 (t, *J*=5.2 Hz, 2H), 4.26 (d, *J*=5.2 Hz, 4H), 3.79 (s, 6H), 3.46 ppm (s, 6H); ¹³C NMR ([D₆]DMSO): δ =190.3, 152.9, 148.1, 138.4, 134.6, 133.4, 130.6, 127.9, 126.9, 126.2, 112.5, 110.2, 60.5, 55.45, 55.41 ppm; elemental analysis calcd (%) for C₃₀H₃₀O₈: C 69.49, H 5.83; found: C 69.48, H 5.94.

Bis-1,4-(2'-formyl-4',5'-diethoxyphenylethenyl)-bis-2,5-(hydroxymethyl)-benzene (9b): Compound **9b** was prepared by a procedure similar to that used for **9a**. Yield: 2.04 g, 3.56 mmol, 88.9%; yellow powder; m.p. 183–

6844

184°C; MS (EI): m/z: 574 $[M]^+$; ¹H NMR ([D₆]DMSO): δ =10.03 (s, 2H), 7.25 (s, 2H), 7.14 (d, J=11.9 Hz, 2H), 6.99 (s, 2H), 6.84 (d, J=11.9 Hz, 2H), 6.64 (s, 2H), 4.96 (t, J=5.2 Hz, 2H), 4.24 (d, J=5.2 Hz, 4H), 4.03 (q, J=7.0 Hz, 4H), 3.71 (q, J=7.0 Hz, 4H), 1.31 (t, J=7.0 Hz, 6H), 1.11 ppm (t, J=7.0 Hz, 6H); ¹³C NMR ([D₆]DMSO) δ =190.4, 152.2, 147.3, 138.3, 134.3, 133.4, 130.3, 127.8, 127.0, 126.0, 113.4, 111.5, 63.7, 63.7, 60.5, 14.6, 14.1 ppm; elemental analysis calcd (%) for C₃₀H₃₀O₈: C 71.06, H 6.67; found: C 71.03, H 6.80.

Bis-1,4-(2'-formyl-4',5'-dimethoxyphenylethenyl)-bis-2,5-(methanesulfon-

yl-methyl)benzene (10a): To a solution of 9a (1.04 g, 2.0 mmol) and Et₃N (1.66 mL, 12.0 mmol) in DMF (100 mL) was added methanesulfonyl chloride (0.46 mL, 6.0 mmol) dropwise at -55 °C under an N2 atmosphere. The solution was stirred for 15 min at the same temperature. The reaction was quenched by addition of aqueous saturated NaHCO3, and the mixture was extracted with CHCl₃. The organic layer was washed with 2M HCl, water, and brine, and then dried over magnesium sulfate. The solvent volume was reduced to $\frac{1}{5}$ by evaporation. The resulting vellow precipitate (10a) was filtered and rinsed with hexane to give 10a. Yield: 1.35 g, 2.0 mmol, (100%); yellow crystals; m.p. 171-172°C (decomp); MS (EI): m/z: 674 $[M]^+$; ¹H NMR (CDCl₃): $\delta = 10.06$ (s, 2H), 7.31 (s, 2H), 7.22 (d, J=12.25 Hz, 2H), 7.01 (s, 2H), 6.87 (d, J=11.9 Hz, 2H), 6.53 (s, 2H), 4.98 (s, 4H), 3.92 (s, 6H), 3.66 (s, 6H), 2.88 ppm (s, 6H); ¹³C NMR (CDCl₃): δ = 190.1, 153.7, 149.0, 135.9, 134.2, 132.8, 132.0, 130.3, 128.8, 126.9, 112.4, 110.8, 68.1, 56.3, 56.2, 37.9 ppm; HR-MS (EI): m/z: calcd for C₃₂H₃₄O₁₂S₂ [M]⁺: 674.1491; found: 674.1570.

Bis-1, 4-(2'-formyl-4', 5'-diethoxyphenylethenyl)-bis-2, 5-(methanesulfonyl-bis-2, 5-(methanes

methyl)benzene (10b): 10b was prepared by a procedure similar to that used for **10a**. Yield: 2.53 g, 3.46 mmol 100%; yellow crystals; m.p. 156–158 °C (decomp); MS (EI): m/z: 730 [M]⁺; ¹H NMR (CDCl₃): δ =10.05 (s, 2H), 7.30 (s, 2H), 7.22 (d, J=11.9 Hz, 2H), 6.99 (s, 2H), 6.83 (d, J= 11.9 Hz, 2H), 6.48 (s, 2H), 4.96 (s, 4H), 4.13 (q, J=7.0 Hz, 4H), 3.83 (q, J=7.0 Hz, 4H), 2.88 (s, 6H), 1.46 (t, J=7.0 Hz, 6H), 1.30 ppm (t, J=7.0 Hz, 6H); ¹³C NMR (CDCl₃): δ =190.0, 153.1, 148.3, 135.8, 133.7, 132.6, 131.8, 130.4, 128.3, 126.5, 113.3, 112.2, 68.1, 64.5, 64.5, 37.7, 14.6, 14.3 ppm; elemental analysis calcd (%) for C₃₆H₄₂O₁₂S₂ :C 59.16, H 5.79; found: C 58.90, H 5.79.

Molecular tweezers 3a: To a solution of 10a (628 mg, 0.93 mmol) in MeCN (140 mL) was added NaCN (147 mg, 3.0 mmol) in DMF (60 mL) dropwise at room temperature under an N_2 atmosphere. After stirring for 2 h, the reaction was quenched by addition of 2M aqueous HCl and extracted with CHCl₃. The organic layer was washed with water and brine, and then dried over magnesium sulfate. After evaporation of the solvent, the residue was dissolved in MeCN (100 mL), and DBU (1 mL) was added at 110 °C under an N2 atmosphere. The mixture was stirred for 1 h. The resulting white precipitate (3a) was filtered and rinsed with EtOH and ether to give **3a**. Yield: 291 mg, 0.58 mmol (62.5%); white powder; m.p. 308–310 °C (decomp); MS (LDI-TOF): m/z: 500 [M]⁺; ¹H NMR $(C_2D_2Cl_4 90 \circ C): \delta = 7.50 (s, 2H), 7.06 (s, 2H), 6.68 (s, 4H), 6.57 (s, 2H),$ 6.55 (s, 2H), 3.83 (s, 6H), 3.81 ppm (s, 6H); $^{13}\text{C}\,\text{NMR}$ (C_2D_2Cl_4 90 °C): $\delta\!=\!153.4,\,152.1,\,151.7,\,140.5,\,136.9,\,136.5,\,133.9,\,133.3,\,132.8,\,128.9,\,122.7,$ 118.9, 116.0, 115.3, 59.3, 59.1 ppm; elemental analysis calcd (%) for C32H24N2O4: C 76.78, H 4.83; N, 5.60; found: C76.77, H 4.70; N, 5.68.

Molecular tweezers 3b: Compound **3b** was prepared by a procedure similar to that used for **3a**. Yield: 343 mg, 0.580 mmol, 58.3%; white powder; m.p. 260–262 °C (decomp); MS (LDI-TOF): m/z: 556 [M]⁺; ¹H NMR (C₂D₂Cl₄, 90 °C): δ =7.48 (s, 2H), 7.04 (s, 2H), 6.66 (s, 4H), 6.57 (s, 2H), 6.55 (s, 2H), 4.03 (m, 8H), 1.39 ppm (m, 12H); ¹³C NMR (C₂D₂Cl₄, 90 °C): δ =153.3, 151.81, 151.77, 140.5, 136.9, 136.4, 133.8, 133.2, 133.0, 129.0, 122.7, 118.7, 118.1, 117.7, 68.3, 68.0, 17.0, 17.8 ppm; elemental analysis calcd (%) for C₃₂H₂₄N₂O₄: C 77.68, H 5.79; N, 5.03; found: C77.39, H 5.80; N, 5.27.

Molecular tweezers 4a: To a solution of **3a** (250 mg, 0.5 mmol) in CH_2Cl_2 (60 mL) was added DIBAL-H (1 M solution, 4 mL, 4.0 mmol) at -78 °C under an N₂ atmosphere. After stirring for 2 h, the reaction was quenched by addition of aqueous saturated NH₄Cl solution. The mixture was extracted with CH₂Cl₂. The organic layer was washed with water and brine and then dried over magnesium sulfate. After evaporation of the solvent, the residue was purified by column chromatography (silica gel,

CHCl₃/EtOAc v/v=10:1). Recrystallization from DMF gave **4a**. Yield: 100 mg, 0.19 mmol (39.5%); yellow crystals; m.p. 277–278°C (decomp); MS (LDI-TOF): m/z: 506 [M]⁺; ¹H NMR (CDCl₃): δ =9.74–9.73 (s×2, 2H), 7.57–7.54 (s×2, 2H), 6.77–6.76 (s×2, 2H), 6.74–6.53 (m, 8H), 3.87–3.80 ppm (m, 12H); ¹³C NMR (CDCl₃): δ =193.0, 192.8, 154.0, 153.6, 149.7, 149.5, 148.4, 148.3, 143.7, 143.6, 136.5, 136.4, 132.6, 132.4, 132.4, 131.9, 131.8, 131.1, 130.7, 129.7, 129.6, 127.1, 126.8, 112.0, 111.9, 110.9, 110.8, 56.0, 55.9, 55.8, 55.7 ppm; HR-MS (EI): m/z: calcd for C₃₂H₂₆O₆S₂ [M]⁺: 506.1729; found: 506.1707.

Molecular tweezers 4b: Compound **4b** was prepared by a procedure similar to that used for **4a**. Yield: 360 mg, 0.640 mmol, 81.0%; yellow crystals from CH₂Cl₂/hexane; m.p. 250–252 °C (decomp); MS (LDI-TOF): *m/z*: 562 [*M*]⁺; ¹H NMR (CDCl₃): δ =9.72–9.71 (s×2, 2H), 7.55–7.52 (s×2, 2H), 6.75–6.74 (s×2, 2H), 6.72–6.51 (m, 8H), 4.09–3.99 (m, 8H), 1.45–1.38 ppm (m, 12H); ¹³C NMR (CDCl₃): δ =193.1, 192.9, 154.2, 153.9, 149.5, 149.3, 148.0, 147.9, 143.6, 143.5, 136.5, 136.4, 132.7, 132.4, 132.2, 131.8, 131.7, 131.1, 130.7, 129.8, 129.6, 126.9, 126.8, 113.8, 113.5, 113.0, 112.8, 64.7, 64.5, 64.4, 64.3, 14.8, 14.7×2, 14.6 ppm; elemental analysis calcd (%) for C₃₂H₂₄N₂O₄: C 76.85, H 6.09; found: C76.81, H 6.12.

Molecular tweezers 5b: To a solution of 4b (107 mg, 0.19 mmol) in THF (50 mL) was added NaBH₄ (8 mg, 0.20 mmol) at 0 °C under an N₂ atmosphere. After the mixture was stirred for 3 h, the reaction was quenched by addition of aqueous saturated NH4Cl solution, and the mixture was extracted with CHCl₃. The organic layer was washed with H₂O and brine and then dried over magnesium sulfate. After evaporation of the solvent, the residue was dissolved in THF (20 mL) and the solution was added to a suspension of NaH (60%, in oil; 85 mg, 2 mmol) in THF (20 mL) under an N2 atmosphere. After the mixture was stirred for 10 min, CH3I (0.6 mL, 9.7 mmol) was added dropwise and stirred overnight at 60 °C. The reaction was quenched by addition of H2O, and the mixture was extracted with CH2Cl2. The organic layer was washed with H2O and brine, and then dried over magnesium sulfate. After evaporation of solvent, the residue was purified by column chromatography (silica gel, CHCl₃/ EtOAc v/v=10:1). Recrystallization from CH₂Cl₂/hexane gave 5b. Yield: 76.6 mg, 0.13 mmol (68.4%, 2 steps); colorless powder; m.p. 236.5-237.5°C (decomp); MS (LDI-TOF) m/z: 594 [M]⁺; ¹H NMR (CDCl₃): $\delta = 6.81 - 6.79$ (s × 2, 2 H), 6.69 - 6.67 (s × 2, 2 H), 6.67 - 6.57 (6.65 (d, J =10.0 Hz), 6.62(s), 6.59 (d, J = 10.0 Hz), 4H), 6.55–6.54 (s×2, 2H), 6.50– 6.47 (s $\times 2, 2$ H), 4.26–4.07 (m, 4 H), 4.05–3.96 (m, 8 H), 3.40–3.38 (s $\times 2,$ 6H), 1.42–1.36 ppm (m, 12H); ¹³C NMR (CDCl₃): $\delta = 147.8 \times 2$, 147.6, 147.4, 139.5, 139.4, 137.2, 137.0, 136.7, 136.6, 133.4, 133.3, 131.7, 131.6, 130.3, 129.8, 129.6, 129.4, 129.4, 129.3, 128.6, 128.0, 113.6, 113.5, 113.4, 113.1, 64.5., 64.4, 64.3, 64.2, 58.1×2, 57.9×2, 14.8×4 ppm; HR-MS (EI): *m/z*: calcd for C₃₈H₄₂O₆ [*M*]⁺: 594.2941; found: 594.2981.

X-ray structural analysis: Intensity data were collected on a Bruker SMART APEX diffractometer with graphite-monochromated $Mo_{K\alpha}$ radiation ($\lambda = 0.71073$ Å), a Rigaku AFC7R diffractometer with graphitemonochromated $Mo_{K\alpha}$ radiation ($\lambda = 0.71069$ Å), and Rigaku Mercury CCD diffractometer with graphite-monochromated $Mo_{K\alpha}$ radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods (SHELXTL) and refined by the full-matrix least-squares method on F^2 (SHELXL-97). All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed using AFIX instructions.

4a: Single crystals were obtained by recrystallization from DMF. $C_{32}H_{26}N_6 \cdot 2C_3H_7NO$; FW = 652.73, triclinic, $P\bar{1}$, a = 9.402(2), b = 11.334(3), c = 9.2127(11) Å; a = 105.388(14), $\beta = 95.383(14)$, $\gamma = 112.766(19)^{\circ}$; V = 851.3(3) Å³, Z = 1; $\rho_{cald} = 1.273$ g cm⁻³. The refinement converged to $R_1 = 0.0483$, $wR_2 = 0.1460$ [$I > 2\sigma(I)$], GOF = 0.999.

TCNB@4b: Single crystals were obtained by recrystallization from CHCl₃. $C_{36}H_{34}O_6 \cdot C_{10}H_2N_4 \cdot CHCl_3$; FW = 860.16, triclinic, $P\bar{1}$, a = 10.761(3), b = 13.910(4), c = 15.552(4) Å; a = 84.952(5), $\beta = 73.093(4)$, $\gamma = 76.461(4)^\circ$; V = 2164.8(10) Å³; Z = 2; $\rho_{cald} = 1.320$ gcm⁻³. The refinement converged to $R_1 = 0.0680$, $wR_2 = 0.1953$ $[I > 2 \sigma(I)]$, GOF = 1.025.

TCNB@5b: Single crystals were obtained by recrystallization from CHCl₃. $C_{38}H_{42}O_6 \cdot C_{10}H_2N_4$; FW=772.87, triclinic, $P\bar{1}$, a=11.2476(16), b=11.5599(16), c=16.233(2) Å; a=92.630(8), β =98.272(7), γ =95.209(7)°; V=2076.3(5) Å³; Z=2; ρ_{cald} =1.236 g cm⁻³. The refinement converged to R_1 =0.0842, wR_2 =0.2031 (I>2 $\sigma(I)$), GOF=1.292.

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. We would like to thank Prof. W. Fujita (Tokyo Metropolitan University) for the low-temperature X-ray analyses and Prof. Y. Mazaki (Kitasato University) for VT UV/Vis measurements. We also thank Dr. H. Enozawa and Dr. M. Takase (Tokyo Metropolitan University) and Dr. M. Hasegawa (Kitasato University) for helpful discussions.

- For reviews, see: a) T. Kawase, H. Kurata, Chem. Rev. 2006, 106, 5250; b) K. Tahara, Y. Tobe, Chem. Rev. 2006, 106, 5274; c) S. Höger, Angew. Chem. 2005, 117, 3872; Angew. Chem. Int. Ed. 2005, 44, 3806; d) Y. Yamaguchi, Z. Yoshida, Chem. Eur. J. 2003, 9, 5430; e) L. Rossa, F. Vögtle, Top. Curr. Chem. 1983, 113, 1; f) A. Schröder, H.-B. Mekelburger, F. Vögtle, Top. Curr. Chem. 1994, 172, 179.
- [2] a) F. Diederich, Y. Rubin, C. B. Knobler, R. L. Whetten, K. E. Schriver, K. N. Houk, Y. Li, Science 1989, 245, 1088; b) D. L. Mohler, K. P. C. Vollhardt, S. Wolff, Angew. Chem. 1990, 102, 1200; Angew. Chem. Int. Ed. Engl. 1990, 29, 1151; c) J. S. Moore, J. Zhang, Angew. Chem. 1992, 104, 873; Angew. Chem. Int. Ed. Engl. 1992, 31, 922; d) A. Schröder, D. Karbach, R. Güther, F. Vögtle, Chem. Ber. 1992, 125, 1881; e) W. Josten, D. Karbach, M. Nieger, F. Vögtle, K. Hägele, M. Svoboda, M. Przybylsk, Chem. Ber. 1994, 127, 767; f) W. Josten, S. Neumann, F. Vögtle, M. Nieger, K. Hägele, M. Przybylsk, F. Beer, K. Müllen, Chem. Ber. 1994, 127, 2089; g) S. Kammermeier, P. G. Jones, R. Herges, Angew. Chem. 1996, 108, 2834; Angew. Chem. Int. Ed. Engl. 1996, 35, 2669; h) M. M. Haley, B. L. Langsdorf, Chem. Commun. 1997, 1121; i) V. Hensel, A. D. Schlüter, Chem. Eur. J. 1999, 5, 421; j) M. Ohkita, K. Ando, K. Yamamoto, T. Suzuki, T. Tsuji, Chem. Commun. 2000, 83; k) Y. Tobe, R. Furukawa, M. Sonoda, T. Wakabayashi, Angew. Chem. 2001, 113, 4196; Angew. Chem. Int. Ed. 2001, 40, 4072; l) E. Nakamura, K. Tahara, Y. Matsuo, M. Sawamura, J. Am. Chem. Soc. 2003, 125, 2834; m) M. Mayor, C. Didschies, Angew. Chem. 2003, 115, 3284; Angew. Chem. Int. Ed. 2003, 42, 3176; n) Y. Matsuo, K. Tahara, M. Sawamura, E. Nakamura, J. Am. Chem. Soc. 2004, 126, 8725; o) R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi, J. Am. Chem. Soc. 2008, 130, 17646.
- [3] a) M. Iyoda, Y. Kuwatani, T. Yamauchi, M. Oda, Chem. Commun. 1988, 65; b) Y. Kuwatani, T. Yoshida, A. Kusaka, M. Iyoda, Tetrahedron Lett. 2000, 41, 359; c) M. Iyoda, T. Kondo, K. Nakao, K. Hara, Y. Kuwatani, M. Yoshida, H. Matsuyama, Org. Lett. 2000, 2, 2081; d) Y. Kuwatani, T. Yoshida, K. Hara, M. Yoshida, H. Matsuyama, M. Iyoda, Org. Lett. 2000, 2, 4017; e) T. Yoshida, Y. Kuwatani, K. Hara, M. Yoshida, H. Matsuyama, M. Iyoda, S. Nagase, Tetrahedron Lett. 2001, 42, 53; f) Y. Kuwatani, T. Yoshida, A. Kusaka, M. Oda, K. Hara, M. Yoshida, H. Matsuyama, M. Iyoda, Tetrahedron 2001, 57, 3567; g) Y. Kuwatani, J. Igarashi, M. Iyoda, Tetrahedron Lett. 2004, 45, 359; h) Y. Miyake, M. Wu, M. J. Rahman, M. Iyoda, Chem. Commun. 2005, 411; i) M. Iyoda, M. J. Rahman, M. Wu, Y. Kuwatani, Y. Miyake, Chem. Lett. 2005, 34, 1474; j) Y. Miyake, M. Wu, M. J. Rahman, M. Iyoda, J. Org. Chem. 2006, 71, 6110; k) S. Sirinintasak, Y. Kuwatani, S. Hoshi, E. Isomura, T. Nishinaga, M. Iyoda, Tetrahedron Lett. 2007, 48, 3433; l) J. Yamakawa, M. Ohkoshi, F. Takahashi, T. Nishiuchi, Y. Kuwatani, T. Nishinaga, M. Yoshida, M. Iyoda, Chem. Lett. 2008, 37, 784; m) M. J. Rahman, J. Yamakawa, A. Matsumoto, H. Enozawa, T. Nishinaga, K. Kamada, M. Iyoda, J. Org. Chem. 2008, 73, 5542.
- [4] a) E. Heilbronner, Helv. Chim. Acta 1954, 37, 921; b) J. Aihara, Bull. Chem. Soc. Jpn. 1975, 48, 3637; c) S. Kivelson, O. L. Chapman, Phys. Rev. B 1983, 28, 7236; d) J. Aihara, J. Chem. Soc. Perkin Trans. 2 1994, 971; e) J. Aihara, J. Chem. Soc. Faraday Trans. 1995, 91, 237; f) H. S. Choi, K. S. Kim, Angew. Chem. 1999, 111, 2400; Angew. Chem. Int. Ed. 1999, 38, 2256; g) L. Türker, J. Mol. Struct. 2000, 531, 333; h) K. N. Houk, P. S. Lee, M. Nendel, J. Org. Chem. 2001, 66, 5517; i) L. Türker, S. Gümüs, THEOCHEM 2004, 685, 1.

- [5] a) J.-M. Lehn, Supramolecular Chemistry, Wiley-VCH, Weinheim, 1995; b) W. L. Mock, Top. Curr. Chem. 1995, 175, 1; c) J. W. Lee, S. Samal, N. Selvapalam, H.-J. Kim, K. Kim, Acc. Chem. Res. 2003, 36, 621; d) J. Labona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem. 2005, 117, 4922; Angew. Chem. Int. Ed. 2005, 44, 4844; e) J. S. Moore, Acc. Chem. Res. 1997, 30, 402; f) D. Zhao, J. S. Moore, Chem. Commun. 2003, 807; g) W. Zhang, J. S. Moore, Angew. Chem. 2006, 118, 4524; Angew. Chem. Int. Ed. 2006, 45, 4416; h) Y. Tobe, N. Utsumi, A. Nagano, K. Naemura, Angew. Chem. 1998, 110, 1347; Angew. Chem. Int. Ed. 1998, 37, 1285; i) Y. Tobe, A. Nagano, K. Kawabata, M. Sonoda, K. Naemura, Org. Lett. 2000, 2, 3265; j) Y. Tobe, N. Utsumi, K. Kawabata, A. Nagano, K. Adachi, S. Araki, M. Sonoda, K. Hirose, K. Naemura, J. Am. Chem. Soc. 2002, 124, 5350; k) G.-B. Pan, X.-H. Cheng, S. Höger, W. Freyland, J. Am. Chem. Soc. 2006, 128, 4218; 1) J. Krömer, I. Rios-Carreras, G. Fuhrmann, C. Musch, M. Wunderlin, T. Debaerdemaeker, E. Mena-Osteritz, P. Bäuerle, Angew. Chem. 2000, 112, 3623; Angew. Chem. Int. Ed. 2000, 39, 3481; m) E. Mena-Osteritz, P. Bäuerle, Adv. Mater. 2006, 18, 447; n) K. Nakao, M. Nishimura, T. Tamachi, Y. Kuwatani, H. Miyasaka, T. Nishinaga, M. Iyoda, J. Am. Chem. Soc. 2006, 128, 16740.
- [6] T. Kawase, Y. Nishiyama, T. Nakamura, T. Ebi, K. Matsumoto, H. Kurata, M. Oda, Angew. Chem. 2007, 119, 1104; Angew. Chem. Int. Ed. 2007, 46, 1086.
- [7] S. Iijima, T. Ichihashi, Nature 1993, 363, 603.
- [8] a) C. Lepetit, C. Zou, R. Chauvin, J. Org. Chem. 2006, 71, 6317;
 b) Z. Chen, D. Jiang, X. Lu, H. F. Bettinger, S. Dai, P. von R. Schleyer, K. N. Houk, Org. Lett. 2007, 9, 5449.
- [9] a) F. H. Kohnke, A. M. Z. Slawin, J. F. Stoddart, D. J. Williams, Angew. Chem. 1987, 99, 941; Angew. Chem. Int. Ed. Engl. 1987, 26, 892; b) P. R. Ashton, N. S. Isaacs, F. H. Kohnke, A. M. Z. Slawin, C. M. Spencer, J. F. Stoddart, D. J. Williams, Angew. Chem. 1988, 100, 981; Angew. Chem. Int. Ed. Engl. 1988, 27, 966; c) P. R. Ashton, G. R. Brown, N. S. Isaacs, D. Giuffrida, F. H. Kohnke, J. P. Mathias, A. M. Z. Slawin, J. F. Stoddart, D. J. Williams, J. Am. Chem. Soc. 1992, 114, 6330; d) U. Girreser, D. Giuffrida, F. H. Kohnke, J. P. Mathias, D. Philp, J. F. Stoddart, Pure Appl. Chem. 1993, 65, 119; e) F. H. Kohnke, J. P. Mathias, J. F. Stoddart, Top. Curr. Chem. 1993, 165, 1; f) W. D. Neudorff, D. Lentz, M. Anibarro, A. D. Schlüter, Chem. Eur. J. 2003, 9, 2745.
- [10] a) R. J. Schaller, R. Gleiter, J. Hofmann, F. Rominger, Angew. Chem. 2002, 114, 1231; Angew. Chem. Int. Ed. 2002, 41, 1181; b) B. Hellbach, F. Rominger, R. Gleiter, Angew. Chem. 2004, 116, 5970; Angew. Chem. Int. Ed. 2004, 43, 5846; c) R. Gleiter, B. Hellbach, S. Gath, R. J. Schaller, Pure Appl. Chem. 2006, 78, 699; d) S. C. Kornmayer, B. Hellbach, F. Rominger, R. Gleiter, Chem. Eur. J. 2009, 15, 3380.
- [11] B. Esser, F. Rominger, R. Gleiter, J. Am. Chem. Soc. 2008, 130, 6716.
- [12] a) G. H. Senkler, D. Gust, P. K. Riccobono, K. Mislow, J. Am. Chem. Soc. 1972, 94, 8626; b) B. Esser, A. Bandyopadhyay, F. Rominger, R. Gleiter, Chem. Eur. J. 2009, 15, 3368.
- [13] a) C.-W. Chen, H. W. Whitlock, J. Am. Chem. Soc. 1978, 100, 4921;
 b) S. C. Zimmerman, Top. Curr. Chem. 1993, 165, 71; c) A. E. Rowan, J. A. A. W. Elemans, R. J. M. Nolte, Acc. Chem. Res. 1999, 32, 995; d) X. Peng, N. Komatsu, S. Bhattacharya, T. Shimawaki, S. Aonuma, T. Kimura, A. Osuka, Nat. Nanotechnol. 2007, 2, 361;
 e) A. Sygura, F. R. Fronczek, R. Sygura, P. W. Rabideau, M. M. Olmstead, J. Am. Chem. Soc. 2007, 129, 3842.
- [14] a) F.-G. Klärner, B. Kahlert, Acc. Chem. Res. 2003, 36, 919; b) F.-G. Klärner, B. Kahlert, R. Boese, D. Bläser, A. Juris, F. Marchioni, Chem. Eur. J. 2005, 11, 3363; c) M. Fokkens, T. Schrader, F.-G. Klärner, J. Am. Chem. Soc. 2005, 127, 14415; d) F.-G. Klärner, B. Kahlert, A. Nellesen, Z. Zienau, C. Ochsenfeld, T. Schrader, J. Am. Chem. Soc. 2006, 128, 4831; e) B. Branchi, V. Balzani, P. Ceroni, M. C. Kuchenbrandt, F.-G. Klärner, R. Boese, D. Bläser, B. Kahlert, J. Org. Chem. 2008, 73, 5839; f) P. Talbiersky, F. Bastkowski, F.-G. Klärner, T. Schrader, J. Am. Chem. Soc. 2008, 130, 9824; g) B. Bran-

6846 -

chi, P. Ceroni, V. Balzani, M. C. Cartagena, F.-G. Klärner, T. Schrader, F. Vögtle, *New J. Chem.* 2009, *33*, 397.

- [15] a) M. Harmata, Acc. Chem. Res. 2004, 37, 862; b) M. Harmata, N. L. Calkins, R. G. Baughman, C. L. Barnes, J. Org. Chem. 2006, 71, 3650.
- [16] a) H. Kurebayashi, Y. Fukazawa, *Chem. Lett.* 2000, 530; b) H. Kurebayashi, Y. Fukazawa, *Heterocycles* 2001, 54, 849; c) H. Kurebayashi, T. Haino, S. Usui, Y. Fukazawa, *Tetrahedron* 2001, 57, 8667; d) H. Iwamoto, M. Yamaguchi, S. Hiura, Y. Fukazawa, *Heterocycles* 2004, 63, 2005.
- [17] a) S. Shinkai, A. Sugasaki, M. Ikeda, M. Takeuchi, Acc. Chem. Res. 2001, 34, 494; b) M. Takeuchi, M. Ikeda, A. Sugasaki, S. Shinkai, Acc. Chem. Res. 2001, 34, 865.
- [18] a) A. H. Flood, R. J. A. Ramirez, W.-Q. Deng, R. P. Muller, W. A. Goddard III, J. F. Stoddart, *Aust. J. Chem.* 2004, *57*, 301; b) N. N. P. Moonen, A. H. Flood, J. M. Fernández, J. F. Stoddart, *Top. Curr. Chem.* 2005, *262*, 99; c) B. L. Feringa, *J. Org. Chem.* 2007, *72*, 6635; d) S. Nygaard, K. C.-F. Leung, I. Aprahamian, T. Ikeda, S. Saha, B. W. Laursen, S.-Y. Kim, S. W. Hansen, P. C. Stein, A. H. Flood, J. F. Stoddart, J. O. Jeppesen, *J. Am. Chem. Soc.* 2007, *129*, 960; e) N. Wintjes, D. Bonifazi, F. Cheng, A. Kiebele, M. Stöhr, T. Jung, H. Spillmann, F. Diederich, *Angew. Chem.* 2007, *119*, 4167; *Angew. Chem. Int. Ed.* 2007, *46*, 4089.
- [19] a) A. Tsuda, S. Sakamoto, K. Yanaguchi, T. Aida, J. Am. Chem. Soc. 2003, 125, 15722; b) S. Nishida, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui, K. Nakasuji, Angew. Chem. 2005, 117, 7443; Angew. Chem. Int. Ed. 2005, 44, 7277; c) H. Enozawa, M. Hasegawa, D. Takamatsu, K. Fukui, M. Iyoda, Org. Lett. 2006, 8, 1917; d) T. Tsuchiya, K. Sato, H. Kurihara, T. Wakahara, Y. Maeda, T. Akasaka, K. Ohkubo, S. Fukuzumi, T. Kato, S. Nagase, J. Am. Chem. Soc. 2006, 128, 14418; e) Y. Morita, S. Suzuki, K. Fukui, S. Nakazawa, H. Kitagawa, H. Kishida, H. Okamoto, A. Naito, A. Sekine, Y. Ohashi, M. Shiro, K. Sasaki, D. Shiomi, K. Sato, T. Takui, K. Nakasuji, Nat. Mater. 2008, 7, 48.
- [20] a) L. F. Fieser, M. M. Pechet, J. Am. Chem. Soc. 1946, 68, 2577;
 b) M. Avram, I. G. Dinulescu, G. Dinu, G. Mateescu, C. D. Nenitzescu, *Tetrahedron* 1963, 19, 309;
 c) M. P. Cava, R. Pohlke, J. Org. Chem. 1963, 28, 1012;
 d) C. E. Griffin, J. A. Peters, J. Org. Chem. 1963, 28, 1715;
 e) J. W. Barton, D. V. Lee, M. K. Shepherd, J. Chem. Soc. Perkin Trans. 1 1985, 1407;
 f) H. Ihmels, M. Schneider, M. Waidelich, Org. Lett. 2002, 4, 3247.
- [21] The following cyclized eight-membered ring compound **11** was observed by ¹H NMR spectroscopy.
- [22] Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgom-

FULL PAPER

ery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Avala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

- [23] H. Irngartinger, W. R. K. Reibel, Acta Crystallogr. Sect. B 1981, 37, 1724.
- [24] For the determination of $K_{\rm C}$ $\Delta H_{\rm DDQ}$, and $\Delta S_{\rm DDQ}$ see the Supporting Information.
- [25] D. J. Cram, Angew. Chem. 1986, 98, 1041; Angew. Chem. Int. Ed. Engl. 1986, 25, 1039.
- [26] For the determination of the ratio of [DDQ@DMTs]/[DDQ], see the Supporting Information.
- [27] a) R. S. Mulliken, J. Am. Chem. Soc. 1952, 74, 811; b) R. S. Mulliken, W. B. Person, Molecular Complexes, Wiley, New York, 1969;
 c) J. K. Kochi, Pure Appl. Chem. 1991, 63, 255.
- [28] A. Osuka, R. P. Zhang, K. Maruyama, I. Yamazaki, Y. Nishimura, Bull. Chem. Soc. Jpn. 1992, 65, 2807.
- [29] The compound 6 was prepared by 4 steps starting from 2,5-dibromo-1,4-diformylbenzene, see the Supporting Information.

Received: March 9, 2009 Published online: June 5, 2009