## A SYNTHESIS OF AAPTAMINE FROM 6,7-DIMETHOXY-1-METHYLISOQUINOLINE

Piotr Balczewski, M. Kieran J. Mallon, Jonathan D. Street, and John A. Joule<sup>\*</sup> Chemistry Department, Manchester University, Manchester, M13 9PL, United Kingdom.

Summary : A five-step total synthesis of aaptamine, 1a, is described starting from 6,7-dimethoxy-1-methylisoquinoline

Yellow aaptamine, 1a, was isolated<sup>1</sup> as its protonic salt from the sea sponge *Aaptos* aaptos. It was reported<sup>1,2</sup> to have powerful  $\alpha$ -adrenoceptor blocking activity. Later, demethylated (1b) and oxidised (2) variations were isolated<sup>3</sup> from the same natural source. Six syntheses<sup>4</sup> of aaptamine have been previously reported.



The use of 6,7-dimethoxy-1-methylisoquinoline<sup>5</sup>, 3a, as a starting substance for a synthesis of aaptamine demanded the introduction of nitrogen at C-8. It was anticipated that electrophilic substitution would proceed most readily at the less hindered C-5 rather than C-86 and accordingly we began by blocking C-5 by brominating (Br<sub>2</sub>/CHCl<sub>3</sub>/reflux/24 h), to give (mainly) the 5-bromo-derivative 3b<sup>7</sup>, and were than able to nitrate (fuming HNO<sub>3</sub>/ -45°C/30 min)(->3c) at C-8, hydrogenation/hydrogenolysis (H<sub>2</sub>/Pd-C/RT/60psi/K<sub>2</sub>CO<sub>3</sub>/16 h) of 3c<sup>7</sup> producing the desired 8-amino-6,7-dimethoxy-1-methylisoquinoline, 3d<sup>7</sup>. Subsequently, we found that direct nitration (fuming HNO<sub>3</sub>/-40°C/45 min) of 3a gives the 8-mono-nitro-derivative,  $3e^{7,8,9}$  which could be reduced (Pd-C/NH<sub>4</sub>+HCO<sub>2</sub>-) to 3d.

Our strategy for the introduction of the C<sub>1</sub>-unit required between 8-nitrogen and C-1carbon substituents rested on the predicted acidity of hydrogens on the isoquinoline-1-methyl. We converted the amine 3d into isonitrile  $3f^7$  (CHCl<sub>3</sub>/50% aqNaOH/CH<sub>2</sub>Cl<sub>2</sub>) in the hope that cyclisation could be effected<sup>10</sup> with lithium diisopropylamide<sup>10a</sup> (LDA) or copper (I) oxide<sup>10b</sup>, however the former gave only a multi-component mixture and the latter, even in refluxing xylene, brought no change to 3f.

Conversion of amine 3d to formamide  $3g^7$  (HCO<sub>2</sub>H/Ac<sub>2</sub>O/RT) allowed attempts to follow a seemingly excellent precedent<sup>11</sup>, involving the cyclising condensation of a 5formamide with a quinoline 4-methyl group, to be pursued, however treatment of the formamide with POCl<sub>3</sub>, P<sub>4</sub>O<sub>10</sub> or TsOH led only to recovery of starting amide. Arguing that the employment of base-catalysed conditions to achieve cyclising condensation would require prior removal of the acidic amide-N-hydrogen, the formamide 3g was N-benzylated (NaH/PhCH<sub>2</sub>Br), giving 3h<sup>7</sup>, but even then no cyclisation<sup>12</sup> could be achieved with a variety of strong bases, from NaH to NaN(SiMe<sub>3</sub>)<sub>2</sub>.



These failures to capitalise on 1-methyl acidity led to a changed tactic - the conversion  $(1.5xSeO_2/dioxan(dry)/reflux/2.5h)$  of 3e to aldehyde 4a<sup>7</sup>. Condensation of aldehyde 4a and nitromethane could be effected with BuLi/N,N'-dimethylpropyleneurea (DMPU) and did produce some of the desired alcohol 4b, but it took a great deal of experimentation to improve on the 15% yield. Attempts to use MeONa, *t*-BuOK, Et<sub>3</sub>N, *n*-Pr<sub>2</sub>NH in varying quantities, solvents, hot and cold were all unsuccessful. The key observation came from an examination of the use of basic Al<sub>2</sub>O<sub>3</sub> which in 50 fold excess and in nitromethane as solvent (3.5h/reflux) gave trinitro-compound 4c<sup>7</sup>. This was taken to mean that the required condensation had indeed taken place, that dehydration had followed to generate the target nitroalkene, 4d, which, under the conditions of reaction had undergone the Michael addition of a second mol equivalent of nitromethane anion. Further experimentation allowed efficient and clean synthesis of the alcohol 4b<sup>7</sup> (8xAl<sub>2</sub>O<sub>3</sub> (activated; basic)/ MeNO<sub>2</sub>(solvent)/RT/3.5h).

Dehydration of the alcohol also proved to be more difficult than we had anticipated, a variety of acidic conditions failed, probably because of interaction of the isoquinoline nitrogen with proton/acid. The production of adduct 4c (above) prompted an investigation into the use of base-catalysed dehydration; many conditions were assessed, including florisil and molecular sieves; the best found  $(10xAl_2O_3(activated; basic)/PhH/reflux1h)$  gave the desired nitroalkene 4d<sup>7</sup>, together with aldehyde, 4a (19%) and original nitro-methyl-isoquinoline 3e (22%). This latter must derive from the nitro-alkene *via* hydration to a species (part structure 5) which then loses the elements of nitroformaldehyde (arrows on 5).



The final ring closure was modelled on the frequently used cyclisation of 2-(2nitrophenyl)-1-nitroethenes to give indoles<sup>13</sup>. Such indole ring syntheses might have been thought to derive benefit from the final formation of the aromatic system however in the present context no such benefit acrues. One may view the desired process as needing reduction of both nitro-groups to generate 5, or its equivalent, for enamine protonation, cyclisation and loss of ammonia, generating the aaptamine system. Mildly acidic conditions in the reduction/cyclisation would facilitate the step proceeding from conjugated enamine 5 to 6, and, in the final elimination (arrows on 7), by protonating the amino-group thus giving rise to aaptamine, as a protonic salt.



Attempts to utilise catalytic hydrogen transfer conditions<sup>14</sup>, TiCl<sub>3</sub> or Fe in HCl were unsuccessful, however the use of Fe powder in AcOH<sup>15</sup> allowed conversion of nitroalkene 4d into aaptamine<sup>16</sup> in 83% yield.

## Acknowledgements

We thank the SERC for student maintenance (MKJM & JDS) and post-doctoral (PB) grants. PB was on leave from the Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Lodz.

## **References and Footnotes**

- <sup>1</sup> H. Nakamura, J. Kobayashi, Y. Ohizumi, and Y. Hirata, *Tetrahedron Lett.*, 1982, 23, 5555.
- Y. Ohizumi, A. Kajiwara, H. Nakamura, and T. Kobayashi, J. Pharm. Pharmacol., 1984, 36, 785.
- H. Nakamura, J. Kobayashi, Y. Ohizumi, and Y. Hirata, J. Chem. Soc., Perkin Trans. 1, 1987, 173.
- (a) T. R. Kelly and M. P. Maguire, Tetrahedron, 1985, 41, 3033; (b) T. Sakamoto, N. Miura, Y. Kondo, and H. Yamanaka, Chem. Pharm. Bull, 1986, 34, 2760; (c) A. Bassoli, G. Maddinelli, B. Rindstone, S. Tollai, and F. Chioccara, J. Chem. Soc., Chem. Commun., 1987, 150; (d) J. C. Pelletier and M. P. Cava, J. Org. Chem., 1987, 52, 616; (e) R. G. Andrew and R. A. Raphael, Tetrahedron, 1987, 43, 4803; (f) S. Hibino, E. Sugino, T. Choshi, and K. Sato, J. Chem. Soc., Perkin Trans. 1, 1988, 2429.
- 5 E. Spath and N. Polgar, Monatsh. Chem., 1929, 108, 2110.
- 6 Nitration of isoquinoline itself occurs (via the isoquinolinium cation (R. D. Brown and R. D. Harcourt, Tetrahedron, 1960, 8, 23)) at the 5- and 8-positions, with the former predominating to the extent of 9:1 (M. J. S. Dewar and P. M. Maitlis, J. Chem. Soc., 1957, 2521).
- 7 Satisfactory analytical data were obtained for all new compounds. M.ps., yields, and key spectroscopic data are : 3b, 109-110°C, 63%, δH(CDCl<sub>3</sub>) 2.92 (3H, s, 1-CH<sub>3</sub>), 7.33 (1H, s, H-8), 7.84, 8.44 (2x1H, 2xd, J 6 Hz, H-4, H-3), 22% n.O.e. between signal at  $\delta$  7.33 and C-methyl signal at  $\delta$  2.92; 3c. 128-31°C, 68%, SH(CDCl3) 8.01, 8.56 (2x1H, 2xs, H-4, H-3); 3d, 149-51°C, 83%, SH(CDCl3) 2.28 (2H, bs, NH2), 6.56 (1H, s, H-5), 7.18, 8.12 (2x1H, 2xd, J 6Hz, H-4, H-3); 3e, 185-86°C, 41%, δ<sub>H</sub> (CDCl<sub>3</sub>) 7.07 (1H, s, H-5), 7.29, 8.22 (2x1H, 2xd, J 6Hz, H-4, H-3); 3f, 180-84°C, 31%, δH (CDCl3) 7.63 (1H, s, 5-H), 7.66, 8.38 (2x1H, 2xd, J 6 Hz, H-4, H-3); 3g, 200-04°C, 89%, ymax 1700 cm<sup>-1</sup>; δH((CD<sub>3</sub>)<sub>2</sub>SO) 2.84 (2/3x3H, s, 1-CH<sub>3</sub>), 2.89 (1/3x3H, s, 1-CH<sub>3</sub>), 3.72 (1/3x3H, s, 7-OCH3), 3.74 (2/3x3H, s, 7-OCH3), 3.93 (3H, s, 6-OCH3), 7.44 (1H, s, 5-H), 7.57, 8.20 (2x1H, 2xd, J 6 Hz, H-4, H-3), 8.09 (1/3x1H, d, J 12Hz, CH:O), 8.44 (2/3x1H, s, NCH:O), 9.63 (1/3x1H, d, J 12 Hz, NH), 9.94 (2/3x1H, s, NH); 3h, 135-38°C, 55%,  $v_{max}$ . 1670 cm<sup>-1</sup>;  $\delta_{H}$  (CDCl<sub>3</sub>) 2.86 (3H, s, 1-CH<sub>3</sub>), 3.12 (3H, s, 7-OCH<sub>3</sub>), 4.08, 5.54 (2H, 2xd, J 11 Hz, PhCH<sub>2</sub>), 7.42, 8.40 (2x1H, 2xd, J 6Hz, H-4, H-3), 8.36 (1H, s, NCH:O); 4a, 209-10°C, 75%, Vmax 1700 cm<sup>-1</sup>;  $\delta_{\rm H}$  (CDCl<sub>3</sub>) 7.30 (1H, s, H-5), 7.75, 8.66 (2x1H, 2xd, J 6Hz, H-4, H-3), 10.12 (1H, s, CH:O); 4b, 158-60°C, 84%, SH (CDCl3) 1.75 (1H, brs, OH), 4.52 (1H, dd, J 13, 8 Hz, CHNO<sub>2</sub>), 4.73 (1H, dd, J 13, 3 Hz, CHNO<sub>2</sub>), 5.64 (1H, dd, J 8, 3 Hz, CHOH), 7.30 (1H, s, H-5), 7.65, 8.43 (2x1H, 2xd, J 6 Hz, H-4, H-3); 4c, 153°C, 51%, δ<sub>H</sub> (CDCl<sub>3</sub>) 4.56 (1H, pentet, J 7, CH<sub>2</sub>CHCH<sub>2</sub>), 4.75 (2H, dd, J 14, 7 Hz, CH<sub>2</sub>NO<sub>2</sub>), 5.15 (2H, dd, J 14, 7 Hz, CH<sub>2</sub>NO<sub>2</sub>), 7.25 (1H, s, H-5), 7.54, 8.42 (2x1H, 2xd, J 6 Hz, H-4, H-3); 4d, 188-90°C, 36%, 7.26 (1H, s, H-5), 7.67, 8.57 (2x1H, 2xd, J 6 Hz, H-4, H-3), 7.93, 8.14 (2x1H, 2xd, J 13Hz, CH:CHNO<sub>7</sub>).
- 8 Even nitration at -45°C always produced some 5,8-dinitro-derivative<sup>9</sup>. Traces of the 5-nitro-isomer were present in the mother liquor from crystallising 3e.
- P. Meghani, J. D. Street, and J. A. Joule, J. Chem. Soc., Chem. Commun., 1987, 1406.
- 10 For electronically analogous ring closures of isonitriles onto benzylic carbons, but to produce fivemembered systems see (a) W. Haefliger and H. Knecht, *Tetrahedron Lett.*, 1984, 25, 289; (b) Y. Ito, K. Kobayashi, and T. Saegusa, *Tetrahedron Lett.*, 1979, 1039.
- 11 L. S. Efros and L. A. Ezhova, Zh. Org. Khim., 1970, 6, 403 (Chem. Abs., 1970, 72, 111326).
- 12 Here again there was a seemingly excellent precedent in the intermolecular condensation of Nmethylformanilide with 4-methylpyridine using NaH, Y. Omote, K.-T. Kuo, N. Fukada, and N. Sugiyama, Bull. Chem. Soc. Jpn., 1967, 40, 234.
- 13 R. K. Brown, Ch. II, pp 479-484 in "Chemistry of Heterocyclic Compounds", Vol 25, "Indoles. Part One", Ed. W. J. Houlihan, Wiley-Interscience, NY, 1972.
- 14 For use of Pd/C-NH<sub>4</sub>+HCO<sub>2</sub><sup>-</sup> to make indoles see P. S. Rajeswani, K. J. Drost, and M. P. Cava, *Heterocycles*, 1989, 29, 415.
- <sup>15</sup> For use of Fe/AcOH to make indoles see M. Kawase, A. K. Sinhabru, and R. T. Borchardt, J. *Heterocycl. Chem.*, 1987, 24, 1499.
- 16 The synthetic material, isolated as its hydrochloride, m.p.110-115°C (lit<sup>1</sup> 110-113°C), had spectroscopic properties identical with published<sup>1</sup> data.

(Received in UK 16 November 1989)