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Graphical Abstract 
 

One-pot synthesis of pyrrolo[1,2-a]quinoxaline and pyrrolo[1,2-a]pyrazine 
derivatives via the three-component reaction of 1,2-diamines, ethyl pyruvate and α-
bromo ketones 

Mohammad Piltan ∗ 

Department of Chemistry, Sanandaj Branch, Islamic Azad University, Sanandaj, P.O. Box 618, Iran 
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A simple synthetic protocol has been developed involving the one-pot three-component reaction between 1,2-diamines, ethyl pyruvate and α-
bromo ketones in the presence of FeCl3 as a catalyst. A number of pyrrolo[1,2-a]quinoxaline and pyrrolo[1,2-a]pyrazine derivatives were 
synthesized in excellent yields using this protocol. 

——— 

∗ E-mail addresses: mohammadpiltan@yahoo.com, mpiltan@iausdj.ac.ir. 
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1. Introduction 
 
Multicomponent reactions (MCRs) are economically and environmentally advantageous as three or more starting materials can be 

reacted in a one-pot �procedure to give a single product [1-3].  
The quinoxaline nucleus is present in many biologically and pharmaceutically active compounds. Quinoxalines show anti-

inflammatory [4], antiviral [5], antiglucoma [6], herbicidal [7], and anticancer [8] activities. Furthermore, the synthesis of quinoxalines 
and their derivatives has received much attention from organic and medicinal chemists. Nevertheless, most of the reported methods for 
the synthesis of pyrrolo[1,2-a]quinoxalines suffer from one or more disadvantages which limit their use, such as: difficulties in product 
isolation, the use of highly expensive and detrimental metal precursors, unsatisfactory yields, and longer reaction times [9-12].  

Iron(III) chloride has been used as an efficient catalyst for the manufacture of carbon-heteroatom and heteroatom-heteroatom bonds 
with considerable advantages [13]. It has been used previously by us for the synthesis of pyrrolo[2,1-c]benzoxazines [14]. As part of 
our current studies on the development of new routes to synthesize heterocyclic systems [15-17], the syntheses of pyrrolo[1,2-
a]quinoxaline and pyrrolo[1,2-a] pyrazine derivatives from 1,2-diamines (1), ethyl pyruvate (2) and α-bromo ketones (3) in the 
presence of FeCl3 as a catalyst are reported herein (Scheme 1). 
 
2. Experimental 

 
Melting point (mp) was measured on a microscopic melting point apparatus. The IR spectra were recorded on a Shimadzu 460 FT-

IR spectrometer with a KBr disk. 1H NMR and 13C NMR spectra were taken on a Bruker DRX-250 Avance spectrometer at 250 MHz 
and 62.5 MHz in DMSO-d6, chemical shift are given in part per million (ppm) relative to TMS as an internal standard. Mass spectra 
and high resolution mass spectra were performed on Finnigan-MAT-8430 mass spectrometer with electron spray ionization (ESI) as 
the ionization mode. Elemental analyses were obtained using Heraeus CHN-O-Rapid analyzer. 

Typical procedure for the preparation of compounds 4a-h, exemplified by 4a: In a round-bottom flask equipped with a magnetic 
stirrer, 1,2 phenylenediamine (2 mmol) and ethyl pyruvate (2 mmol) in MeCN (3 mL) were added, and the mixture was stirred 
vigorously at room temperature. Ethyl bromopyruvate (2 mmol) in MeCN (2 mL) and FeCl3 (20 mol%) were added to the mixture, 
which was refluxed for 5 h. After completion of the reaction, as indicated by TLC (EtOAC/hexane = 1/3, v/v), the mixture was cooled 
to room temperature. The solvent was evaporated and the residue was purified by column chromatography using n-hexane/EtOAc (3/1, 
v/v) as the eluent. The solvent was removed and the product was obtained. 

Ethyl 4-oxo-4,5-dihydropyrrolo[1,2-a]quinoxaline-2-carboxylate (4a): Yield (0.20 g, 78%), grey crystals; mp 240-242 oC. IR (KBr, 
cm-1): νmax 3419 (NH), 1721 (C=O), 1669 (C=O). 1H NMR (250.1 MHz, DMSO-d6): δ 1.30 (t, 3H, 3J = 7.0 Hz, CH3), 4.27 (q, 2H, 3J = 
7.0 Hz, OCH2), 7.19-7.35 (m, 4H, 4CH ), 8.22 (d, 1H, 3J = 8.0 Hz, CH), 8.75 (s, 1H, CH), 11.45 (br s, 1H, NH). 13C NMR (62.9 MHz, 
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DMSO-d6): δ 14.7 (CH3), 60.5 (OCH2), 111.9 (CH), 116.3 (CH), 117.1 (CH), 119.4 (C), 121.8 (CH), 122.5 (C), 123.4 (CH), 124.7 (C), 
127.3 (C), 129.4 (CH), 155.2 (C=O), 163.6 (C=O). MS: m/z (%): 256 (M+, 100), 241 (8), 228 (44), 211 (100), 183 (47), 155 (42), 77 
(15). Anal. Calcd. for C14H12N2O3 (256.26): C, 65.62; H, 4.72; N, 10.93; found: C, 65.57; H, 4.69; N, 10.96.  

2-Phenylpyrrolo[1,2-a]quinoxaline-4(5H)-one (4b): Yield (0.18 g, 70%), yellow oil. IR (KBr, cm-1): νmax 3423 (NH), 1662 (C=O), 
1H NMR (250.1 MHz, DMSO-d6): δ 7.21-7.53 (m, 9H, 9CH), 8.12 (d, 1H, 3J = 8.0 Hz, CH), 8.62 (s, 1H, CH), 11.47 (br s, 1H, NH). 
13C NMR (62.9 MHz, DMSO-d6): δ 111.9 (CH), 116.0 (C), 117.1 (CH), 117.2 (C), 121.6 (C), 122.2 (CH), 123.4 (CH), 126.5 (CH), 
126.9 (CH), 127.3 (2CH), 127.8 (CH), 129.0 (C), 129.3 (2CH), 133.1 (C), 154.3 (C=O). MS: m/z (%): 260 (M+, 100), 232 (13), 218 
(24), 183 (86), 77 (35). Anal. Calcd. for C17H12N2O (260.30): C, 78.44; H, 4.65; N, 10.76; found: C, 78.57; H, 4.61; N, 10.79. 

2-(4-Bromophenyl)pyrrolo[1,2-a]quinoxalin-4(5H)-one (4c): Yield (0.25 g, 73%), pink crystals; mp 119-121 oC. IR (KBr, cm-1): νmax 
3315 (NH), 1667 (C=O). 1H NMR (250.1 MHz, DMSO-d6): δ 7.17-7.48 (m, 8 H, 8 CH), 8.09 (d, 1H, 3J = 8.1 Hz, CH), 8.65 (s, 1H, 
CH), 11.42 (br s, 1H, NH). 13C NMR (62.9 MHz, DMSO-d6): δ 116.8 (CH), 118.2 (CH), 123.1 (C), 123.8 (CH), 124.4 (CH), 125.1 
(CH), 125.8 (2CH), 126.3 (C), 129.8 (C), 132.2 (2CH), 132.9 (C), 135.4 (CH), 136.6 (C), 139.2 (C), 154.1 (C=O). MS: m/z (%): 339 
(M+, 9), 297 (28), 218 (91), 183 (96), 157 (38), 76 (62), 57 (100). Anal. Calcd. for C17H11BrN2O (339.19): C, 60.20; H, 3.27; N, 8.26; 
found: C, 60.27; H, 3.21; N, 8.32. 

1-Methyl-2-p-tolylpyrrolo[1,2-a]quinoxalin-4(5H)-one (4d): Yield (0.20 g, 72%), yellow powder; mp 60-61 oC. IR (KBr, cm-1): νmax 
3200 (NH), 1663 (C=O). 1H NMR (250.1 MHz, DMSO-d6): δ 2.29 (s, 3H, CH3), 7.21-7.39 (m, 5H, 5CH), 7.64-7.67(m, 3H, 3CH), 8.07 
(s, 1H, CH), 8.64 (s, 1H, CH), 11.23 (br s, 1H, NH). 13C NMR (62.9 MHz, DMSO-d6): δ 22.3 (CH3), 116.1 (CH), 116.6 (CH), 118.1 
(CH), 124.0 (C), 124.4 (CH), 125.8 (CH), 126.9 (2CH), 127.3 (C), 129.4 (C), 130.1 (CH), 130.5 (C), 131.0 (2CH), 132.5 (C), 137.5 
(C), 156.5 (C=O). MS: m/z (%): 274 (M+, 100), 246 (6), 232 (41), 183 (81), 91 (32), 76 (18). Anal. Calcd. for C18H14N2O (274.33): C, 
78.81; H, 5.14; N, 7.63; found: C, 78.94; H, 5.19; N, 7.69. 

Ethyl 7,8-diamethy1-4-oxo-4,5-dihydroptrrolo[1,2-a]quinoxaline-1-carboxylate (4e): Yield (0.24 g, 84%), grey crystals; mp 237-239 
oC. IR (KBr, cm-1): νmax 3305 (NH), 1731 (C=O), 1623 (C=O). 1H NMR (250.1 MHz, DMSO-d6): δ 1.23 (t, 3H, 3J = 7.1 Hz, CH3), 2.24 
(s, 3H, CH3) , 2.47 (s, 3H, CH3), 4.27 (q, 2H, 3J = 7.0 Hz, OCH2), 7.08 (s, 1H, CH ), 7.32 (s, 1H, CH ), 7.75 (s, 1H, CH), 8.33 (s, 1H, 
CH) , 11.45 (br s, 1H, NH). 13C NMR (62.9 MHz, DMSO-d6): δ 14.3 (CH3), 21.2 (CH3), 22.4(CH3), 61.8 (OCH2), 115.6 (CH), 118.5 
(C), 121.0 (CH), 123.8 (CH), 125.2 (C), 128.3 (C), 129.4 (CH), 133.6 (C), 135.3 (CH), 136.2 (CH), 155.2 (C=O), 162.4 (C=O). MS: 
m/z (%): 284 (M+, 100), 269 (10), 256 (45), 239 (100), 211 (45), 183 (38), 169 (25). Anal. Calcd. for C14H16N2O3 (284.32): C, 67.59; 
H, 5.67; N, 9.85; found: C, 67.62; H, 5.69; N, 9.81. 

2-(4-Bromophenyl)-7,8-dimethylpyrrolo[1,2-a]quinoxalin-4(5H)-one (4f): Yield (0.27 g, 74%), grey crystals; mp 235-237 oC. IR 
(KBr, cm-1): νmax 3335 (NH), 1653 (C=O). 1H NMR (250.1 MHz, DMSO-d6): δ 2.29 (s, 3H, CH3), 2.38 (s, 3H, CH3), 6.85(s, 1H, CH ), 
7.23-7.39 (m, 3H, 3CH), 7.48-7.59 (m, 2H, 2CH), 7.71-7.75 (m, 1H, CH), 8.22 (s, 1H, CH), 11.45 (br s, 1H, NH). 13C NMR (62.9 
MHz, DMSO-d6): δ 22.3 (CH3), 22.8 (CH3), 109.9 (CH), 116.4 (CH), 117.1 (C), 118.6 (CH), 122.8 (C), 124.1 (C), 124.3 (C), 126.1 
(2CH), 127.2 (CH), 129.3 (C), 132.9 (C), 130.0 (C), 131.1 (2CH), 136.4 (C), 155.6 (C=O). MS: m/z (%): 367 (M+, 12), 325 (28), 246 
(94), 76 (63), 57 (100). Anal. Calcd. for C19CH15BrN2O (367.25): C, 62.14; H, 4.12; N, 7.63; found: C, 62.11; H, 4.15; N, 7.59.  

Ethyl 4-oxo-4,5,5a,6,7,8,9,9a-octahydropyrrolo[1,2-a]quinoxalin-1-carboxylate (4g): Yield (0.18 g, 68%), yellow oil. IR (KBr, cm-
1): νmax 3280 (NH), 1725 (C=O), 1656 (C=O). 1H NMR (250.1 MHz, DMSO-d6): δ 1.22-1.46 (m, 7H, 2CH2 and CH3), 1.75-1.94 (m, 
4H, 2CH2), 3.38-3.54 (m, 2H, 2CH), 4.23 (q, 2H, 3J = 7.1 Hz, OCH2), 6.76 (d, 1H, 4J = 1.5 Hz, CH), 7.69 (d, 1H, 4J = 1.5 Hz, CH), 
11.28 (1H, br s, NH). 13C NMR (62.9 MHz, DMSO-d6): δ 14.3 (CH3), 23.2 (CH2), 24.8 (CH2), 31.2 (CH2), 31.8 (CH2), 54.7 (CH), 60.5 
(CH2), 61.2 (OCH2), 111.3 (C), 118.6 (CH), 126.3 (C), 132.2 (CH) 158.4, 164.7 (2 C=O). MS: m/z (%): 262 (M+, 100), 247 (15), 217 
(51), 189 (100), 161 (39). Anal. Calcd. for C14H18N2O3 (262.31): C, 64.11; H, 6.92; N, 10.68; found: C, 64.05; H, 6.88; N, 10.76. 

Ethyl 1-oxo-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine-7-carboxylate (4h): Yield (0.15 g, 72%), yellow crystals; mp 236-238 oC. IR 
(KBr, cm-1): νmax 3330 (NH), 1727 (C=O), 1647 (C=O). 1H NMR (250.1 MHz, DMSO-d6): δ 1.27 (t, 3H, 3J = 7.1 Hz, CH3), 3.46-3.51 
(m, 2H, CH2), 4.11-4.13 (m, 2H, CH2), 4.21 (q, 2H, 3J = 7.0 Hz, OCH2), 6.90 (d, 1H, 4J = 1.4 Hz, CH), 7.62 (d, 1H, 4J = 1.4 Hz, CH), 
11.21 (s, 1H, NH).13C NMR (62.9 MHz, DMSO-d6): δ 14.8 (CH3), 43.1 (CH2), 43.9 (CH2), 60.9 (OCH2), 114.2 (CH), 116.7 (C), 118.3 
(C), 134.6 (CH), 156.0 (C=O ), 163.7 (C=O). MS: m/z (%): 208 (M+, 100), 193 (82), 180 (27), 163 (100), 135 (20), 120 (57), 107 (26), 
77 (27). Anal. Calcd. for C10H12N2O3 (208.22): C, 57.69; H, 5.8; N, 13.45; found: C, 57.73; H, 5.78; N, 13.41. 
 
3. Results and discussion 

 
The reaction of 1, 2 phenylenediamine, ethyl pyruvate, and ethyl bromopyruvate in the presence of FeCl3 (20 mol%) was selected as 

a model system (Scheme 2). 
Initially, we thought of varying the nature of solvent to increase the product yield, so we carried out the reactions in dichloromethane, 

dichloroethane, ethanol, ethyl acetate, acetonitrile, and methanol at reflux temperature (Table 1). When the reaction mixture was 
refluxed for 5 h in acetonitrile, the yield of 4a was improved significantly (78%), Next the catalytic amount of the Iron (III) chloride 
catalyst was examined in the model reaction. In the presence of 10, 15, 20, and 25 mol% of FeCl3, the yields of pyrrolo[1,2-
a]quinoxaline 4a obtained were 42%, 55%, 78%, and 78%, respectively. This shows the important role of FeCl3 in this reaction. Thus, 
to verify that this is generally the case, we optimized the conditions for the other reactions. The results are presented in Table 2. 

The 1H NMR, 13C NMR, IR spectra and MS of the products clearly indicated the formation of compounds 4a-h. For example, the 1H 
NMR spectrum of 4a exhibited a triplet at 1.21 ppm and a quartet at 4.20 ppm for the ethoxy group, along with multiplets (7.19–8.75 
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ppm) for the aromatic region, and a broad singlet at 11.45 ppm due to the NH group. The 1H-decoupled 13C NMR spectrum of 4a 
showed 14 distinct resonances in agreement with the proposed structure. The IR spectrum of 4a exhibited absorption bands due to 
carbonyl groups at 1721 and 1669 cm-1. The 1H NMR and 13C NMR spectra of products 4b-h were similar to those of 4a, except for the 
ester moieties, which exhibited characteristic resonances in the appropriate parts of the spectrum. 

On the basis of these results, a possible mechanism for the formation of pyrrolo[1,2-a]quinoxaline 4a is shown in Scheme 3. The 
reaction between 1,2-diaminobenzene (1a) and ethyl pyruvate (2) affords quinoxaline 5, then ethyl bromopyruvate (3) could be 
activated by FeCl3 and undergo the nucleophilic addition. The subsequent intermediate 6 by the elimination of the HBr leads to 
intermediate 7, which undergoes a series of cyclization and elimination reactions to generate product 4a.  
 
4. Conclusion 

 
In conclusion, we have described a simple and efficient method for the synthesis of pyrrolo[1,2-a]quinoxaline and pyrrolo[1,2-

a]pyrazine derivatives of potential synthetic and pharmacological interest. This method is characterized by several unique advantages, 
such as simplicity in operation under neutral conditions, high yields of products, and relatively short reaction time. 
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Scheme 1. Three-component synthesis of pyrrolo[1,2-a]quinoxaline and pyrrolo[1,2-a]pyrazine derivatives. 
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Scheme 2. The model system for the synthesis of 4a. 
 
 
Table 1 
The effect of solvent on the reaction time and yield.a 

Entry 1 2 3 4 5 6 7 
Solvent DCM EtOAC DCE MeCN MeCN EtOH MeOH 
Time (h) 8 8 8 5 8 8 8 
Yield (%)b 64 60 61 78 77 68 65 

a Reaction conditions: 1,2-phenylenediamine (2 mmol), ethyl pyruvate (2 mmol), ethyl bromopyruvate (2 mmol), and FeCl3 (20 mol %). 
b Isolated yield. 
 
 
Table 2 
Synthesis of pyrrolo[1,2-a]quinoxaline and pyrrolo[1,2-a]pyrazine derivatives 4. 
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Entry Diamine R Product Yield 

(%)a 

1 benzene-1,2-diamine CO2Et 4a 78 
2 benzene-1,2-diamine Ph 4b 70 
3 benzene-1,2-diamine 4-Br-C6H4 4c 73 
4 benzene-1,2-diamine 4-Me-C6H4 4d 72 
5 4,5-dimethylbenzene-

1,2-diamine 
CO2Et 4e 84 

6 4,5-dimethylbenzene-
1,2-diamine 

4-Br-C6H4 4f 74 

7 cyclohexyl diamine CO2Et 4g 68 
8 ethylenediamine CO2Et 4h 72 

a Isolated yield.  
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Scheme 3. Possible mechanism for the synthesis of pyrrolo[1,2-a]quinoxaline 4a. 
 


