Reactions of Cationic Palladium(II) Methyl and Vinyl Complexes with Alkynes

Anne M. LaPointe[†] and Maurice Brookhart*

Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290

Received November 17, 1997

[(phen)Pd(CH₃)(OEt₂)]⁺[BAr'₄]⁻ (phen = 1,10 phenanthroline, Ar' = 3,5-(CF₃)₂C₆H₃) reacts with RC=CR' to form the η^2 -alkyne complexes [(phen)Pd(CH₃)(η^2 -RC=CR']⁺[BAr'₄]⁻ (**5a**, R = R' = SiMe₃; **5b**, R=C₆H₅, R' = H). In contrast, the reaction of the diimine complexes [(ArN=C(R)C(R)=NAr)Pd(CH₃)(NCCH₃)]⁺[BAr'₄]⁻ (**1**-**3**) (Ar = 2,6-(CH₃)₂C₆H₃, 2,6-(*i*-Pr)₂C₆H₃; R = H, CH₃, ¹/₂BIAN) with HC=CR' (R' = H, *t*-Bu) yielded the alkyne insertion products [(ArN=C(R)C(R)=NAr)Pd(CH=C(R)CH₃)(NCCH₃)]⁺[BAr'₄]⁻ (**3**) while the reaction of 1-hexyne with **1a** yielded a mixture of the 2,1- and 1,2-insertion products [(N-N)Pd-(C(C₄H₉)=CHCH₃)(NCCH₃)]⁺[BAr'₄]⁻ and [(N-N)Pd(CH=C(C₄H₉)(CH₃)(NCCH₃)]⁺[BAr'₄]⁻, respectively. The vinyl complexes [(N-N)Pd(CH=CRCH₃)(NCCH₃)]⁺[BAr'₄]⁻ react with acetylene to form the η^1 -dienyl complexes [(N-N)Pd(CH=CHCH=CRCH₃)(NCCH₃)]⁺[BAr'₄]⁻, which then react with acetylene and rearrange to form the novel 5-ethylidene-2-cyclopenten-1-yl complexes [(N-N)Pd(η^3 -C(CH₃)(R)C₅H₅)]⁺[X]⁻. (R = H, *t*-Bu; X = BAr'₄, O₃SCF₃) (**8**).

Introduction

The reactions of alkynes with late transition metal hydrido, alkyl, and aryl complexes have been the subject of much research.¹ In many cases, alkyne insertion into the metal-hydrogen or metal-carbon σ -bond occurs, yielding a vinyl complex. Although such a reaction represents the first step in the polymerization of alkynes via a coordination/insertion pathway,² there is little mechanistic information concerning the details of such processes for late transition metal systems.³⁻⁵ Several rhodium- and platinum-based catalysts for the polymerization of alkynes have been reported,⁶ but the nature of the catalyst resting state and the specific details of the chain growth for these systems have not been investigated. Noyori⁷ has reported that the well-

characterized σ -acetylide complex, Rh(C=C-Ph)(norbornadiene)(PPh₃)₂, initiates a living polymerization of phenylacetylene, which supports the operation of a coordination/insertion mechanism for this family of catalysts.

Recent studies in these and other laboratories have focused on the use of cationic Pd(II) methyl complexes as precatalysts for olefin dimerization,⁸ oligomerization, and polymerization,^{9,10} olefin hydrosilation and dehydrogenative silation,¹¹ and ethylene/CO copolymerization.^{12–15} In particular, the square-planar Pd(II) diimine complexes (**1**–**3**) are versatile precatalysts for the homo- and copolymerization of α -olefins.^{9,10}

The goal of this work was to examine the reactivity of the cationic methyl complexes 1-4 with alkynes in

J. Am. Chem. Soc. 1994, 116, 12131.
(8) Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 1137.
(9) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc.

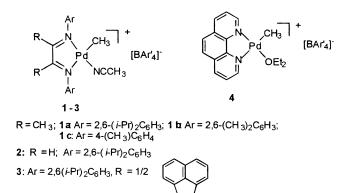
- (12) Brookhart, M.; Rix, F. C.; DeSimone, J. M.; Barborak, J. C. J. Am. Chem. Soc. **1992**, *114*, 5894.
- (13) Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996, 118, 4746.
 - (14) Drent, E.; Budzelaar, P. H. M. *Chem. Rev.* **1996**, *96*, 663. (15) Sen, A. *Acc. Chem. Res.* **1993**, *26*, 303.

 $^{^\}dagger$ Current Address: Symyx Technologies, 3100 Central Expressway, Santa Clara, CA 95051.

^{(1) (}a) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Complexes*, University Science Books: Mill Valley, CA, 1987. (b) Hegedus, L. S. *Transition Metals in the Synthesis of Complex Organic Molecules*, University Science Books: Mill Valley, CA, 1994.

⁽²⁾ In some cases, it has been shown that vinyl complexes are inert toward further insertion of alkynes, see: (a) Etienne, M.; Mathieu, R.; Donnadieu, B. *J. Am. Chem. Soc.* **1997**, *119*, 3218. (b) Samsel, E. G.; Norton, J. R. *J. Am. Chem. Soc.* **1984**, *106*, 5505.

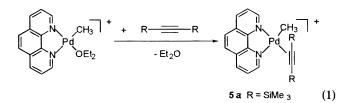
⁽³⁾ For examples of alkyne dimerization catalysts, see refs 3a-d. Mechanistic studies suggest that carbon-carbon bond formation occurs via acetylide migration to a vinyl ligand. (a) Rappert, T.; Yamamoto, A. Organometallics **1994**, *13*, 4984. (b) Jun, C.-H.; Lu, Z.; Crabtree, R. H. Tetrahedron Lett. **1992**, *47*, 7119 (c) Bianchini, C.; Frediani, P.; Masi, D.; Peruzini, M.; Zanobini, F. Organometallics **1994**, *13*, 4616. (d) Barbaro, P.; Bianchini, C.; Peruzini, M.; Polo, A.; Zanobini, F. Inorg. Chim. Acta **1994**, *220*, 5. (e) Slugovc, C.; Merciter, K.; Zobertz, E.; Schmid, R.; Kirchner, K Organometallics **1996**, *15*, 3998.


⁽⁴⁾ For references to numerous examples of alkyne polymerization by d⁰ early transition metal catalysts, see: (a) Gibson, H. W.; Porchan, J. M. In *Encyclopedia of Polymer Science and Engineering* 2nd ed.; Kvoschwitz, J. I., Ed.; Wiley and Sons: New York, 1984; Vol. 1, p 87. (b) Simionescu, C. I.; Percec, V. *Prog. Polym. Sci.* **1982**, *8*, 133. (c) Shirakawa, H.; Masuda, T.; Takeda, K. In *The Chemistry of Triple-Bonded Functional Groups*; Patai, S., Ed.; Wiley: Chichester, 1994; Suppl. C2, Chapter 17.

⁽⁵⁾ For examples of niobium, tantalum, molybdenum, and tungsten alkyne polymerization catalysts which operate via metal alkylidene intermediates, see: (a) Schrock, R. R.; Luo, S.; Lee, J. C., Jr.; Zanetti, N. C.; Davis, W. M. *J. Am. Chem. Soc.* **1996**, *118*, 3883. (b) Schlund, R.; Schrock, R. R.; Crowe, W. E. *J. Am. Chem. Soc.* **1989**, *111*, 8004. (c) Katz, T. J.; Ho, T.-H.; Shih, N.-Y.; Ying, Y.-C., Stuart, V. I. W. J. Am. Chem. Soc. **1984**, *106*, 2658. (d) Masuda, T.; Higashimura, T. Adv. Polym. Sci. **1987**, *81*, 121.

 ^{(6) (}a) Furlani, A.; Napoletano, C.; Russo, M. V. J. Polym. Sci., Polym. Chem. Ed. 1989, 27, 75. (b) Furlani, A.; Licoccia, S.; Russo, M.
 V. J. Polym. Sci., Polym. Chem. Ed. 1986, 24, 991. (c) Goldberg, Y.;
 Alper, H. J. Chem. Soc., Chem. Commun. 1994, 1209. (d) Tabata, M.;
 Wang, Y.; Yokota, K. J. Polym. Sci., Polym. Chem. Ed. 1984, 32, 1113.
 (7) Kishimoto, Y.; Eckerle, P.; Miyatake, T.; Ikariya, T.; Noyori, R.

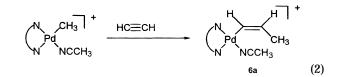
 <sup>1995, 117, 6414.
 (10)</sup> Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc.
 1995, 117, 11664.


 ⁽¹¹⁾ LaPointe, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc.
 1997, 119, 906.

an effort to generate Pd(II) methyl alkyne adducts and study their migratory insertion reactions, as well as to determine whether such complexes could function as effective alkyne oligomerization or polymerization catalysts. We report here the results of these studies.

Results and Discussion

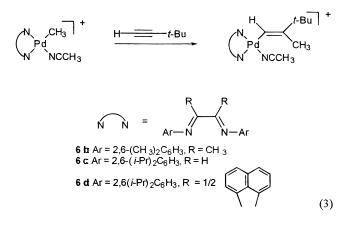
1. Formation of Alkyne Adducts. [(phen)Pd-(CH₃)(OEt₂)]⁺[BAr'₄]⁻ (**4**) reacts with bis(trimethylsilyl)acetylene to form the η^2 -alkyne adduct [(phen)-Pd(CH₃)(η^2 -Me₃SiC=CSiMe₃)]⁺[BAr'₄]⁻ (**5a**) (eq 1). **5a**



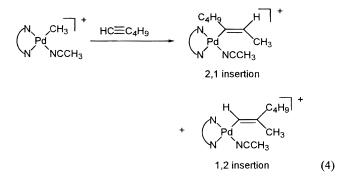
is a thermally stable, colorless crystalline solid and is moderately air- and water-stable. No evidence for migratory insertion of alkyne into the palladiummethyl bond was observed.

The reaction of $[(\text{phen})\text{Pd}(\text{CH}_3)(\text{OEt}_2)]^+[\text{BAr'}_4]^-$ with phenylacetylene at -78 °C in CD₂Cl₂ yielded a complex whose ¹H NMR spectrum was consistent with the formulation $[(\text{phen})\text{Pd}(\text{CH}_3)(\eta^2-\text{C}_6\text{H}_5\text{C}\equiv\text{CH})]^+[\text{BAr'}_4]^-$ (**5b**). In the presence of excess phenylacetylene, exchange between free and coordinated phenylacetylene was observed at -60 °C, as evidenced by a broadening of the coordinated PhC \equiv CH peak (5.05 ppm). CD₂Cl₂ solutions of **5b** were unstable above -40 °C, transforming into an unidentifiable mixture of products.

The diimine complexes, $[(N-N)Pd(CH_3)(NCCH_3)]^+$ - $[BAr'_4]^-$ (1-3), did not react with bis(trimethylsilyl)acetylene or diphenylacetylene, perhaps for steric reasons. Less hindered alkynes reacted rapidly with 1-3 to insert into the Pd-CH₃ bond. This will be discussed in the next section.


2. Migratory Insertion of Alkynes. A. Acetylene. The reaction of **3a** with acetylene in CD₂Cl₂ at -60 °C yields the η^1 -vinyl complex [(Ar₂BIAN)Pd-(CH=CHCH₃)(NCCH₃)]⁺ (**6a**), eq 2. The vincinal cou-

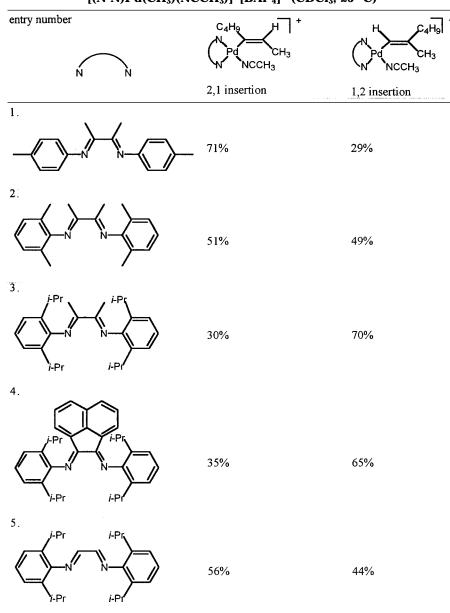
pling constant between the vinylic protons ($J_{\rm HH} = 6$ Hz) suggests that the insertion occurs with cis geometry.¹⁶ No intermediate species were observed by ¹H NMR spectroscopy. Qualitatively, the insertion of acetylene occurs faster than the analogous insertion reaction of ethylene.


6a can be isolated as a thermally stable orange solid if excess acetylene is removed from the reaction mixture prior to warming. **6a** shows no evidence of isomerizing into an η^3 -allyl complex or an η^2 -vinyl complex. When complexes containing less bulky supporting ligands (**1b**,**c**, **2**, **4**) are reacted with acetylene in CD₂Cl₂ at -60 °C, vinyl complexes analogous to **6a** are observed by ¹H NMR spectroscopy, but these complexes are difficult to isolate in pure form due to their rapid reaction with a second equivalent of acetylene (see below).

B. *tert*-**Butylacetylene.** Complexes **1b**, **2**, and **3** react with *tert*-butylacetylene in dichloromethane at 25 °C to form the η^1 -vinyl complexes [(N–N)PdCH=C(*t*-Bu)(CH₃)(NCCH₃)]⁺[BAr'₄]⁻ (**6b**–**d**). From the NMR data, it cannot be determined whether alkyne insertion has occurred in a cis or trans fashion; however, steric arguments, and the observed preference for cis insertion of acetylene suggest that cis addition is likely (eq 3).

Complexes **6b**-**d** are thermally stable solids and show no evidence of converting into η^3 -allyl or η^2 -vinyl complexes.

C. 1-Hexyne. Complexes $1\mathbf{a}-\mathbf{c}$, $\mathbf{2}$, and $\mathbf{3}$ were allowed to react with 1-hexyne (0.8 equiv) in CDCl₃ at 25 °C, eq 4. A mixture of the 1,2-insertion product [(N-



N)Pd(CH=C(C₄H₉) (CH₃))(NCCH₃)]⁺ and the 2,1-insertion product $[(N-N)Pd(C(C_4H_9)=CHCH_3)(NCCH_3)]^+$ was

⁽¹⁶⁾ Friebolin, H. *Basic One- and Two-Dimensional NMR Spectros-copy*, 2nd ed.; VCH: New York, 1993.

 Table 1. Ligand Influence on the Regiochemistry of the Reaction of 1-Hexyne with

 [(N-N)Pd(CH₃)(NCCH₃)]⁺[BAr'₄]⁻ (CDCl₃, 25 °C)

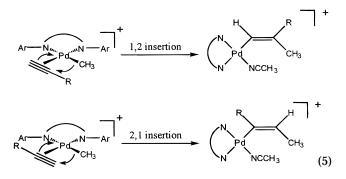
formed.¹⁷ The relative amounts of the two insertion products are shown in Table 1.

For a given ligand backbone (complexes **1a**–**c**), the percentage of 1,2-insertion increases as the steric demands of the ligand aryl substituents increase (2,6- $(i-Pr)_2C_6H_3 > 2,6-(CH_3)_2C_6H_3 > 4-CH_3C_6H_4$). Likewise, for a given aryl substituent (2,6- $(i-Pr)_2C_6H_3$), the percentage of 1,2-insertion increases as the steric demand of the ligand backbone increases (**1** > **3** \gg **2**).

The results with 1-hexyne and *tert*-butylacetylene suggest that the regiochemistry of alkyne insertion is governed by the steric demands of both the metal center and the alkyne. 2,1-Insertion is favored when there is little steric hindrance (entries 1 and 2), but when there is substantial steric congestion at the metal center

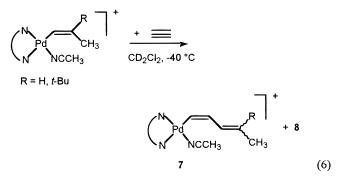
(entries 3-5) or there is a bulky substituent on the alkyne (eq 3), 1,2-insertion is favored. If the alkyne must lie approximately in the square plane formed by the metal and the dimine ligand for migratory insertion to occur (eq 5), then the observed preference for 1,2-insertion when the alkyne substituents and/or the dimine are bulky can be explained by steric repulsion between the alkyne substituent R and the aryl substituents of the dimine disfavoring the 2,1-insertion.

There have been several studies on the insertion of alkynes into cyclometalated Ni(II) and Pd(II) complexes.^{18–23} For these neutral complexes, alkyne insertion occurs only at 10 °C. The alkyne insertion


⁽¹⁷⁾ In the presence of excess 1-hexyne, the vinyl complexes react to form the second insertion products as a mixture of regioisomers. Qualitatively, the 1,2-insertion products reacted more rapidly than the 2,1-insertion products; the second insertion reactions were significantly slower than the first insertion reactions. For this reason, a slight deficit (0.8 equiv) of 1-hexyne was used.

⁽¹⁸⁾ Sutter, J.-P.; Pfeffer, M.; De Cian, A.; Fischer, J. Organometallics **1992**, *11*, 386.

⁽¹⁹⁾ Ryabov, A. D.; van Eldik, R.; Le Borgne, G.; Pfeffer, M. Organometallics 1993, 12, 1386.

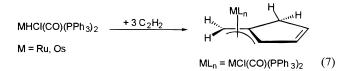

⁽²⁰⁾ Martinez, M.; Muller, G.; Panyella, D.; Rocamora, M.; Solans, X.; Font-Bardia, M. *Organometallics* **1995**, *14*, 5552.

⁽²¹⁾ Dupont, J.; Pfeffer, M.; Daran, J.-C.; Gouteron, J. J. Chem. Soc., Dalton Trans. 1988, 2421.

reactions reported here occur at significantly lower temperatures (-60 °C); this enhanced reactivity is attributed to the higher electrophilicity of the cationic Pd(II) complexes.

3. Reactions of $[(N-N)Pd(CH=CHR)(NCCH_3)]^+$ $[BAr'_4]^-$ ($\mathbf{R} = \mathbf{H}$, *t*-Bu) with Alkynes. The reactions of the η^1 -vinyl complexes with acetylene were investigated by low-temperature ¹H NMR spectroscopy. At -20 °C, **6b** reacts with acetylene to form a new product whose ¹H NMR spectrum is consistent with the formulation $[(N-N)Pd(CH=CHCH=CH(t-Bu)(NCCH_3)]^+$ $[BAr'_4]^-$ (**7**). Qualitatively, the insertion of acetylene into the Pd-vinyl bond is slower than the insertion of acetylene into the Pd-methyl bond. However, quantitative measurements were not possible since the formation of **7** is competitive with the formation of another product, **8** (eq 6).

In the presence of excess acetylene at -40 °C, 7 is eventually converted into 8a. A variety of complexes with the same connectivity as 8a can be more conveniently prepared by purging CH₂Cl₂, Et₂O, or CH₃CN solutions of 1a-c, 2-4, or 6a-d with acetylene at 25 °C. 8a-d are isolated as highly crystalline, air- and water-stable solids whose colors range from deep green to deep purple and red. ¹H and ¹³C NMR spectroscopy and elemental analyses revealed that CH₃CN was not present in **8a-d** and that a total of 3 equiv of alkyne was incorporated. Furthermore, the connectivity of the coupled alkyne fragment was similar in all of the complexes. In particular, one unusual feature was noted in the ¹H and ¹³C NMR spectra. Two signals (1H each) were observed between 2.8 and 3.0 ppm, which were coupled to each other with an extremely high geminal coupling constant ($J_{HH} = 24$ Hz). ¹H and COSY spectra revealed that these protons exhibit a very weak coupling with one vinylic proton. ¹³C NMR spectroscopy


revealed that a CH_2 group was present in the fragment resulting from the coupled alkyne, suggesting that isomerization had occurred. However, the connectivity of the incorporated alkynes was not readily determined from the spectral data alone.

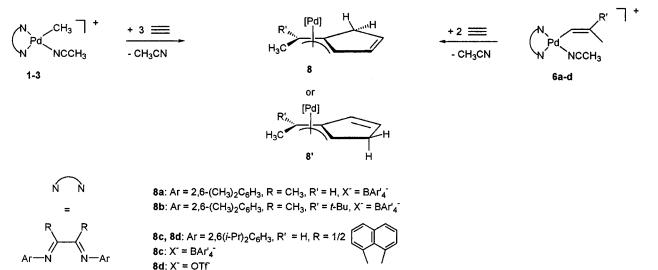
The connectivity of the coupled alkyne fragment in **8d** was determined by X-ray crystallography; however, the structure was disordered and accurate bond distances could not be determined. As shown in Scheme 1, the three alkyne fragments have coupled to form a 5-ethylidene-2-cyclopenten-1-yl fragment, which coordinates to the metal in an allylic fashion. The exact position of the double bond could not be determined from the X-ray data.

The structural information provides an explanation for the unusual features observed in the ¹H NMR spectra. The two signals coupled to each other with $J_{\rm HH}$ = 24 Hz are the methylenic protons of the cyclopentadienyl ring; high ² $J_{\rm HH}$ values have been observed for hydrogens of an sp³-hybridized carbon adjacent to a vinylic center.¹⁶ The ¹H and COSY NMR spectra of **8a** reveal that the methylenic protons exhibit weak coupling to only one proton on the noncoordinated double bond. No coupling of the methylenic protons to the allylic proton was observed, suggesting that the connectivity is best represented by **8** rather than **8**'.

One possible mechanism for the formation of **8** is shown in Scheme 2. The first and second insertion of acetylene have been directly observed. Following the insertion of the third equivalent of acetylene, the next step is intramolecular cyclization resulting from migratory insertion of the pendant double bond into the Pd–C bond. β -Hydride elimination would yield a fulvene complex, which undergoes rapid rearrangement to form **8** (Scheme 2). The fact that the third insertion product cannot be observed suggests that the intramolecular cyclization and rearrangement are rapid relative to the alkyne insertion reactions.

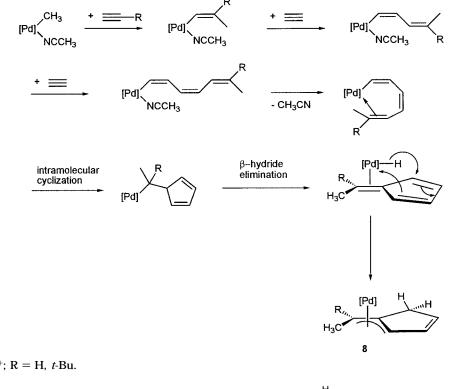
A similar transformation has recently been reported by Roper and co-workers.²⁴ The hydride complexes MHCl(CO)(PPh₃)₂ (M = Ru, Os) react with 3 equiv of acetylene to form the 5-methylene-2-cyclopenten-1-yl complexes (eq 7). The connectivity of the coupled alkyne

fragment in the Ru and Os systems is similar to that proposed for $\mathbf{8}$.

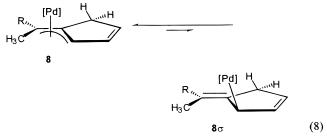

On the basis of the proposed mechanism for formation of **8**, we investigated whether the intramolecular cyclization was disfavored in the presence of more strongly coordinating neutral ligands or counterions; such ligands might bind strongly enough to the metal to inhibit formation of the chelate or allyl complexes. All attempts to prevent formation of **8** by changing to a coordinating solvent (CH₃CN, THF) or switching to a more coordinating counterion (triflate) were unsuccessful. Likewise, lowering the reaction temperature (to increase the

⁽²²⁾ Albert, J.; Granell, J.; Sales, J.; Solans, X. J. Organomet. Chem. **1989**, *379*, 177.

^{(23).} Tao, W.; Silverberg, L. J.; Rheingold, A. L.; Heck, R. F. Organometallics 1989, 8, 2550.


⁽²⁴⁾ Irvine, G. J.; Roper, W. R.; Wright, L. J. 213th National Meeting of the American Chemical Society, San Franscisco, CA, April 1997.

^{*a*} $[Pd] = (N-N)Pd^+$.

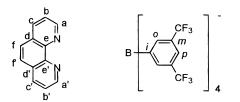


 a [Pd] = (N-N)Pd⁺; R = H, t-Bu.

amount of acetylene in solution), changing the substituents on the diimine ligand, or switching to the phenanthroline complexes (4) resulted in the formation of complexes analogous to 8a-d.

At 25 °C in CH_2Cl_2 , the cyclic compounds **8a**-**d** did not react with excess acetylene, ethylene, H_2 , or CO. Likewise, no reaction was observed between **8a**-**d** and HCl, pyridine, or HSiEt₃. Since such substrates are normally quite reactive toward cationic Pd(II) alkyl complexes such as **1**-**4** or vinyl complexes such as **6a**-**d**, these results suggest that the equibrium between the π -allyl structure **8** and a σ -alkyl structure **8** σ lies strongly in favor of the π -allyl, perhaps for steric reasons (eq 8).

The results reported here illustrate one problem


associated with the design of cationic, highly electrophilic complexes for use as polymerization catalysts, namely, that even if migratory insertion reactions with unsaturated substrates occur readily, reactive functionalities attached to the growing oligomer chain can compete with external substrate for the vacant coordination site at the metal. If there is an equilibrium between chelation and coordination of monomer, then polymerizations are still possible; this is the case in the alternating copolymerization of C_2H_4/CO by 4^{12} or the copolymerization of methylacrylate and ethylene by **1–3**.¹⁰ However, if the chelate does not open readily or if an intramolecular reaction occurs between the metal center and a site of unsaturation on the chelate, then polymerization reactions are strongly disfavored. This is the case in the formation of 8a-d, when cyclization and rearrangement to an allylic structure result in complexes that are inert toward further insertion reactions with alkynes, alkenes, or carbon monoxide. Thus, the rational design of late transition metal catalysts for the polymerization of alkynes will require a precise tuning of the steric and electronic factors to develop systems in which migratory insertion reactions of alkynes are facile but in which intramolecular cyclization is disfavored.

Experimental Section

General. Unless otherwise noted, all reactions were conducted under an atmosphere of dry, deoxygenated argon using standard Schlenk techniques or in a Vacuum Atmospheres glovebox. Pentane, hexane, ether, toluene, and tetrahydrofuran were distilled from sodium benzophenone ketyl under a nitrogen atmosphere prior to use. Dichloromethane was distilled from P_4O_{10} under a nitrogen atmosphere. CD_2Cl_2 (CIL) was dried over CaH_2 under argon and was degassed and vacuum transferred. $CDCl_3$ was used as received. (phen)P-dMe₂,¹² H(OEt₂)₂BAr'₄,²⁵ and complexes **1a**-**c**, **2**-**4**^{8,9} were prepared according to reported procedures. Acetylene was purchased from Matheson and used without further purification.

Routine NMR spectra were recorded on a Varian XL-400, Varian Gemini 300 MHz, or Bruker AC-200 NMR spectrometer. Low-temperature NMR spectra were recorded on a Varian XL-400 spectrometer. ¹H and ¹³C chemical shifts were referenced to residual protio solvent peaks and solvent ¹³C peaks, respectively. Elemental analyses were performed by Oneida Laboratories.

The atom-labeling schemes for the phenanthroline and $((CF_3)_2C_6H_3)_4B^-$ counterion resonances are as follows:

The ¹H NMR resonances were assigned into groups of a, b, c, f or a, a', b, b', c' or according to their characteristic coupling patterns. The ¹³C NMR resonances were assigned in pairs such as C_a or $C_{a'}$ and $C_{a'}$ or C_a based on their chemical shifts and ¹J_{CH}.

The ¹H and ¹³C NMR data attributed to the counterion BAr'₄⁻ (Ar' = 3,5(CF₃)₂C₆H₃) follow. These are consistent for all cationic complexes examined and are not included in each compound characterized below. ¹H NMR (CD₂Cl₂): δ 7.72 (8, H_o), 7.56 (4, H_p). ¹H chemical shifts are accurate to within ±0.02 ppm. ¹³C NMR (CD₂Cl₂): δ 162.1 (q, J_{C-B} = 50 Hz, C_i),

135.2 (C_o), 129.3 (q, ${}^{2}J_{C-F} = 31$ Hz, C_m), 125.0 (q, $J_{C-F} = 272$ Hz, CF₃), 117.8 (C_p). 13 C NMR chemical shifts and coupling constants are consistent to within ± 1 ppm and ± 2 Hz, respectively. Note: because of the large number of aromatic peaks (100–160 ppm) from complexes containing the acenaphthene backbone, the 13 C spectra for these complexes were difficult to assign and full spectral data are usually not included here.

[(phen)Pd(CH₃)(Me₃SiC=CSiMe₃)]⁺[BAr'₄]⁻ (5a). Solid (phen)Pd(CH₃)₂ (116 mg, 0.37 mmol) and [H(OEt₂)₂][BAr'₄] (365 mg, 0.37 mmol) were combined. The reaction flask was cooled to -30 °C, and Et₂O (10 mL) and CH₂Cl₂ (5 mL) were added. The resulting slurry was allowed to warm to 25 °C to dissolve solid (phen)Pd(CH₃)₂, and then the solution was cooled to -30 °C. Bis(trimethylsilyl)acetylene was added, and colorless microcrystals formed. The mixture was allowed to warm to room temperature, and the solid dissolved. The mixture was stirred for 1 h, and then the volume was reduced to 5 mL in vacuo and cooled slowly to -78 °C. Colorless needles formed and were washed with 10 mL of cold Et₂O, collected, and dried (yield = 285 mg; 59%). ¹H NMR (CD₂Cl₂, 20 °C): δ 8.95 (δ , 1, phen H_a), 8.71 (d, 1, phen H_a), 8.59 (dd, 1, phen H_c), 8.54 (dd, 1, phen H_c), 8.05 (s, 2, phen H_d), 8.00 (dd, 1, phen H_b), 7.92 (dd, 1, phen H_b), 1.06 (s, 3, PdCH₃), 0.32 (s, 18, Si(CH₃)₃). ¹³C NMR (CD_2Cl_2): δ 147.2, 145.2 (C_a , $C_{a'}$), 146.2, 143.2 (C_e , $C_{e'}$), 139.7, 138.4 (C_c, C_c'), 129.9, 129.3 (C_f, C_f'), 126.8, 126.5 (C_d, $C_{d'}$, 124.6, 124.4 (C_{b} , $C_{b'}$), 103.6 ($Me_3SiC \equiv CSiMe_3$), 7.9 ($PdCH_3$), -1.7 (SiMe₃). Anal. Calcd for C₅₃H₄₁N₂BF₂₄PdSi₂: C, 47.67; H, 3.09; N, 2.10. Found: C, 47.83; H, 3.04; N, 1.94.

[(phen)Pd(CH₃)(C₆H₅=CH)]⁺[BAr'₄]⁻ (5b). In a drybox, solid **4** (45 mg, 0.036 mmol) was loaded into a 5-mm NMR tube. CD₂Cl₂ (700 μ L) was added at -78 °C, and the tube was shaken briefly to dissolve the solid. Phenylacetylene (5 μ L, 0.045 mmol) was added via syringe, and the sample was inserted into a precooled (-78 °C) NMR probe. ¹H NMR (CD₂-Cl₂, -78 °C): δ 8.92 (d, 1, phen H_a), 8.68 (d, 1, phen H_a'), 8.58 (d, 1, phen H_b), 8.50 (d, 1, phen H_b'), 7.99 (s, 2, phen H_{d, -d}'), 7.84 (m, 2, phen H_{b, -b'}), 5.05 (s, 1, PhC=C*H*), 1.18 (s, 3, Pd-C*H*₃).

[BIAN(Ar)₂Pd(CH=CHMe)(NCCH₃)]⁺[BAr'₄]⁻ (Ar = 2,6-C₆H₃(*i*-Pr)₂) (6a). Solid 3 (270 mg, 0.18 mmol) was dissolved in 15 mL of dichloromethane. The solution was cooled to -70°C, and acetylene gas was bubbled through the solution for 5 min. The mixture was allowed to stir at -70 °C for 30 min and then was placed under an active vacuum. After 5 min, the cooling bath was removed and the mixture was allowed to warm as dichloromethane was removed in vacuo. An orangebrown solid was isolated and recrystallized from a mixture of dichloromethane and pentane at 25 °C. Orange-brown crystals were collected and dried (yield = 159 mg, 58%). 1 H NMR (CD₂-Cl₂): δ 6.42–8.12 (m, 12 total, BIAN + Ar), 4.80 (m, 1, PdCH=CHCH₃), 4.61 (d, 1, J_{HH} = 6 Hz, PdCH=CHCH₃), 3.22, 3.15 (sept, 2 each, CHMe2), 1.88 (CH3CN), 1.78 (d, 3, PdCH-CHCH3), 1.40, 1.30, 1.02, 0.87 (d, 6 each, CHMe2). Anal. Calcd for C73H60N3BF24Pd: C, 56.48; H, 3.89; N, 2.71. Found: C, 56.24; H, 3.92; N, 2.34.

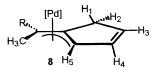
[(ArN=C(Me)−C(Me)=NAr)Pd(CH=CMe(*t*-Bu))-(NCCH₃)]⁺[BAr'₄]⁻ (Ar = 2,6-C₆H₃(Me)₂) (6b). [(ArN= C(Me)−C(Me)=NAr)Pd(CH₃)(NCCH₃)]⁺[BAr'₄]⁻ (282 mg, 0.21 mmol) was dissolved in 10 mL of dichloromethane, and *tert*butylacetylene (30μ L, 0.26 mmol) was added. The mixture became orange and was allowed to stir for 30 min. Dichloromethane was removed in vacuo, and the resulting yellow glassy solid was washed with hexane and dried (yield = 192 mg, 64%). ¹H NMR (CD₂Cl₂): δ 7.21, 7.16 (m, 6 total, Ar), 4.27 (s, 1, PdCH), 2.25, 2.17, 2.15, 2.14 (s, 18 total, N=C(CH₃) + ArCH₃), 1.85, 1.75 (s, 3 each, CH₃CN + PdCH=C(*t*-Bu)-(CH₃)), 0.61 (s, 9, *t*-Bu). ¹³C NMR (CDCl₃): δ 146.4 (C_{iso}, note: the two C_{ipso} peaks are apparently coincident), 142.6, 142.3 (Ar C_{para}), 129.0, 128.8 (Ar C_{meta}), 122.6, 122.2 (Ar C_{ortho}), 120.8 (CH₃CN), 37.3 (=C(*C*H₃)), 28.8 (*CMe*₃), 28.7 (*C*Me₃), 19.7,

⁽²⁵⁾ Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920.

19.5, 18.7, 17.6, 17.5 (N=C*CH*₃ and Ar*C*H₃), 1.7 (*C*H₃CN). Anal. Calcd for $C_{61}H_{52}N_3BF_{24}Pd$: C, 52.33; H, 3.74; N, 3.00. Found: C, 52.41; H, 3.82; N, 2.19.

[(ArN=C(H)−C(H)=NAr)Pd(CH=CMe(*t*-Bu))(NCCH₃)]⁺-[BAr'₄]⁻ (Ar = 2,6-C₆H₃(*i*-Pr)₂) (6c). Following the above procedure, an orange powder was isolated in 79% yield. ¹H NMR (CD₂Cl₂): δ 8.26 (d, 2, Ar), 7.27–7.37 (m, 4, Ar), 4.48 (s, 1, PdC*H*), 3.16, 3.06 (sept, 2 each, C*H*Me₂), 1.88, 1.80 (s, 3 each, C*H*₃CN + PdCH=C(*t*-Bu)(C*H*₃)), 1.39, 1.37, 1.25, 1.17 (d, 6 each, CH*Me*₂), 0.63 (*t*-Bu). ¹³C NMR (CD₂Cl₂): δ 167.5, 161.6 (*C*=N), 147.4, 142.8 (Ar C_{ipso}), 139.4, 138.5 (Ar C_{para}), 129.6, 129.4 (Ar C_{meta}), 124.4, 124.3 (Ar C_{ortho}), 123.4 (CH₃CN), 37.6 (*C*Me₃), 29.4 (*CMe*₃), 29.5, 29.3 (CH*Me*₂), 25.1, 23.9, 22.3, 19.7 (CH*Me*₂), 2.6 (*C*H₃CN). Anal. Calcd for C₆₇H₆₄N₃BF₂₄Pd: C, 54.21; H, 4.34; N, 2.83. Found: C, 53.87; H, 4.13; N, 2.42.

[(BIAN)(Ar)₂Pd(CH=CMe(*t***-Bu))(NCCH₃)]⁺[BAr'₄]⁻ (Ar = 2,6-C₆H₃(***i***-Pr)₂) (6d). [(BIAN)(Ar)₂Pd(CH₃)(NCCH₃)]⁺-[BAr'₄]⁻ (525 mg, 0.34 mmol) was dissolved in 20 mL of dichloromethane, and** *tert***-butylacetylene (45 \muL, 0.40 mmol) was added via syringe. The resulting orange solution was allowed to stir for 30 min. Dichloromethane was removed in vacuo, leaving an orange microcrystalline solid which was recrystallized from a CH₂Cl₂/hexane mixture at -30 °C. Orange cubes were collected and dried (370 mg, 68%). ¹H NMR (CD₂Cl₂): \delta 6.5–8 (m, 12, BIAN + Ar), 4.47 (s, 1, PdC***H***), 3.40, 3.35 (sept, 2 each,** *CH***Me₂), 1.87, 1.86 (s, 3 each, PdCH=C(***t***-Bu)(***CH***₃) +** *CH***₃), 1.46, 1.38, 1.08, 0.93 (d, 6 each, CHMe₂), 0.68 (s, 9,** *t***-Bu). Anal. Calcd for C₇₇H₆₈N₃BF₂₄Pd: C, 57.50; H, 4.26; N, 2.61. Found: C, 57.59; H, 4.04; N, 2.30.**


Reactions of [(ArN=C(R)-C(R)=NAr)Pd(CH₃)(NCCH₃)]-+**[BAr'₄]⁻ with 1-Hexyne: Regiochemistry of Insertion.** Solid **1**-**3** (0.03 mmol) was loaded into a 5-mm NMR tube and dissolved in CDCl₃ (0.7 mL). 1-Hexyne (2.5 μ L, 0.022 mmol) was then added via syringe; the sample was shaken 3 times and inserted into a NMR probe. The relative amounts of 1,2insertion and 2,1-insertion were analyzed by the relative integrals of the peaks attributed to PdC*H*=C(CH₃)(C₄H₉) and PdC(C₄H₉)=C*H*(CH₃), respectively (Table 1). Note: a deficit (0.7 equiv) of 1-hexyne was used in order to prevent the vinyl complexes that are formed from reacting with excess alkyne.¹⁷ ¹H NMR data for the vinylic protons is given below. Due to the large number of overlapping ligand peaks in the aromatic and aliphatic regions, the remainder of the peaks are difficult to assign and are not listed below.

¹H NMR (CDCl₃, 25 °C). **1a** + 1-hexyne: δ 3.58 (s, PdC*H*=C(CH₃)(C₄H₉)), 3.96 (q, *J*_{HH} = 7 Hz, PdC(C₄H₉)= C*H*(CH₃)). **1b** + 1-hexyne: δ 4.08 (s, PdC*H*=C(CH₃)(C₄H₉)), 4.39 (q, *J*_{HH} = 7 Hz, PdC(C₄H₉)=C*H*(CH₃)). **1c** + 1-hexyne: δ 4.53 (s, PdC*H*=C(CH₃)(C₄H₉)), 4.27 (q, *J*_{HH} = 8 Hz, PdC-(C₄H₉)=C*H*(CH₃)). **2** + 1-hexyne: δ 4.26 (s, PdC*H*=C(CH₃)-(C₄H₉)), 4.44 (q, *J*_{HH} = 7 Hz, PdC(C₄H₉)=C*H*(CH₃)). **3** + 1-hexyne: δ 4.28 (s, PdC*H*=C(CH₃)(C₄H₉)), 4.48 (q, *J*_{HH} = 7 Hz, PdC(C₄H₉)=C*H*(CH₃)).

Observation of [(ArN=C(CH₃)C(CH₃)NAr)PdCH= CHCH=CHC(t-Bu)(CH₃)]⁺ (Ar = 2,6-(CH₃)₂C₆H₃) (7). Solid **6b** (25 mg, 0.018 mmol) was loaded into a 5-mm NMR tube and dissolved in 0.7 mL of CD₂Cl₂. The solution was cooled to -78 °C, and acetylene (1 mL, 0.044 mmol) was added via gastight syringe. The sample was then inserted into a precooled (-78 °C) NMR probe. ¹H NMR (CD₂Cl₂, -60 °C): δ 6.37 (d, 1, *J*_{HH} = 11 Hz, PdC*H*=CH), 5.50 (dd, 1, *J*_{HH} = 11, 6 Hz, PdCH=C*H*CH), 4.75 (dd, 1, *J*_{HH} = 6 Hz, PdCH=CHC*H*). The terminal CH₃ and *t*-Bu peaks could not be unambiguously assigned due to the presence of substantial amounts of **6b** and **8b**.

Formation of 8a–d. In a typical procedure, solid $[(ArN=C(R)-C(R)=NAr)Pd(CH_3)(NCCH_3)]^+[BAr'_4]^-$ or $[(ArN=C(R)-C(R)=NAr)Pd(CH=C(t-Bu)(CH_3)(NCCH_3)]^+[BAr'_4]^-$ was loaded into a Schlenk flask. The solid was dissolved in CH₂-Cl₂, and acetylene was bubbled through the solution for 5 min

at 25 °C. CH_2Cl_2 and CH_3CN were then removed in vacuo, yielding a microcrystalline powder which was then recrystallized from CH_2Cl_2 /pentane. Triflate complexes were prepared in a similar manner. The peaks associated with the coupled tris(alkyne) fragment are labeled according to the following assignments.

 $[(ArN=C(CH_3)C(CH_3)=NAr)Pd(\eta^3-CH(CH_3)C_5H_5)]^+$ $[BAr'_4]^-$ (Ar = 2,6-(CH₃)₂C₆H₃) (8a). Purple crystals were prepared in the manner described above from **1b** (103 mg, 0.078 mmol) and acetylene (yield = 78 mg, 68%) ¹H NMR (CD₂-Cl₂, 25 °C): δ 7.2–7.4 (m, 6 total, Ar), 6.44 (br d, 1, $J_{\rm HH} = 6$ Hz, H₄), 4.92 (d, 1, $J_{HH} = 6$ Hz, H₃), 4.64 (br s, 1, H₅), 3.88 (q, 1, $J_{\text{HH}} = 6$ Hz, CHCH₃), 2.93, 2.78 (d, 1 each, $J_{\text{HH}} = 24$ Hz, H₁ and H₂), 2.31, 2.27, 2.17, 2.14, 1.95, 1.77 (s, 3 each, diimine CH₃), 0.39 (d, 3, $J_{\rm HH} = 6$ Hz, CHCH₃). ¹³C NMR (coupled alkyne fragment only) (CD₂Cl₂, 25 °C): δ 101.1 (d, $J_{CH} = 179$ Hz, cyclopentadienyl), 97.8 1 (d, $J_{CH} = 178$ Hz, cyclopentadienyl), 83.4 1 (d, $J_{CH} = 166$ Hz, cyclopentadienyl), 70.1 (d, J_{CH} = 154 Hz, cyclopentadienyl), 40.2 (t, J_{CH} = 132 Hz, CH_3H_4). Note: the peak corresponding to the internal allylic carbon could not be located and may be hidden under diimine or BAr'4 peaks. Anal. Calcd for C₅₉H₄₅N₂BF₂₄Pd: C, 52.29; H, 3.34; N, 2.07. Found: C, 52.28; H, 3.19; N, 1.96.

[(ArN=C(CH₃)C(CH₃)=NAr)Pd(η^3 -C(*t*Bu)(CH₃)C₅H₅)]⁺-[BAr'₄][−] (Ar = 2,6-(CH₃)₂C₆H₃) (8b). Orange-brown crystals were prepared from **6b** (250 mg, 0.19 mmol) and acetylene in the manner described above (yield = 215 mg, 80%). ¹H NMR (CD₂Cl₂, 25 °C): δ 7.2–7.4 (m, 6 total, Ar), 6.43 (d, 1, *J*_{HH} = 6 Hz, H₃), 4.76 (dd, 1, *J*_{HH} =2 Hz, 6 Hz, H₄), 4.10 (d, 1, *J*_{HH} = 2 Hz, H₅), 3.04, 2.75 (d, 1 each, *J*_{HH} = 24 Hz, H₁ and H₂), 2.33, 2.20, 2.13, 2.12, 1.98, 1.73 (s, 3 each, Ar–CH₃, N=CCH₃), 0.87 (s, 9, *t*Bu), 0.80 (s, 3, C(*t*Bu)(CH₃)). ¹³C NMR (coupled alkyne fragment only) (CD₂Cl₂, 25 °C): δ 97.4, 85.5, 44.4, 41.1 (cyclopentadienyl). Note: the peaks corresponding to the internal and quaternary terminal allylic carbons could not be located. Anal. Calcd for C₆₃H₅₃N₂BF₂₄Pd: C, 53.62; H, 3.78; N, 1.99. Found: C, 53.72; H, 3.61; N, 1.87.

 $[(BIAN)(NAr)_2)Pd(\eta^3-CH(CH_3)C_5H_5)]^+[BAr'_4]^- (Ar = 2,6-$ (*i*-Pr)₂C₆H₃) (8c). In a modification of the above procedure, acetylene was bubbled through a CH3CN solution of [(BIAN)(NAr)₂Pd(CH₃)(NCCH₃)]⁺[BAr'₄]⁻ (370 mg, 0.24 mmol). After acetylene addition had ceased, green crytals formed on the sides of the flask and were collected, washed with CH₃-CN, and dried (yield = 276 mg, 74%). ¹H NMR (coupled alkyne fragment only) (CD₂Cl₂, 25 °C): 6.55 (d, 1, $J_{HH} = 6$ Hz, H₄), 5.34 (d, 1, $J_{HH} = 6$ Hz, H₃), 4.96 (s, 1, H₅), 4.15 (q, 1, $J_{HH} = 6$ Hz, CHCH₃), 2.93, 2.80 (d, 1 each, $J_{HH} = 24$ Hz, H₁ and H₂), 0.61 (d, 3, $J_{\rm HH} = 6$ Hz, CHCH₃). ¹³C NMR (coupled alkyne fragment only) (CD₂Cl₂, 25 °C): δ 104.6, 98.4, 83.9, 70.3 (cyclopentadienyl vinylic C), 40.0 (cyclopentadienyl CH₂), 14.2 (CHCH₃). Note: the peak corresponding to the internal allylic carbon could not be located and may be hidden under diimine or BAr'₄ peaks. Anal. Calcd for C₇₅H₆₁N₂BF₂₄Pd: C, 57.62; H, 3.90; N, 1.79. Found: C, 57.49; H, 3.85; N, 1.78.

[(BIAN)(NAr)₂)Pd(\eta^3-CH(CH₃)C₅H₅)]⁺[O₃SCF₃]⁻ (Ar = 2,6-(*i***-Pr)₂C₆H₃) (8d).** Green crystals were formed from **3b** (282 mg, 0.35 mmol) and acetylene according to the above procedure (yield = 225 mg, 76%). NMR data for the cationic portion of the molecule matched that of **8c**. Anal. Calcd for C₄₄H₄₉N₂F₃O₃PdS: C, 62.22; H, 5.81; N, 3.30. Found: C, 62.43; H, 5.71; N, 3.02.

Reactions of Cationic Palladium(II) Complexes

Acknowledgment. This research was supported by the National Science Foundation (Grant No. CHE9412095). A.M.L. thanks the National Science Foundation for a postdoctoral fellowship. We thank Dr. William Marshall of Dupont for the X-ray structural determination of **8** and Prof. J. L. Templeton for helpful discussions.

OM9710125