The First Hydrides of a Phosphorus Sulfide Cage: Nuclear Magnetic Resonance Evidence for α -Tetraphosphorus Trisulfide Hydride Compounds

Bruce W. Tattershall* and Nigel L. Kendall

Department of Chemistry, The University of Newcastle, Newcastle upon Tyne NE1 7RU, UK

The hydrides α -P₄S₄(H)R (R = H, I, NMePh or SPh) have been prepared in solution by the reaction of α -P₄S₃I₂ or of the corresponding α -P₄S₃(I)R with SnBuⁿ₃H, and identified by ³¹P NMR spectroscopy. The compounds were unstable and not isolated. *Ab initio* molecular orbital calculations of geometry have been carried out for α -P₄S₃H₂, α -P₄S₃(NMe₂)₂ and α -P₄S₃H(NMe₂).

The cage molecule α -P₄S₃I₂ is a useful starting material for substitution reactions of halide, pseudohalide, or similar ligands, at phosphorus,^{1,2} leading to the symmetric (R¹ = R²) or unsymmetric $(R^1 \neq R^2)$ compounds α -P₄S₃R¹R² 1. The possibility of attaching a hydrogen ligand to the α -P₄S₃ cage is of chemical interest, as well as offering an insight into the steric influence of substituents on the cage NMR parameters. Hydrides of homonuclear polyphosphorus cages are known, but tend to be insoluble; ³ in particular, P_7H_3 , with a structure like P₄S₃ but with sulfur replaced by PH, was insoluble in all of a wide range of solvents tried. Its ³¹P NMR spectrum could be measured only as the compound was being formed, and before complete precipitation had occurred.⁴ As far as we are aware, no corresponding phosphorus sulfide hydrides have been reported. Syntheses starting from α -P₄S₃I₂ have until now involved substituents more electronegative than phosphorus, although a group of unstable compounds containing the PPh₂ ligand has been studied.⁵ While hydrogen is weakly protonic in phosphine, we considered the use of a hydride-transfer reagent for reduction of α -P₄S₃I₂ to α -P₄S₃H₂, although there was the possibility that sulfide ligands might be replaced, with breakdown of the cage structure, in addition to the replacement of iodide. Ionic reagents, for example tetrahydroborate, raise problems of insolubility in solvents unreactive towards a- $P_4S_3I_2$, so we have employed $SnBu_3H$ in solution in toluene, in which α -P₄S₃I₂ has a small but useful solubility.

We now report that the new compounds $\alpha - P_4 S_3 R^1 R^2 1$ $(R^1 = H; R^2 = H, I, NMePh \text{ or } SPh)$ can be prepared in this way and identified in solution, without isolation, by ³¹P NMR spectroscopy. Geometric constraints of the bicyclic (or nidocage) structures of α -P₄S₃ compounds cause the values of the six P-P endocyclic NMR coupling constants to fall into well defined ranges, and to change systematically with exocyclic substitution. Not only does the observation of such couplings in its ³¹P NMR spectrum allow a new compound to be assigned the α -P₄S₃ structure, but a series of new compounds α -P₄S₃R¹R² can be established containing the same new ligand R^1 and particular previously investigated ligands R^2 . General relationships have been found to hold, for endocyclic coupling constants and for ³¹P chemical shifts, between values for these parameters in the symmetric compounds $\alpha\text{-}P_4S_3R_{-2}^1$ and α -P₄S₃R²₂, and those in the corresponding unsymmetric compounds α -P₄S₃R¹R².² When the ligand R¹ additionally contains a NMR-active nucleus showing couplings to the cage phosphorus atoms, as in the present case, where $R^1 = H$, ³¹P NMR spectroscopy provides very strong evidence for the identity of the compounds, even though their stability is such that they may be observed only along with other components in solution.

Results and Discussion

Addition of a solution of 2 molar equivalents of SnBuⁿ₃H to a suspension of α -P₄S₃I₂ in toluene gave a pale yellow solution and a mid-yellow precipitate. The ³¹P NMR spectrum of the solution showed that no α -P₄S₃I₂ remained. There was a low concentration of α -P₄S₃H₂ (3% yield, see below), a comparable amount of PH₃ (although some would have been lost to the gas phase), and traces of P2H4 and of several unidentified byproducts. When toluene was removed by pumping on the reaction mixture at 15 °C, and the residue stirred with the same quantity of CS₂, a similar concentration of α -P₄S₃H₂ was obtained. This showed that the precipitate from the reaction contained little α -P₄S₃H₂, since it is unlikely that the compound would have a similar low solubility in both solvents. Probably the solid was a polymeric product, as is frequently encountered in α -P₄S₃ chemistry, and accounted for most of the α -P₄S₃I₂ taken. The compound α -P₄S₃H₂ disappeared completely from solution in CS₂ over 17 h at 0 °C, after which ³¹P NMR spectroscopy showed only traces of P_4S_3 and of α - P_4S_4 , while after the same time in toluene, a good ³¹P NMR spectrum of α -P₄S₃H₂ still could be obtained.

Use of a 1:1 molar ratio of SnBuⁿ₃H and α -P₄S₃I₂ (in suspension in toluene) gave a significantly higher concentration of α -P₄S₃(H)I (10–30% yield), along with unreacted α -P₄S₃I₂ and traces of α -P₄S₃H₂ and P₄S₃. By then changing the solvent as before, a solution of α -P₄S₃(H)I in CS₂ was obtained of sufficient concentration and stability for the expected ¹H NMR multiplet to be observed.

Possible causes of low yields of the hydrides were polymerchain growth by intermolecular elimination of HI between α -P₄S₃(H)I and the existing polymer, and the use of a two-phase system necessitated by the low solubility of α -P₄S₃I₂ in solvents inert to SnBuⁿ₃H. We sought to avoid these by use of an α -P₄S₃ compound in which one functional site was protected by a solubilising group. A solution in toluene, containing α -P₄S₃(NMePh)₂, α -P₄S₃I(NMePh) and α -P₄S₃I₂ in molar ratio 16:64:20,² was treated with a deficiency of SnBuⁿ₃H. The α -P₄S₃I(NMePh), α -P₄S₃H(NMePh), α -P₄S₃(NMePh)₂, α -P₄S₃I(NMePh), α -P₄S₃H(NMePh), α -P₄S₃(H)I and α -P₄S₃H₂ in molar ratio 37:32:22:7:2. After 72 h at 20 °C, all three phosphorus hydride components had decomposed completely.

Protection by a PhS group was less convenient, since α -P₄S₃I(SPh) was formed only in low yield on sequential addition of 1 molar equivalent of each of PhSH and NEt₃ to a suspension of α -P₄S₃I₂, the principal toluene-soluble product being α -P₄S₃(SPh)₂. Subsequent addition of SnBuⁿ₃H therefore gave a solution containing mainly α -P₄S₃(SPh)₂, with α -P₄S₃H(SPh) as one of three minor products. Another of these

was an unsymmetrical compound with ³¹P NMR parameters $[\delta_1 \ 127.38, \delta_2 \ 120.54, \delta_3 \ 111.11, \delta_4 \ 105.72; J_{12} - 5.61(7), J_{13} - 278.38(7), J_{14} \ 22.6(1), J_{23} \ 19.17(6), J_{24} - 282.14(9), J_{34} \ 60.40(7)$ Hz; no change on ¹H decoupling] very similar to those of α -P₄S₃(SPh)₂,⁶ and was postulated to be α -P₄S₃(SPh)(SPh). Successive ³¹P NMR accumulations started 16 and 24 h after the first, showed α -P₄S₃H(SPh) to be disappearing slowly with time, relative to the other products.

Assignment of NMR Spectra.—Phosphorus-31 NMR spectra were obtained with and without inverse-gated ¹H decoupling. The decoupled spectra were analysed by hand as AA'MM' $(\alpha$ -P₄S₃H₂; Scheme 1, II) or first-order spin systems, the hand analysis being followed in each case by iterative fitting using NUMARIT.⁷ Phosphorus atoms carrying hydride ligands were identified through causing large additional splittings in the proton-coupled spectra, the analysis and fitting of which followed immediately for the unsymmetric hydride compounds. The results are given in Table 1.

The multiplet due to P_D (Scheme 1, I) in α -P₄S₃H(NMePh) was broadened due to ${}^{3}J(H_{3}C-N-P_{D})$ couplings as well as by ${}^{14}N$ scalar coupling relaxation, and was not fitted for the

Scheme 1 General structure of α -P₄S₃ compounds α -P₄S₃R¹R² 1, labelling of nuclei in α -P₄S₃ hydrides α -P₄S₃(H)R (I) and NMR spin system for α -P₄S₃H₂ (II)

J. CHEM. SOC. DALTON TRANS. 1993

proton-coupled spectrum; all other 48 31 P transitions were included, so only $^{4}J(P_{D}H_{b})$ was unobtainable. Splittings corresponding to $^{3}J(P_{C}H_{b})$ were not resolved in the 31 P NMR spectra of any of the unsymmetric compounds, since broadening caused by use of a precision capillary containing (CD₃)₂CO for locking was sufficient to obscure this splitting. Only for α -P₄S₃(H)I was a ¹H NMR spectrum obtained; as this could be measured without the use of a locking capillary, peaks were narrower and the $^{3}J(P_{C}H_{b})$ splitting could be measured.

Assignment and fitting of the proton-coupled ³¹P NMR spectrum of α -P₄S₃H₂ yielded P–P couplings identical to those found from the ¹H-decoupled spectrum, to within the precision of the fit, demonstrating the correctness of the assignment. Starting from the assumption of negative signs for ¹J(P–P) coupling constants, the signs of other coupling constants were found in the assignment and fitting procedure. They were assumed to be the same, by analogy, in the unsymmetric compounds.

Table 2, which is in the format adopted for previously reported unsymmetric α -P₄S₃ compounds,² shows that endocyclic NMR parameters for α -P₄S₃(H)R (R = I, NMePh or SPh) are related to those for α -P₄S₃H₂ and the corresponding α -P₄S₃R₂ by the rules developed already.² This confirms well the identification of the new compounds.

Theoretical Calculations of Molecular Geometries.—By analysis of the ³¹P NMR spectra of α -P₄S₃I₂ and its analogues in which sulfur atoms are progressively replaced by selenium,⁸ it was possible to show dependencies of ²J(PP) couplings and of phosphorus chemical shifts on bond angles in the α -P₄E₃ cage, since some prediction could be made of how these would change. In order to find out whether similar distortions in bond angles at phosphorus or sulfur can explain changes in NMR parameters for compounds α -P₄S₃R¹R², when only the identities of the ligands R¹ and R² are changed, it would be necessary to have some detailed structural measurements. Amongst such compounds a crystal-structure determination has been performed only for α -P₄S₃I₂,⁹ since it has not yet been possible to obtain crystals of any others. We have now, therefore, calculated optimum geometries for α -P₄S₃H₂,

R Solvent	H PhMe	I PhMe	I CS ₂	NMePh PhMe	SPh PhMe
(a) Coupling	constants (Hz)*		-		
$(i)^{31}P^{-31}P$	(112)				
$^{2}J(\mathbf{P}_{A}\mathbf{P}_{C})$	72.5(2)	74.84(8)	74,78(3)	60.27(3)	67.67(4)
$^{1}J(\mathbf{P}_{A}\mathbf{P}_{B})$	-253.1(2)	- 246.42(8)	-245.68(3)	-251.61(3)	-247.47(3)
$^{1}J(\mathbf{P_{C}P_{D}})$		- 249.64(9)	-247.58(3)	-326.21(3)	-287.60(3)
$^{2}J(\mathbf{P_{A}P_{D}})$	38.4(1)	29.59(9)	29.84(3)	32.68(3)	32.53(3)
$^{2}J(P_{B}P_{C})$.,	30.94(8)	30.86(3)	22.45(3)	27.73(3)
$^{3}J(\mathbf{P_{B}P_{D}})$	- 17.5(2)	-8.25(8)	-8.57(3)	-16.75(4)	-13.30(3)
(<i>ii</i>) ³¹ P– ¹ H					
$^{2}J(\mathbf{P}_{A}\mathbf{H}_{b})$	4.4(2)	5.04(7)	4.84(3)	5.31(2)	5.00(8)
³ J(P _c H _b)	-1.0(1)	-0.04^{b}	-1.22(4)	0.00	-0.02^{b}
$^{1}J(\mathbf{P_{H}H_{h}})$	177.8(2)	182.24(7)	178.99(3)	178.98(2)	180.03(8)
$^{4}J(P_{D}H_{b})$	4.2(1)	11.12(8)	11.17(3)		7.01(9)
(b) Chemical	shifts ^c				
$\delta(\mathbf{P}_{\star})$	107.41	123.73	125.57	108.60	109.83
$\delta(\mathbf{P_n})$	31.55	24.17	26.52	18.71	18.46
$\delta(\mathbf{P_c})$		112.11	114.56	77.14	103.35
$\delta(P_{n})$		129.83	131.27	136.39	131.88
$\delta(H_b)$			4.45		

Table 1 NMR parameters for hydrides α -P₄S₃(H)R

^a Standard deviations (σ) in parentheses; ³¹P-³¹P coupling constants are from fitting inverse-gated ¹H-decoupled spectra. ^b Unresolved splittings. ^c Phosphorus shifts are from fitting inverse-gated ¹H-decoupled spectra and are uncorrected for solvent diamagnetic susceptibility.

Table 2 Relationships between NMR parameters for unsymmetric compounds α -P₄S₃(H)R and those for corresponding symmetric compounds α -P₄S₃H₂ and α -P₄S₃R₂

R	I	NMePh	SPh*			
(i) Couplings (Hz) influenced similarly by H and R						
$^{2}J(\mathbf{P}_{A}\mathbf{P}_{C})(\mathbf{H}\mathbf{R})$	74.8	60.3	67.7			
Av. ${}^{2}J(P_{A}P_{A'})(H_{2}, R_{2})$	73.2	60.4	66.2			
Difference	+1.6	-0.2	+1.5			
$^{3}J(P_{P}P_{D})(HR)$	-8.3	16.8	-13.3			
$Av. {}^{3}J(P_{B}P_{B'})(H_{2}, R_{2})$	-3.6	-15.1	-11.8			
Difference	-4.6	-1.7	-1.5			
(ii) Couplings (Hz) influenced dissi	milarly by H	I and R				
$^{2}J(\mathbf{P},\mathbf{P}_{\mathrm{D}})(\mathbf{HR})$	29.6	32.7	32.5			
$^{2}J(P_{P}P_{C})(HR)$	30.9	22.4	27.7			
$^{2}J(\mathbf{P}_{A}\mathbf{P}_{B'})(\mathbf{H}_{2})$	38.4	38.4	38.4			
$^{2}J(\mathbf{P}_{A}\mathbf{P}_{B'})(\mathbf{R}_{2})$	21.6	12.0	21.2			
Av. ${}^{2}J(P_{A}P_{D}), {}^{2}J(P_{B}P_{C})(HR)$	30.3	27.6	30.1			
Av. ${}^{2}J(\mathbf{P}_{\mathbf{A}}\mathbf{P}_{\mathbf{B}'})(\mathbf{H}_{2},\mathbf{R}_{2})$	30.0	25.2	29.8			
Difference	+0.3	+2.4	+0.4			
$^{1}J(\mathbf{P}_{A}\mathbf{P}_{B})(\mathbf{HR}) - ^{1}J(\mathbf{P}_{A}\mathbf{P}_{B})(\mathbf{H}_{2})$	+6.7	+1.5	+ 5.7			
${}^{1}J(\mathbf{P_{C}P_{D}})(\mathbf{HR}) - {}^{1}J(\mathbf{P_{A}P_{B}})(\mathbf{R}_{2})$	-2.8	+4.4	-4.3			
Av. ${}^{1}J(\mathbf{P}_{A}\mathbf{P}_{B}), {}^{1}J(\mathbf{P}_{C}\mathbf{P}_{D})(\mathbf{HR})$	- 248.0	-288.9	-267.5			
$Av_{\cdot}^{1}J(P_{A}P_{B})(H_{2}, R_{2})$	-250.0	- 291.9	-268.2			
Difference	+1.9	+2.9	+0.7			
(iii) Chemical shifts of bridgehead phosphorus atoms						
$\delta(P_A)(HR) - \delta(P_A)(H_2)$	+ 16.3	+1.2	+2.4			
$\delta(P_{c})(HR) - \delta(P_{A})(R_{2})$	-16.8	-8.0	- 3.4			
Av. $\delta(P_A)$, $\delta(P_C)(HR)$	117.9	92.9	106.6			
Av. $\delta(P_A)(H_2, R_2)$	118.2	96.3	107.1			
Difference	-0.3	-3.4	-0.5			
(iv) Chemical shifts of phosphorus	atoms carry	ing substituen	ts			
$\delta(\mathbf{P}_{\mathbf{B}})(\mathbf{H}\mathbf{R}) - \delta(\mathbf{P}_{\mathbf{B}})(\mathbf{H}_2)$	-7.4	-12.8	-13.1			
$\delta(\mathbf{P_D})(\mathbf{HR}) - \delta(\mathbf{P_B})(\mathbf{R_2})$	+ 6.9	+1.1	+6.9			
Av. $\delta(P_B)$, $\delta(P_D)(HR)$	77.0	77.5	75.2			
Av. $\delta(P_B)(H_2, R_2)$	77.2	83.4	78.3			
Difference	-0.2	-5.8	-3.1			
* α -P ₄ S ₃ (SPh) ₂ in PhMe has $J(P_AP_{A'})$ 59.9(3), $J(P_BP_{B'})$ -6.1(2)						

* α -P₄S₃(SPh)₂ in Pinke has $J(P_AP_{A'})$ 59.9(3), $J(P_BP_{B'})$ = 0.1(2), $J(P_AP_{B'})$ 21.2(1) and $J(P_AP_B)$ = 283.3(2) Hz, $\delta(P_A)$ 106.72 and $\delta(P_B)$ 125.02.

 α -P₄S₃H(NMe₂) and α -P₄S₃(NMe₂)₂ by *ab initio* methods at the RHF/3-21G* level, using GAUSSIAN 92.¹⁰ Amino and hydrido ligands respectively cause the values of several of the ³¹P NMR parameters of their α -P₄S₃ compounds to have values at opposite extremes of their known ranges, and thus offer the best opportunity of finding relationships between NMR parameters and geometry. Although it has not been prepared, α -P₄S₃H(NMe₂) was selected for calculation instead of α -P₄S₃H(NMePh) to shorten the computation time, since it is known that NMe₂ and NMePh ligands give rise to similar ³¹P NMR parameters for α -P₄S₃ compounds.²

The whole geometry of α -P₄S₃H₂ was optimised using a 3-21G* basis set after intermediate optimisation at the STO-3G level. For α -P₄S₃(NMe₂)₂, the ligand geometry was optimised at the STO-3G level while the P_4S_3 cage geometry was fixed at that found for α -P₄S₃H₂, then the cage geometry was optimised at this level with the ligand geometry fixed. Finally, optimisation at the 3-21G* level was undertaken, allowing the variation of geometric parameters defining the cage geometry and angles at nitrogen, although not at carbon. A C_2 symmetry was imposed for both molecules. A starting geometry for α - $P_4S_3H(NMe_2)$ could be guessed from those of the symmetric molecules, and optimisation at first the STO-3G, then the 3-21G* level, was straightforward, using the same constraints on the geometry of the methyl groups. For both NMe₂ compounds, the trans isomer about the P_D-N bond was selected on the basis of preliminary calculations on simpler molecules.

Bond lengths within the α -P₄S₃ cage were found to vary little, and bond angles best reflect ligand influence. Selected geometric parameters for the three compounds are compared with those from the crystal-structure determination of α -P₄S₃I₂, in Table 3.

Values of NMR Coupling Constants and Chemical Shifts and their Relationships to Molecular Geometry.—The compound α -P₄S₃H₂ is distinguished by showing (Table 1) the most negative cross-ring coupling ³J(P_BP_D), the largest coupling ²J(P_AP_D) [=²J(P_BP_C)] through a sulfur atom in the six-membered ring, and the least positive chemical shift δ (P_B) [= δ (P_D)], of any symmetric α -P₄S₃ compound so far encountered. The compound α -P₄S₃(CN)₂ resembles it most closely in these properties.¹ Low steric bulk is a property shared by neutral hydride and cyanide ligands, and may help to explain the NMR observations. Both ligands when attached to P_B should be able to approach the neighbouring non-bonded atoms S_b, P_A and S_a (I, Scheme 1) more closely than other ligands investigated.²

The α -P₄S₃ skeleton may be considered as two half rings P_AP_BS_bP_C and P_CP_DS_dP_A, joined at the hinge P_AS_aP_C. Changes in bond angles can then lead to the following independent distortions: (a) change in length of the hinge by alteration of the angle at S_a, along with change in at least one angle in each half ring, so as to change its bite; (b) trapezoidal distortion of a half ring, e.g. by a decrease in angle P_A-P_B-S_b with a concomitant increase in P_B-S_b-P_C; (c) change in the book angles, e.g. S_b-P_C-P_D; and (d) twisting of the half rings. In a symmetric compound (R¹ = R²) twisting (d) can take place without distorsions (a) (b) or (c), provided that the two half rings twist in a concerted way, e.g. so that all four atoms P_B, S_b, P_D and S_d move clockwise when viewed along the bisector of angle P_A-S_a-P_C, while the hinge atoms remain stationary.

In analysing the coupling constants for the mixed α -P₄E₃I₂ cages (E = S or Se),⁸ discussion was restricted to distortions of type (a), but distortions of type (b) are also possible causes of variations in the coupling constants ${}^{2}J(P_{A}P_{D})$ and ${}^{2}J(P_{B}P_{C})$ because they also involve changes in angle at the transmitting sulfur atoms S_d or S_b . The present calculations of geometry show that for the α -P₄S₃ cage the angle at S_a is practically constant, and cannot account for the wide variation in values of $^{2}J(P_{A}P_{C})$. Angles at S_d or S_b also vary only slightly, according to the ligand attached at the adjacent P_D or P_B . They cannot account for variations in ${}^2J(P_AP_D)$ or ${}^2J(P_BP_C)$ respectively, and certainly not for the influence of a ligand attached at P_B upon the value of ${}^{2}J(P_{A}P_{D})$, between nuclei on the opposite side of the molecule.² Hence, where no endocyclic substitution is being considered, distortions of types (a) and (b) are ruled out by the near constancy of angles at sulfur. The book angle $S_b-P_C-P_D$ does change between compounds, but is only 1.6° different between the selected compounds α -P₄S₃H₂ and α -P₄S₃(NMe₂)₂: comparison with the value for α -P₄S₃I₂ shows that the variation of this angle in type (c) distortions is unlikely to account for variations in ${}^{2}J(P_{A}P_{C})$ or in $\delta(P_{C})$.

We conclude, therefore, that ring twisting distortions of type (d) are the most important factors in controlling several of the NMR parameters. They may be quantified as the torsion angles $P_A-P_B-S_b-P_C$ and $P_C-P_D-S_d-P_A$, which are nearly twice as large in α -P₄S₃(NMe₂)₂ as in α -P₄S₃H₂ (Table 3). The extra twisting in α -P₄S₃(NMe₂)₂ is such as to decrease the nonbonded distance S_b-S_d while increasing P_B-P_D to a lesser extent. In α -P₄S₃H(NMe₂) these torsion angles become more equal, with their average being practically equal to the average of the angles in the two symmetric molecules. This parallels the general relationship between the ²J(P_AP_D) and ²J(P_BP_C) coupling constants (Table 2).

The influence of a ligand on the twisting of the half ring on the opposite side of the molecule results from necessarily concerted twisting of the two half rings, in order nearly to maintain the short non-bonded distances P_B-S_d and P_D-S_b . The induced twist in the opposite half ring, together with unchanged bond angles, contributes to the crossing over of characteristic values

Fable 3	Geometric	parameters ^a
		P

	α-P ₄ S ₃ H ₂ ^b	$\alpha - P_4 S_3 H(NMe_2)^b$	$\alpha - P_4 S_3 (NMe_2)_2^{b}$	α- P ₄ S ₃ I ₂ ^c
(i) Bond lengths	(Å)			
P _A -S _a	2.106	2.101		
$P_{c}-S_{s}$		2.097	2.093	2.094
$P_{A} - S_{d}$	2.120	2.121		
$P_{c}-S_{b}$		2.122	2.123	2.132
P _B -S _b	2.141	2.138		
$P_{D}-S_{d}$		2.136	2.136	2.115
$P_A - P_B$	2.197	2.199		
$P_{C}-P_{D}$		2.214	2.216	2.208
P _B -H _b	1.399	1.399		
$P_{D}-R_{d}$		1.729	1.731	2.477
(ii) Bond angles	(°)			
P _A -S _a -P _C	99.36	99.38	99.35	100.35
$P_{B} - S_{b} - P_{C}$	106.28	106.27		
$P_A - S_d - P_D$		107.28	107.17	107.05
$S_d - P_A - P_B$	99.18	97.94		
S _d -P _A -S _a	102.44	102.57		
$P_B - P_A - S_a$	100.24	100.24		
$S_b - P_C - P_D$		98.74	97.61	93.18
S _b -P _C -S _a		102.99	103.13	102.93
$P_D - P_C - S_a$		100.38	100.42	101.57
$P_A - P_B - S_b$	102.19	101.85		
$P_A - P_B - H_b$	94.06	94.34		
$S_b - P_B - H_b$	97.94	98.00		
$P_{C}-P_{D}-S_{d}$		100.75	100.30	102.20
$P_{C} - P_{D} - R_{d}$		96.97	97.39	96.56
$S_d - P_D - R_d$		101.11	101.33	102.34
(iii) Selected tors	sion angles (°) ^d			
$P_A - P_B - S_b - P_C$	6.75	8.82		
$P_{C} - P_{D} - S_{d} - P_{A}$		9.72	11.75	5.97
$P_B - S_b - P_C - P_D$	77.07	79.21		
$P_D - S_d - P_A - P_B$		79.63	81.81	78.20
lp-P _A -P _C -lp	4.7	8.3	11.9	5.7
$lp-P_B-P_D-lp$	44.3	45.5	46.7	46.2
(iv) Selected non	-bonded distances	(Å)		
SS.	3 794	3 723	3 654	3 665
$P_{\rm p} - P_{\rm p}$	4.045	4.082	4.123	3 923
$P_{n}-S_{r}$	3.288	3.259		5.740
$P_{p}-S_{1}$	0.200	3.291	3.265	3,153
D -0				

^a Atom labelling as in I (Scheme 1). ^b From *ab initio* geometry optimisation at the RHF/3-21G* level. ^c Average values over both molecules unsymmetrically situated in the crystallographic unit cell, ref. 9. ^d Torsion angle A-B-C-D is the angle between projections of vectors BA and CD on a plane perpendicular to BC; lp-A-B-lp is the torsion angle between a notional lone pair (see text) on A and a notional lone pair on B.

of the ²J coupling constants, *e.g.* to the production of a large coupling ²J(P_AP_D) as a result of a hydride ligand attached at P_B (Table 1). The twisting effect of the ligand NMe₂ on its half ring in α -P₄S₃H(NMe₂), opposing the untwisting effect of the hydride ligand on its side, results in distortions which decrease the book angle S_d-P_A-P_B while increasing S_b-P_C-P_D, to an almost equal and opposite extent. Their values therefore cross over, compared with those in the symmetric compounds, while their average remains constant. This helps to explain the averaging rules ² for the NMR parameters mainly involving the bridgehead atoms, ²J(P_AP_C) and the pair δ (P_A) and δ (P_C). For α -P₄S₃H(NMePh) reported here, while ²J(P_AP_C) conforms well to the rules, the δ (P_A), δ (P_C) pair does not (Table 2), in contrast *e.g.* to α -P₄S₃(H)I or to α -P₄S₃I(NMePh).² This is not rationalised by the present calculations.

Localised lone-pair molecular orbitals do not result from *ab initio* calculations of the type performed, but calculation of the direction of a notional lone-pair orbital on phosphorus, which in a simple valence shell electron pair repulsion conceptualisation would be at an equal angle to each of the three bonding contacts, is useful in describing the molecular geometry in a way which may have relevance to the origin of coupling constants. Thus, the torsion angle $lp-P_A-P_C-lp$ (lp = lone pair) is influenced by the ring twisting effects discussed above, and has more than twice the value in α -P₄S₃(NMe₂)₂ as in α -P₄S₃H₂. This corresponds to the exceptionally small value of the coupling constant ²J(P_AP_C) in α -P₄S₃(NMe₂)₂ (43.4 Hz)² (cf. α -P₄S₃H₂ 72.5, α -P₄S₃I₂ 73.9 Hz). The torsion angle takes an exactly average value in α -P₄S₃H(NMe₂) (Table 3), consistent with the average value of the coupling constant for α -P₄S₃H(NMePh) (Table 2).

The torsion angle lp–P_B–P_D–lp is similar in value in α -P₄S₃I₂, α -P₄S₃(NMe₂)₂ and α -P₄S₃H₂, and does not account for the positive value of $J(P_BP_D)$ in the iodide, probably due to a through-space coupling mechanism, compared with the negative values for the other two compounds. The smaller angle (108.2°) in the iodide (compared with 113.7 or 114.6° respectively) between the lone pairs and the P_B–P_D direction, may be a contributing factor to this. If it is assumed that the negative couplings $J(P_BP_D)$ are mostly through bonds, then the torsion angles P_B–S_b–P_C–P_D and P_D–S_d–P_A–P_B should be significant structural parameters. These obey similar averaging rules to the book angles S_d–P_A–P_B and S_b–P_C–P_D, dealt with above, which are also involved in a through-bonds coupling route. For α -P₄S₃H₂ the reduced bond angles to the hydride ligands would contribute to the low chemical shift $\delta(P_B)$.⁸ It is well known that introduction of either hydride or cyanide ligands on acyclic phosphorus causes the ³¹P NMR chemical shift to move to lower frequency. For cyanide this is unlikely to be a diamagnetic anisotropy effect associated with the CN π electron density, since ³¹P chemical shifts in α -P₄S₃ cyanide compounds obey the same correlation rules as for other ligands.¹ For both hydride and cyanide, the major factors contributing to the unusual ³¹P chemical shifts are likely to be electronic ones in the phosphorus–ligand bonding, although it is interesting that both PH₃ and P(CN)₃ have smaller bond angles at phosphorus than does PCl₃, and an effect of bond angles on chemical shift may be important.

The values of ³¹P–¹H couplings (Table 1) were quite consistent for the four compounds reported here, only ⁴ $J(P_DH_b)$ showing much variation with the changes in geometry discussed above. The coupling ⁴ $J(P_DE_b)$ was numerically greater than ³ $J(P_cE_b)$ here (E = H), as for α -P₄S₃ isothiocyanates (E = ¹⁵N)¹¹ and for α -P₄S₃ diphenylphosphino compounds (E = P).^{2.5} The coupling ¹ $J(P_BH_b)$ had values similar to those in PH₃ (186.4),¹² P₂H₄ (186.5)¹³ or Li₂HP₇ (166 Hz).¹⁴

Experimental

All operations were carried out under nitrogen by Schlenk methods. AnalaR toluene was dried over sodium, and CS_2 by distillation from P_4O_{10} . The compound SnBuⁿ₃H (Aldrich) was used as received. Phosphorus-31 NMR spectra were measured using a Bruker WM300WB spectrometer operating at 121.5 MHz, 10 mm diameter tubes and precision capillaries containing (CD₃)CO for locking. Chemical shifts, obtained by substitution experiments using the same capillaries, are reported relative to $H_3PO_4-H_2O$. Proton NMR spectra were measured with a Bruker AC200 spectrometer and 5 mm diameter tubes.

Preparation of a Solution of α-P₄S₃H₂.—The compound α -P₄S₃I₂ (0.50 g, 1.06 mmol) was suspended in toluene (10 cm³) by stirring, first at 60 °C, then while cooling to 20 °C. Dropwise addition of SnBuⁿ₃H (0.57 cm³, 2.11 mmol) in toluene (5 cm³) over 45 min was followed by further stirring for 15 min, giving an almost colourless solution and a poorly settling lemon yellow precipitate. Phosphorus-31 NMR integration relative to PCI₃O–CDCI₃ in a capillary showed the concentration of α-P₄S₃H₂ in the solution to be 2.1 mmol dm⁻³ (3.0% yield, based on α-P₄S₃I₂).

Preparation of a Solution containing α -P₄S₃H(NMePh).— The compound α -P₄S₃I₂ (1.00 g, 2.11 mmol) was suspended in toluene (15 cm³) as above, then a solution of NHMePh (0.46 cm³, 4.22 mmol) in toluene (10 cm³), dried over KOH, was added over 10 min. Stirring was continued for 18 h, then the mid-yellow solution was removed from the solid products and SnBuⁿ₃H (0.30 cm³, 1.12 mmol) in toluene (5 cm³) was added dropwise to it over 30 min, giving a very poorly settling suspension. Estimation of relative concentrations of α -P₄S₃ compounds (see Results and Discussion section) in the solutions before and after the addition of SnBuⁿ₃H was by integration of multiplets due to bridgehead phosphorus nuclei in the ³¹P-{¹H} NMR spectra.

Acknowledgements

Mr. S. J. Butterworth, Mr. A. Heseltine and Mr. S. C. J. Upton are thanked for their contribution to this work during undergraduate projects, Dr. M. N. S. Hill for obtaining the NMR spectra, and Professor J. Grobe (University of Münster) for initially suggesting the use of SnBuⁿ₃H as a reagent for making P–H bonds. The University of London Computer Centre is thanked for resources to use the GAUSSIAN 92 program in the Convex C3840 supercomputer Neptune.

References

- 1 B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1987, 1515.
- 2 B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1991, 483.
- 3 M. Baudler, Angew. Chem., Int. Ed. Engl., 1987, 26, 419.
- 4 M. Baudler and R. Riekehof-Böhmer, Z. Naturforsch., Teil B, 1985, 40, 1424.
- 5 B. W. Tattershall and N. L. Kendall, unpublished work.
- 6 B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1985, 1707.
- 7 A. R. Quirt, J. S. Martin and K. M. Worvill, NUMARIT, Version 771, SERC NMR Program Library, Daresbury, 1977.
- 8 R. Blachnik, P. Loennecke and B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1992, 3105.
- B. W. Tattershall, N. L. Kendall, A. McCamley and W. Clegg, Acta Crystallogr., Sect. C, 1993, 49, 571 and refs. therein.
 M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W.
- 10 M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, GAUSSIAN 92, Revision B, Gaussian Inc., Pittsburgh, 1992.
- 11 B. W. Tattershall, J. Chem. Soc., Dalton Trans., 1990, 663.
- 12 P. Junkes, M. Baudler, J. Dobbers and D. Rackwitz, Z. Naturforsch., Teil B, 1972, 27, 1451.
- 13 R. M. Lynden-Bell, Trans. Faraday Soc., 1961, 57, 888.
- 14 M. Baudler, R. Heumüller and K. Langerbeins, Z. Anorg. Allg. Chem., 1984, 514, 7.

Received 25th May 1993; Paper 3/02978F