Catalytic Conversion of Diethyl Tartrate into Pyruvate over Silica-Supported Potassium Disulfate Shigeru Sugiyama,* Sadao Fukunaga, Katsuhiro Kawashiro, and Hiromu Hayashi Department of Chemical Science and Technology, Faculty of Engineering, The University of Tokushima, Minamijosanjima, Tokushima 770 (Received February 15, 1992) Potassium hydrogensulfate (KHSO₄), which melts at a lower temperature of $197\,^{\circ}$ C, was adapted for vaporphase fixed-bed flow operations as a silica-supported potassium disulfate ($K_2S_2O_7/SiO_2$) to afford 60% ethyl pyruvate continuously from the tartrate at 300 °C. The catalyst was effective for the intramolecular dehydration of glycol moieties, much less active for hydrolysis of esters, and capable of converting enol- to keto-form for the intermediate oxalacetate in favor of pyruvate. A TGA analysis revealed that KHSO₄ was converted to $K_2S_2O_7$ at 300 °C, this was in consistent with the XRD analysis. Pyruvic acid has received increasing attention in recent years as being a potential precursor for α cvanoacrylate adhesives and the enzymatic conversion to L-amino acids, as well as an excellent solvent for a photoresist in optoelectronics processing. An established laboratory procedure^{1,2)} for pyruvic acid synthesis is the dehydrative decarboxylation by the batch distillation of tartaric acid in the presence of potassium hydrogensulfate powder. It appeared to be of interest to apply a catalytic approach for the synthesis of pyruvic acid, which was thus obtained in rather good yield both in the liquid³⁾ and vapor⁴⁾ phases as reported in previous papers. Potassium hydrogensulfate (KHSO₄) melts at a lower temperature of 197°C,5) and was adapted for vapor-phase fixed-bed operations as a silica-supported potassium disulfate catalyst $(K_2S_2O_7/SiO_2)$ prepared by calcination of KHSO₄/SiO₂ to afford 60% ethyl pyruvate (1) continuously from diethyl tartrate (2) at 300 °C. Attempts were made in the present work to elucidate the unique properties of disulfate as a catalyst for pyruvic acid synthesis. The results of comparative reaction studies concerning the stability of ethyl pyruvate on η -Al₂O₃ and K₂S₂O₇/SiO₂, the conversion of diethyl oxalacetate (3) on K₂S₂O₇/SiO₂ in favor of pyruvate with quantitative analysis of the keto-enol isomers based on NMR measurements, and the measurement of XRD and TGA for KHSO₄-K₂S₂O₇-H₂O system near to the reaction conditions, are described. ## **Experimental** The reaction was carried out using a conventional fixed-bed flow apparatus at 200—400 °C with a space velocity (SV) of 500—7200 h⁻¹. Substrates (3 or 5 mol%) were supplied as the benzene or toluene solution by a Microfeeder (Furue Type JPS). Monitoring of the reaction was made with GC (Hitachi 163-FID for organic species and Yanako G-2800-TCD for CO2 and ethylene). A thermogravimetric analysis (TGA) was made using a Shimadzu DTG-40 or RMB-50V. Powder X-ray diffraction (XRD) was measured by a Rigaku CN-2011. The NMR spectra was measured using a Hitachi R-24 Spectrometer in a CDCl₃ solution; chemical shifts are expressed in the unit δ . $K_2S_2O_7/SiO_2$ and η -Al₂O₃ were prepared according to a method described in the literature,⁴⁾ respectively. Methyl glycerate (4) was obtained by the esterification of the acid with methanol solution of $BF_3 \cdot (C_2H_5)_2O$, and then purified by distillation under reduced pressure (bp 93—95 °C/2.1 Torr, lit,⁶⁾ 119—120 °C/14 Torr) [1 Torr=133.322 Pa]. Diethyl oxalacetate (3) was prepared by the reaction of sodium salts with HCl, and then distilled under reduced pressure (bp 71 °C/0.8 Torr, lit,⁷⁾ 131—132 °C/24 Torr). Elemental analysis of 3 and 4 showed pertinent figures, respectively. Other materials were obtained commercially and used without further purification. ## **Results and Discussion** As shown in a previous paper,⁴⁾ η -Al₂O₃ and K₂S₂O₇/ SiO₂ have revealed activity that is favorable for the intramolecular dehydration of ethylene glycol. It was expected that pyruvate could be obtained from glycols 2 and 4 on both catalysts. However, 1 could not be detected on η -Al₂O₃ at 350 °C with SV=3600 h⁻¹ to afford predominantly CO₂ with a high conversion of 2 over 90%. Figure 1(a) shows that 1 was easily hydrolyzed on η -Al₂O₃ in the presence of water vapor in the feed, signifying that 1 could not be obtained in the attempted conversion of 2 to 1 on η -Al₂O₃ due to the hydrolysis of the resulting ester followed by the decarboxylation of the free acid. A small amount of pyruvates (5 and 1) was obtained in yields of 13 and 2% from 4 and 2 on η -Al₂O₃, respectively, with a high space velocity of 7200 h⁻¹ at 375 °C. $K_2S_2O_7/SiO_2$ was much less active for hydrolysis of pyruvate than η -Al₂O₃ (Fig. 1(b)), and the yields of pyruvates were improved up to 50% from 4 and 60% from 2 on $K_2S_2O_7$ SiO₂ at 300 °C with SV=500 h⁻¹. Presumably, disulfate was converted into hydrogensulfate in the presence of H₂O produced through the dehydration of the glycols 2 and 4, $$K_2S_2O_7 + H_2O \rightleftharpoons 2KHSO_4$$, leading to the unique activity of $K_2S_2O_7/\operatorname{SiO}_2$ for pyruvic acid synthesis. Fig. 1. Effect of the partial pressure of H₂O on the hydrolysis of ethyl pyruvate on (a) η-Al₂O₃ and (b) K₂S₂O₇/SiO₂ at 300 °C with SV=1000 h⁻¹. Feed: 3 mol% (toluene solution) diluted with N₂. ▲: Conversion of ethyl pyruvate, ■: yield of ethanol, ♦: yield of acetaldehyde, ○: yield of ethylene, and □: yield of CO₂. Diethyl tartrate (2) is a substituted glycol, thus having two hydroxyl groups; however, it dehydrated to a single intermediate, oxalacetate (3), due to the symmetric Fig. 2. Vapor-phase decarboxylation of diethyl oxalacetate on $K_2S_2O_7/SiO_2$ at 300 °C with $SV=500\ h^{-1}$. Feed: 3 mol% diethyl oxalacetate (benzene solution) $+3\ mol\%\ H_2O$ diluted with N_2 . Symbols are same as those in Fig. 1. Yield of CO_2 is based on two moles decarboxylation of diethyl oxalacetate. structure of 2. However, the resulting 3 exists in two forms,⁷⁾ enol- (3a) or koto-form (3b), each of which can be distinguished together with ¹H NMR at the singlet CH proton signal of 3a (δ =5.94) or singlet CH₂ proton signal of 3b (δ =3.76), respectively. When a rather keto-rich 3 with 3a/3b=1.8 was supplied in the presence of water vapor on K₂S₂O₇/SiO₂ at 300 °C with SV=500 h^{−1}, the yield of 1 immediately after the reaction started was 50%, as shown in Fig. 2, corresponding to the yield of CO₂ for decarboxylation of one -COOH of 3. With increasing time-on-stream, the yield of 1 increased up to 90% with a decrease in C₂H₄ yield, while the yield of CO₂ was almost constant. The hydrolysis of -CH₂-COOC₂H₅ moiety of **3b** followed by the decarboxylation in favor of pyruvate would proceed predominantly on $K_2S_2O_7/SiO_2$. Employing an enol-rich 3 with 3a/3b=4.4 in another run, the yield of 1 decreased to 50% after 4 h-on-stream. Since the ratio of 3a/3b increased to 2.8 with more than 80% recovery of 3 when 3 with 3a/3b =1.8 was supplied with H₂O in the absence of the catalyst under the same conditions as above, the catalyst Fig. 3. Vapor-phase dehydration of ethanol on fresh (open symbols) and used (closed symbols) K₂S₂O₇/SiO₂ at 300 °C with SV=500 h⁻¹. Feed: mol% ethanol (benzene solution) +5 mol% H₂O diluted with N₂. ○: Conversion of ethanol, ♦: yield of ethylene, and □: yield of diethyl ether. is effective to convert 3a to 3b. Figure 2 shows that the catalytic properties of $K_2S_2O_7/SiO_2$ changed during time-on-stream. Ethanol was dehydrated with great ease on the fresh catalyst to afford C_2H_4 selectively, while the used $K_2S_2O_7/SiO_2$ was completely deactivated for ethanol dehydration as shown in Fig. 3. It is, however, of interest that the glycol moieties of 2 was dehydrated on the used $K_2S_2O_7/SiO_2$ to yield 1 in 40%. The catalyst, K₂S₂O₇/SiO₂, was prepared by impregnating SiO₂ gel with aqueous KHSO₄, which is dehydrated to form K₂S₂O₇ at a high temperature. The TGA analysis given in Fig. 4 shows that the weight of the KHSO₄ specimen decreased toward the K₂S₂O₇ level through the dehydration at 300 °C, which was the same temperature as the typical reaction conditions employed in the present work. Potassium disulfate thus formed quickly trapped H₂O when supplied 3% moist nitrogen, as shown in Fig. 4. The weight increase showed a plateau at a composition of 67% K₂S₂O₇ without coming back to the KHSO₄ level, and again slowly dehydrated to K₂S₂O₇ under dry nitrogen. The value of 67% K₂S₂O₇ at 300 °C is in good agreement with that given by Mellor⁸⁾ for KHSO₄-K₂S₂O₇-H₂O system, suggesting that K₂S₂O₇ is supported by SiO₂ gel in the pore as a thin film of the molten salt of 67% K₂S₂O₇+33% KHSO₄ under reaction conditions. Powder X-ray analysis provided evidence for the formation of K₂S₂O₇9) upon heating KHSO₄¹⁰⁾ at 300 °C, where the starting KHSO₄ was not detected in the XRD pattern. In conclusion, ethyl pyruvate was obtained by the vapor-phase dehydrative decarboxylation of diethyl tar- Fig. 4. Thermogravimetric analysis for 2KHSO₄ ⇒K₂S₂O₇+H₂O. trate on $K_2S_2O_7/SiO_2$. The catalyst domesticated to steady-state activity within a few hours on-stream, and decomposed the intermediate oxalacetate through the keto-form in favor of pyruvate. TGA analysis revealed that the catalyst consisted of 67% $K_2S_2O_7$ and 33% KHSO₄ in the reaction conditions and was supported by SiO_2 gel in the pore as a thin film of the molten salt. The authors thank The Ministry of Education, Science and Culture for a Grant-in-Aid for Scientific Research No. 03650679 to H. H. ## References - 1) E. Erlenmeyer, Ber. Dtsch. Chem. Ges., 14, 320 (1881). - 2) J. W. Howard and W. A. Fraser, "Organic Synthesis," ed by H. Gilman, Wiley, New York (1945), Coll. Vol. 1, p. 475. - 3) T. Tsujino, S. Ohigashi, S. Sugiyama, K. Kawashiro, and H. Hayashi, J. Mol. Catal., 71, 25 (1992). - 4) S. Sugiyama, S. Fukunaga, K. Ito, S. Ohigashi, and H. Hayashi, *J. Catal.*, **129**, 12 (1991). - 5) "The Merck Index—An Encyclopedia of Chemical and Drugs," 8th ed, ed by P. G. Stecher, Merck, Rahway, NJ - 6) "Lange's Handbook of Chemistry," 11th ed, ed by J. A. Deam, McGraw-Hill, New York (1973), Chap. 7. - 7) T. Yamashita and O. Manabe, Nippon Kagaku Kaishi, (1990) 890. - 8) J. W. Mellor, "Comprehensive Treatise on Inorganic and Theoretical Chemistry," Longmans, Green and Co., London (1930) Vol. 10, p. 444. - 9) ASTM, "X-ray Powder Data File," 1-0717. - 10) ASTM, "X-ray Powder Data File," 11-649.