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Abstract: A Sharpless epoxidation of the pentadienol 12 afforded the
unsaturated epoxyalcohol 11 with 97.7% ee. Silylation of 11 and ozono-
lysis provided the epoxyketone 14. A completely anti-selective reduction
of 14 succeeded with Zn(BH,),. It led to the epoxyalcohol 15 which was
converted into the acetonide alcohols 21 and 23, building blocks for en-
antiopure anti-1,3-diols. Alternatively, the same epoxyketone 14 and
cp,Ti(IINCI / 1,4-cyclohexadiene gave the B-hydroxyketone 16. This
compound was transformed into the acetonide alcohols 22 and 24, buil-
ding blocks for enantiopure syn-1,3-diols.

The stereoselective synthesis of 1,3,5,7,...-polyols has attained a level of
considerable sophistication.1 While larger targets abound, the prepara-
tion of the simplest representatives of this class of compounds, i. e. of ste-
reodefined anti- or syn-1,3-diols, has lost none of its importance. This is
because 1,3,5,7,...-polyols are often prepared from anti- or syn-1,3-diols
and because in syntheses of 1,3,5,7,...-polyols one or several of their 1,3-
diol subunits are obtained by methods developed for the obtention of the
proper 1,3-diols themselves. Scheme 1 summarizes the more frequently
used pathways to 1,3-diols or 1,3-diol subunits.
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Scheme 1. Standard syntheses of stereodefined 1,3-diols. a) Ref. 5.b)
Ref. #°.- ¢) Ref O.- d) Ref 2.~ e) Ref 10.- ) Ref. 8.- g) Only possible star-
ting from enantiomerically pure 5; ref. - h) Ref. i

An important access to 1,3-diol(subunit)s is the diastereoselective reduc-
tion of B-hydroxyketones 1: Perfect syn-selectivities are attained by the
Narasaka / Prasad reduction of the derived diethylborinate52 while good
anti-selectivities originate from intramolecular hydride delivery me-

thods.3 The other 1,3 -diol(subunit) syntheses of Scheme 1 are C—C bond
forming reactions. The reductive lithiation of O,S-acetals 2%0r33 gives
lithioethers which can be alkylated at dry-ice temperature providing the
1,3-diols 4 with anti-selectivity; alternatively, these lithioethers are epi-
merized at 0°C whereafter they react with alkylating agents so that they
furnish 1,3-diols 4 exclusively as syn—isomers.6’7 O-protected B-hydro-
xyaldehydes § are well suited for the chelation-controlled addition of or-
ganometallic rea%ents; a wide variety of anti-configurated 1,3-diols 4 can
thus be obtained.® Syn-selective additions to O-protected B-hydroxyalde-
hydes § are not generally possible unless one exploits addition reactions
with reagent control of diastereoselectivity. ° Sequential ring-openings of
the C,-symmetric bisepoxide 6 or its enantiomer through organometal-
lics constitute an elegant synthesis of homochiral anti-1,3-diols 4. 10 Ep-
oxide openings through organometallics which lead to syn-configurated
1,3-diols 4 are essentially those of Lipshutz” group which possess the ge-
neral structure 7.'! By the work described in the present paper — the syn-
thesis of two pairs 21/23 and 22/24 of acetonide-protected 1,3-diols
(Scheme 4) —~ we offer useful starting materials other than 1-3 and 5-7 for
the synthesis of enantiopure anti- and syn-1,3-diols. Compounds 21-24
were obtained as specified in Schemes 2-4.
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Scheme 2. a) PACH,OH (1.0 equiv.), NaH (1.1 equiv.), THF, 0°C, 1 h;
addition of 8 (45 mmol); — room temp., 4 h. b) 9 (20 mmol), Pd(OAc),
(4 mol-%), LiCl (1.0 equiv.), BuyNCI (1.0 equiv.), K;CO3 (2.5 equiv.),
H,C=CH-CO;Me (2.5 equiv.), DMF, 90°C, 2 h. ¢) DIBAL (2.2 equiv., 60
mmol), CHyCly, -78°C, 1 h. d) Ti(OiPr)y (54 mol-%), L-(+)-diisopro-
pyltartrate (64 mol-%), CH,Cly, -25°C, 15 min; addition of 12 (4.0
mmol), 10 min; tBuOOH (2.0 equiv.), molecular sieves 44, -20°C, 4 k;
97.7% ee. e) tBuPh,SiCl (1.2 equiv., 15 mmol), imidazole (1.05 equiv.),
THF, 0°C, 3 h; room temp., 12 h. f) O3, CH,Cly, -78°C, 2.5 h; PPh3 (1.5
equiv., 17 mmol), 2 h; — room temp., 12 h.

First, the dibromopropene 8 12 and sodium benzylalcoholate furnished
benzyl ether 9 13 in a Williamson reaction (90% vyield; Scheme 2). As a
secondary bromoolefin the ether 9 underwent a Heck coupling ' with
methyl acrylate. With the additives Pd(OAc),, BuyNCl, LiCl, and
K,CO3 — as described by de Meijere et al. for couplings of ortho-dibro-
mobenzene with acrylates in DMF 15 _ we obtained the Heck product 10
in 57% yield. Compound 10 is a dienoic ester whose CO,Me group was
reduced with DIBAL chemoselectively. The dienol 12 resulted in 85%
yield. Dienols which are 2,4-pentadien-1-ols can be epoxidized regio-
and enantioselectively with the Sharpless cocktail 16 a5 reported a few
times.!” Our 2 ,4-pentadien-1-ol 12 undergoes such a regio- and enantio-
selective Sharpless epoxidation in the presence of Ti(OiPr) and L-(+)-
diisopropyltartrate, too. The epoxyalcohol 11 was isolated in 89% yield
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and 97.7% ee.'® Silylation of the OH group of 11 with fert-butyidiphe-
nylsilyl chloride furnished the O-protected alkenyl-epoxide 13 in 90%

yield. Its C=C bond was ozonolyzed. After treatment of the primary clea-
vage products with PPhy and chromatographic purification we obtained

81% of the epoxyketone 14.
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Scheme 3. a) Zn(BH,), (1.7 equiv., 3.0 mmol), toluene, -80°C, 4 h. b) Zn
powder (3.0 equiv.), cp,TiCly (1.1 equiv.), 1,4-cylohexadiene (15 equiv.),
THF, room temp., 20 min; transferred dropwise to a solution of 14 (4.3
mmol) in THF; 60 min. c) Zn powder (3.0 equiv.), cp,TiCl, (1.1 equiv.),
1,4-cylohexadiene (15 equiv.), THF, room temp., 20 min; transferred
dropwise to a solution of 15 (1.5 mmol) in THF; 40 min. d) Et3B (1.2
equiv.), MeOH, THF, 20 min, room temp., 1 h; addition of 16 (2.0 mmol);
-78°C, 1 h; NaBH, (1.2 equiv.), 12 h. e) 2,2-Dimethoxypropane, cam-
phor sulfonic acid (cat.), acetone, 0°C, 2 h (0.9 mmol scale). f) 2,2-Di-
methoxypropane, camphor sulfonic acid (cat.), acetone, 0°C, 5 h (1.4
mmol scale).

In the epoxyketone 14 we had to cleave the C—O bond « to the carbonyl
group and to reduce the carbonyl group so that the new C—-O single bond
assumed either of the two possible orientations with respect to the preser-
ved Cg—O bond. The order of these steps depended only on how one
could best proceed to the 1,3-diol precursors 19 and 20. An amendment
to existing reduction methodology and an extension of it were required
for realizing these goals (Scheme 3).

Anti-selective reductions of trans-configurated epoxy ketones akin to our
substrate 14 were effected by Sato e al. 19 and by Fujii from the labora-
tory of Oshima and Utimoto 20 who both exploited chelation contro] of
diastereoselectivity. The former researchers used Zn(BH,), in diethyle-
ther as the reductant and concomitantly as the chelating agent and obser-
ved a 95:5 anti:syn selectivity. The latter group used NaBH,4 in MeOH as
the reductant and CaCl, as the chelating agent and found a 88:12 ratio of
anti vs. syn product. Based on a literature report by Nakata, Oishi, et al.

! on the solvent dependence of Zn(BH,),-mediated chelation-controlled
reductions of B-alkoxyketones and on paralleling results of ourselves 2
it was likely that reducing epoxyketones with Zn(BH,), in diethylether
was sub-optimal for imposing anti-selectivity through chelation control.
Indeed, treatment of epoxyketone 14 with Zn(BHy), in toluene — the op-
timum solvent of refs, 2122 — at -80°C gave the epoxyalcohol 15 (73%)
as a pure anti isomer.”> A regioselective opening of its epoxide ring was
effected following RajanBabu’s and Nugent”s protocol:24 exposure of
the substrate to in situ prepared cp,Ti(III)Cl and to an excess of 1,4-cy-
clohexadiene. The anti-diol 17 thereby obtained was isolated in 67%
yield. It was protected by an acid catalyzed transacetalization with 2,2-
dimethoxypropane as acetonide 19 (79% yield).

For synthesizing the epimeric acetonide 20 (Scheme 3) the C—O bond o
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to the carbonyl group of the epoxyketone 14 was cleaved reductively by
a reagent which has hitherto never been used for that purpose to the best
of our knowledsge: excess 1,4-cyclohexadiene and in-situ prepared
cpzTi(III)Cl.zs 26 The B-hydroxyketone 16 was thus obtained (60%
yield). After borination with Et,BOMe and formation of a boron-bridged
six-membered chelate it was reduced with NaBH, completely syn-selec-
tively (73% yield; method: ref. 2). The resulting syn-diol 18 was protec-
ted as acetonide 20 (85% yield).

Table 1. Stereochemically relevant 300 MHz TH-NMR and 75 MHz 13C-
NMR data of acetonides 19 and 20 in CDCl3 (8 values in ppm)

5 5
. 6 4 6 4
= tBUPhZSl ZO/Y\;/\OBH XO/YY\OBH
o)

O>2< O>2<O
19 20
(IUPAC numbering) {IUPAC numbering}
5(4-H) 4.04 4.10
3(5-HA); 8(5-HB) both 1.61 ca. 1.40; ca. 1.65
3(6-H) 3.95 3.99
Js.tea)as J5-11A)6 7.9Hz; 79 Hz 11.7 Hz; 14.0 Hz
Js.1e®).4 J5-HB)6 79Hz; 79 Hz 2.5Hz; 25 Hz
8[2-(CHj3),] 24.90; 24.99 19.69 ;29.92
&(C-2) 100.26 98.53

The stereostructures which we assign to the acetonides 19 and 20 were
deduced from the 'H- and >C-NMR data compiled in Table 1. The fol-
lowing stereochemistry-proving statements can be made: (1) The AB(IH)
values for the diastereotopic protons 5-H* and 5-HP and the differences
between the vicinal coupling constants Js pycay 4.1 OF J5.11(a) 6.1 On the
one side and J5_pyp) 4.1 OF J5_(p),6-1 On the other side are known to be
small if existing at all in anti-acetonides (like in 19) and relatively large
in syn-acetonides (like in 20).27 (2) The AS(*3C) values for the diastereo-
topic methyl groups attached to C-2 are known to be negligible in anti-
acetonides (like in 19) but measure 10.4(0.7 ppm in syn-acetonides (like
in 20).28 (3) The chemical shift of the acetal carbon C-2 is known to be
(100.5 pm in anti-acetonides (like in 19) and usually (99.5 ppm in syn-
acetonides (like in 20).28
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Scheme 4. a) Bu,NF (1.1 equiv., 0.26 mmol), THF, 0°C — room temp,
4.5 h. b) BuyNF (1.5 equiv., 0.37 mmol), THF, 0°C — room temp., 18 h.
¢) Lithium naphthalenide (2.0 equiv., 0.34 mmol), THF, -78°C — room
temp., 2 h. d) Lithium naphthalenide (2.0 equiv., 0.29 mmol), THF, -78°C
— room temp., 40 min.

Transforming the acetonides 19 and 20 into useful building blocks for
anti- and syn-1,3-diols meant mono-deprotecting them (Scheme 4). The
tert-butyldiphenylsilyl group was removed selectively by treating each
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compound with an anhydrous solution of BuyN*F" in THF. From the ace-
tonide 19, we thus obtained the 1,3-diol building block 21 (88%) and
from the acetonide 20 the 1,3-diol building block 22. Alternatively, the
benzyl ethers both of acetonide 19 and its diasteromer 20 were cleaved
with lithium naphthalenide.?’ Thereby we gained access to the 1,3-diol
building blocks 23 (98%) and 24 (89%), respectively. The 'H- and '3C-
NMR characteristics of the mono-deprotected acetonides 21/23 (22/24)
resemble closely those (cf. Table 1) of their diprotected acetonide precur-
sor 19 (20). This proves that all anti/syn relationships were fully preser-
ved during the desilylations and debenzylations.

In summary, we present two novel building blocks 21 and 23 for the syn-
thesis of anti 1,3-diols as well as two novel building blocks 22 and 24 for
the synthesis of syn 1,3-diols. Conveniently, these building blocks 21-24
are derived from a single enantiopure progenitor, the epoxyalcohol 12.
Obviously, one could prepare the enantiomeric building blocks ent-21 -
ent-24 by the same chemistry, too; their common progenitor would be
the epoxide formed from the pentadienol 12, terr-BuOOH, (iPrO),Ti,
and D-(-)-diisopropyltartrate. 21-24 and ent-21 - ent-24 constitute a set
of protected 1,3-diols of all possible configurations — 1R,3R (21 and 23),
1R,3S (22 and ent-24), 15,3S (ent-21 and ent-23), and 15,3R (ent-22 and
24) — with the possibility to choose between a benzylated and a tert-
butyldiphenylsilylated species for any given configuration. The elabora-
tion of these compounds into 1,3,5,7,...-polyols is currently under inve-
stigation in our laboratory.
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