Arch. Pharm. (Weinheim) 320, 642-646 (1987)

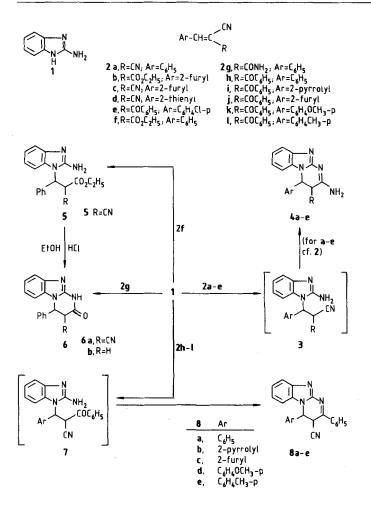
# Reactions with 2-Aminobenzimidazole: Synthesis of Several New Pyrimido[1,2-*a*]benzimidazole Derivatives

Abdou O. Abdelhamid\*, Bahia Y. Riad, and Suzan I. Aziz

Department of Chemistry, Faculty of Science, Cairo University, Giza, A.R. Egypt Eingegangen am 6. Oktober 1986

Several new pyrimido [1,2-a] benzimidazole derivatives were synthesized by reacting 2-aminobenzimidazole with  $\alpha$ ,  $\beta$ -unsaturated nitriles and benzoylacetonitrile derivatives. The structures of the products were established on the basis of elemental analyses, IR and <sup>1</sup>H-NMR spectral data.

#### Umsetzungen mit 2-Aminobenzimidazol: Synthese einiger neuer Pyrimido[1,2-a]benzimidazol-Derivate


Mehrere neue Pyrimido[1,2-a]benzimidazole Derivate wurden durch Reaktionen von 2-Aminobenzimidazol mit  $\alpha$ ,  $\beta$ -ungesättigten Nitrilen und Benzoylacetonitril-Derivaten synthetisiert. Die Strukturen der neuen Derivate wurden anhand der Elementaranalyse, der IR- und <sup>1</sup>H-NMR-Spectren identifiziert.

The incorporation of an imidazole nucleus, a biologically accepted pharmacophore, in the benzimidazole nucleus has made it a versatile heterocycle possessing a wide spectrum of biological activities. In addition, a large variety of substituted 2-aminobenzimidazoles have been found to possess *in vivo* and *in vitro* growth inhibitory activity against various strains of bacteria, fungi and viruses. Moreover, several 1and 1,3-disubstituted benzimidazoles and pyrimido[1,2-a]benzimidazoles are known to exhibit CNS depressant, anti-inflammatory, antithyroid and cardiovascular activities<sup>1</sup>). The above mentioned biological and medicinal activities of benzimidazoles and related compounds prompted our interest for the synthesis of several new derivatives of these ring systems. The reactions of 2-aminobenzimidazole (1) with  $\alpha$ ,  $\beta$ -unsaturated nitriles and benzoylacetonitrile derivatives (2) seemed to us to be a sole, easy and facile route for the synthesis of these derivatives.

Thus, 1 reacted base catalyzed with the  $\alpha$ ,  $\beta$ -disubstituted acrylonitriles **2a-e** to yield products which can be formulated as the 2-aminopyrimido[1,2-a]benzimidazoles **4a-e**. The formation of **4a-e** is assumed to proceed via the non-isolable Michael adducts **3** which consequently cyclised by the addition to the cyano function to yield **4a-e**. Their structures were confirmed by elemental analyses and spectral data (cf. Experimental Part). Moreover, isomeric forms for **4a-e** (the 4-amino-analoges) were ruled out on the basis of the products obtained by the reaction of **1** with the ylidene derivative **2f** and **2g** as follows.

Thus, in contrast to its behaviour towards 2a-e, 1 reacted with the acrylonitrile 2f under identical conditions to the isolable *Michael* adduct 5. Structure 5 was confirmed by its correct elemental analysis and its spectral data. Thus, its IR spectrum revealed the presence of NH<sub>2</sub>, saturated CH, CN and ester C=O groups. The <sup>1</sup>H-NMR of 5 revealed a triplet at ( $\delta$  ppm) 1.3 (CH<sub>3</sub>) and a quartet at 3.8 (CH<sub>2</sub>) of the ethoxy group beside signals due to NH<sub>2</sub>, CH and aromatic protons (cf. Tables 1 and 2). Moreover, a

© VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1987



further proof of structure 5 was achieved by its cyclisation to the pyrimido[1,2-a]benzimidazole 6a (data see Tables 1 and 2).

1 reacted with 2g to the pyrimido[1,2-a]benzimidazole 6b probably via the formation of the corresponding Michael adduct which then cyclises via loss of NH<sub>3</sub> followed by hydrolysis and decarboxylation to give 6b whose structure was confirmed on the basis of elementary analysis and spectroscopic backgrounds (cf. Experimental Part).

1 reacted with 2h-1 to the 3,4-dihydropyrimido[1,2-a]benzimidazoles 8a-e, respectively. The formation of 8a-e is assumed to proceed via the formation of the non-isolable Michael adducts 7 which were cyclised via the loss of water to afford 8a-e (see Tables 1 and 2).

## **Experimental Part**

MP. uncorr.-IR (KBr): Pye Unicam SP-1100 spectrophotometer. – <sup>1</sup>H-NMR: Varian EM-360 MHz. TMS int. stand. (DMSO-D<sub>6</sub>); chemical shifts:  $\delta$  (ppm). – Microanalyses: microanalytical centre at Cairo University. – Compounds **2a-h**, **k** were prepared following. lit.<sup>2-7)</sup>.

### Preparation of 2i-j

0.1 mol benzoylacetonitrile in 100 ml EtOH and 1 ml piperidine was stirred with 0.1 mol of either pyrrole 2-carboxaldehyde or furfural for 15 min then diluted with water. The solid product was collected and crystallized from EtOH to give 2i, j, respectively (cf. Tables 1 and 2).

| Comp.      | Solv. | M.P.<br>(°C) | Yield<br>(%) | Mol. Form.                                                               | Analysis %<br>Calcd./Found |              |              |
|------------|-------|--------------|--------------|--------------------------------------------------------------------------|----------------------------|--------------|--------------|
|            |       |              |              |                                                                          | с                          | н            | N            |
| 2i         | EtOH  | 155          | 85           | $\begin{array}{c} C_{14}H_{10}N_{2}O\\ (222.2) \end{array}$              | 75.7<br>75.7               | 4.53<br>4.71 | 12.6<br>12.8 |
| 2j*        | EtOH  | 110          | 92           | C <sub>14</sub> H <sub>9</sub> NO <sub>2</sub><br>(223.2)                | 75.3<br>75.5               | 4.06<br>4.12 | 6.2<br>6.4   |
| <b>4</b> a | DMF   | 220          | 75           | C <sub>17</sub> H <sub>13</sub> N <sub>5</sub><br>(287.3)                | 71.0<br>70.8               | 4.56<br>4.64 | 24.3<br>24.5 |
| <b>4</b> b | DMF   | > 300        | 82           | C <sub>17</sub> H <sub>16</sub> N <sub>4</sub> O <sub>3</sub><br>(324.3) | 63.0<br>63.1               | 4.97<br>5.14 | 17.2<br>17.2 |
| <b>4</b> c | DMF   | > 350        | 80           | $C_{15}H_{11}N_5O$<br>(277.3)                                            | 65.0<br>64.8               | 3.99<br>4.14 | 25.2<br>25.4 |
| 4d**       | EtOH  | 190          | 92           | $C_{15}H_{11}N_5S$<br>(293.3)                                            | 61.4<br>61.2               | 3.77<br>3.70 | 23.8<br>24.0 |
| 4e***      | EtOH  | 295          | 90           | $C_{23}H_{17}CIN_4O$<br>(400.9)                                          | 68.9<br>69.1               | 4.27<br>4.46 | 14.0<br>14.0 |
| 5          | DMF   | 270          | 68           | $C_{19}H_{18}N_4O_2$<br>(334.4)                                          | 68.2<br>68.2               | 5.42<br>5.34 | 16.7<br>16.6 |
| <b>6</b> a | DMF   | 320          | 70           | $C_{17}H_{12}N_4O$<br>(288.3)                                            | 70.8<br>70.6               | 4.19<br>4.02 | 19.4<br>19.5 |
| <b>6</b> b | AcOH  | 225          | 65           | C <sub>16</sub> H <sub>13</sub> N <sub>3</sub> O<br>(263.3)              | 73.0<br>72.7               | 4.97<br>4.81 | 16.0<br>15.7 |
| 8a         | DMF   | 330          | 90           | $C_{23}H_{16}N_4$<br>(348.4)                                             | 79.3<br>79.1               | 4.62<br>4.83 | 16.1<br>16.0 |
| 8b         | EtOH  | 130          | 80           | $C_{21}H_{15}N_{5}$<br>(337.4)                                           | 74.7<br>74.6               | 4.48<br>4.64 | 20.7<br>20.8 |
| 8c         | AcOH  | > 300        | 83           | $C_{21}H_{14}N_4O$<br>(338.4)                                            | 74.5<br>74.7               | 4.17<br>4.23 | 16.5<br>16.7 |
| 8d         | AcOH  | 300          | 95           | $C_{24}H_{18}N_4O$<br>(378.4)                                            | 76.1<br>76.1               | 4.79<br>5.01 | 14.8<br>15.0 |
| 8e         | AcOH  | 280          | 90           | $C_{24}H_{18}N_4$<br>(362.4)                                             | 79.5<br>79.3               | 5.00<br>5.12 | 15.4<br>15.3 |

Tab. 1: Characterization data of 2i, j, 4a-e, 5, 6a, b and 8a-e

\* Compound 2j, lit.<sup>7)</sup> m.p. 108–109<sup>0</sup>.

\*\* Compound 4d, % S; Calcd. (Found): 10.9 (11.1).

\*\*\* Compound 4e, % Cl; Calcd. (Found): 8.8 (8.9).

# Tab. 2: IR and <sup>1</sup>H-NMR data of 2i, 4a-e, 5, 6a, b and 8a-e

| Comp.      | $IR (cm^{-1})$                                                                            | <sup>1</sup> H-NMR (δ ppm)                                                                                                                                                                                                                                                                     |  |  |
|------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <b>2</b> i | 3350 (NH); 2210 (CN);<br>1680 (C=O) and<br>1600 (C=C).                                    | 6.8 (dd, 1H, pyrrole H-4); 7.3 (d, 1H,<br>pyrrole H-3); 7.4–7.6 (m, 5H, Ar'H);<br>7.7 (dd, 1H, pyrrole H-5); 7.9 (s, br,<br>1H, NH) and 8.3 (s, 1H, CH).                                                                                                                                       |  |  |
| <b>4</b> a | 3300, 3220 (NH <sub>2</sub> );<br>2220 (CN); 1640 (C=N)<br>and 1600 (C=C).                | 5.3 (s, br, 2H, NH <sub>2</sub> ); 6.7 (d, 1H, CH)<br>7.0-7.5 (m, 9H, Ar <sup>4</sup> H) and 7.8 (d,<br>1H, CH).                                                                                                                                                                               |  |  |
| <b>4</b> b | 3320, 3180 (NH <sub>2</sub> );<br>1730 (C=O); 1620 (C=N)<br>and 1600 (C=C).               | 1.3 (t, 3H, <u>CH</u> <sub>3</sub> ); 3.8 (q, 2H, <u>CH</u> <sub>2</sub> CH <sub>3</sub> );<br>5.4 (s, br, 2H, NH <sub>2</sub> ); 6.5 (q, 1H, furan<br>H-3); 6.7 (d, 1H, CH); 7.3 (q, 1H,<br>furan H-4); 7.4–7.8 (m, 4H, Ar <sup>4</sup> H);<br>7.8 (d, 1H, CH) and 7.9 (q, 1H, furan<br>H-5). |  |  |
| <b>4</b> c | 3300, 3150 (NH <sub>2</sub> );<br>2200 (CN); 1630 (C=N)<br>and 1600 (C=C).                | 5.3 (s, br, 2H, NH <sub>2</sub> ); 6.5 (q, 1H, furan H-3); 6.7 (d, 1H, CH); 7.3 (q, 1H, furan H-4); 7.4–7.6 (m, 4H, Ar'H); 7.8 (d, 1H, CH) and 7.9 (q, 1H, furan H-5).                                                                                                                         |  |  |
| <b>4</b> d | 3280, 3150 (NH <sub>2</sub> );<br>2200 (CN); 1640 (C=N)<br>and 1600 (C=C).                | 5.4 (s, br, 2H, NH <sub>2</sub> ); 6.5 (d, 1H, CH);<br>7.1 (q, 1H, thiophene H-3); 7.5 (dd,<br>1H, thiophene H-4); 7.6–7.7 (m, 4H,<br>Ar'H); 7.8 (d, 1H, CH) and 7.9 (dd,<br>1H, thiophene H-5).                                                                                               |  |  |
| <b>4</b> e | 3300, 3100 (NH <sub>2</sub> );<br>1660 (C=O); 1620 (C=N)<br>and 1600 (C=C).               | 5.5 (s, br, 2H, NH <sub>2</sub> ); 6.6 (d, 1H, CH);<br>7.1-7.5 (m, 13H, Ar'H) and 7.9 (d,<br>1H, CH).                                                                                                                                                                                          |  |  |
| 5          | 3300, 3100 (NH <sub>2</sub> );<br>2220 (CN); 1720 (C=O);<br>1625 (C=N) and<br>1600 (C=C). | 1.3 (t 3H, $CH_2CH_3$ ); 3.8 (1, 2H,<br>$CH_2CH_3$ ); 6.2 (d, 1H, CH); 6.5 (s, br,<br>2H, NH <sub>2</sub> ); 7.0-8.0 (m, 9H, Ar'H) and<br>8.8 (d, 1H, CH).                                                                                                                                     |  |  |
| <b>6</b> a | 3340 (NH); 2250 (CN);<br>1680 (C=O); 1630 (C=N)<br>and 1600 (C=C).                        | 6.6 (d, 1H, CH); 6.9 (d, 1H, CH);<br>7.3-7.7 (m, 9H, Ar'H) and 8.7 (s, br,<br>1H, NH).                                                                                                                                                                                                         |  |  |
| <b>6</b> b | 3350 (NH); 1690 (C=O);<br>1630 (C=N) and<br>1600 (C=C).                                   | 5.9 (d, 2H, CH <sub>2</sub> ); 6.2 (t, 1H, CH);<br>7.0-7.8 (m, 9H, Ar'H) and 8.8 (s, br,<br>1H, NH).                                                                                                                                                                                           |  |  |
| <b>8</b> a | 2200 (CN); 1640 (C=N)<br>and 1600 (C=C).                                                  | 2.8 (d, 1H, CH); 3.1 (d, 1H, CH) and 7.3-8.0 (m, 14H, Ar'H).                                                                                                                                                                                                                                   |  |  |
| <b>8</b> b | 3500 (NH); 2200 (CN);<br>1630 (C=N) and<br>1600 (C=C).                                    | 2.8 (d, 1H, CH); 3.0 (d, 1H, CH); 6.1 (d, 1H, pyrrole H-3); 6.3 (q, 1H, pyrrole H-4); 6.6 (d, 1H, pyrrole H-5) and 7.3-7.9 (m, 10H, Ar'H and NH).                                                                                                                                              |  |  |
| <b>8</b> c | 2250 (CN); 1630 (C=N)<br>and 1600 (C=C).                                                  | 2.9 (d, 1H, CH); 3.2 (d, 1H, CH); 6.3 (q, 1H, furan H-3); 6.8 (q, 1H, furan H-4) and 7.3-8.0 (m, 10H, Ar'H and furan H-5).                                                                                                                                                                     |  |  |

| Comp.      | IR (cm <sup>-1</sup> )                   | <sup>1</sup> H-NMR (δ ppm)                                                                             |
|------------|------------------------------------------|--------------------------------------------------------------------------------------------------------|
| <b>8</b> d | 2200 (CN); 1640 (C=N)<br>and 1600 (C=C). | 2.7 (d, 1H, CH); 3.0 (d, 1H, CH); 3.8 (s, 3H, OCH <sub>3</sub> ) and 7.2-7.8 (m, 13H, Ar'H).           |
| 8e         | 2190 (CN); 1620 (C=N) and 1600 (C=C).    | 2.3 (s, 3H, CH <sub>3</sub> ); 2.7 (d, 1H, CH); 3.1 (d,1H, CH) and 7.0-7.6 (m,13H, Ar <sup>e</sup> H). |

### Reactions of 2a-1 with 1: General procedure

0.01 mol 2a-e in 30 ml EtOH containing 1 ml piperidine was heated with 0.01 mol 1 under reflux for 3-4 h. The solid product obtained after cooling was crystallized from the proper solvent to give 4a-e, 5, 6b and 8a-e, respectively (cf. Tables 1 and 2).

### Preparation of 6a

0.5 g 5 in 20 ml EtOH was heated with 5 ml HCl under reflux for 3 h. The solvent was evaporated i. vac. and the remaining solid was triturated with EtOH and crystallized from DMF to give **6a** (cf. Tables 1 and 2).

### Acknowledgement

Thanks are due to Prof. Dr. Sadek E. Abdou, Department of Chemistry, Faculty of Science, Cairo University for his valuable discussions.

### References

- 1 P. N. Preston in The Chemistry of Heterocyclic Compounds, Vol. 40/II, p. 531; P. N. Preston, ed.; J. Wiley and Sons, New York 1980.
- 2 B. B. Corson and R. Stoughton, J. Am. Chem. Soc. 50, 2825 (1928).
- 3 W. S. Emerson and T. M. Patrick Jr., J. Org. Chem. 14, 790 (1949).
- 4 T. Boehm and M. Grohnwald, Arch. Pharm. (Weinheim) 274, 318 (1936).
- 5 J. Thiele and F. Henle, Liebigs Ann. Chem. 347, 290 (1906).
- 6 F. D. Popp and A. Catala, J. Org. Chem. 26, 2738 (1961).
- 7 N.S. Girgis, G.E.H. Elgemeie, G.A.M. Nawar, and M. H. Elnagdi, Liebigs Ann. Chem. 1983, 1468.

Ph 263