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Over the course of developing a multigram scale preparation of epoxy quinol 1 via asymmetric transfer
hydrogenation (ATH) using the Noyori Ru(arene)(S,S-TsDPEN) catalysts, we observed several unexpected
phenomena, including (i) chemoselective alkene versus ketone reduction of an enedione, (ii) a significant
arene ligand effect (p-cymene vs mesitylene) on the reaction pathway, and (iii) solvent-based reversal of
the sense of enantioinduction.

� 2012 Elsevier Ltd. All rights reserved.
In the course of our ongoing synthesis of antascomicin B,1–3 we
identified epoxy quinol 1 as an early intermediate in the synthesis
(Scheme 1). Since the Noyori asymmetric transfer hydrogenation
(ATH) of ketones is a widely used reaction in both industrial and
academic laboratories,4,5 ATH of meso-diketones 26 or 37 appeared
to offer a mild, scalable method for large scale synthesis of the qui-
nol (Eq. 1). Unlike aryl ketones or ynones, however, there are only a
few examples of ATH of cyclohexenones.8,9 The ATH of ketoisoph-
orone reported by a Hoffman-La Roche group seemed to augur well
for the success of the reduction, although the reported reaction
scale was only ca. 100 mg (Eq. 2).9

We initially sought to desymmetrize meso-enedione 2 via ATH.
Noyori transfer hydrogenations are typically performed using
either iPrOH as both solvent and reductant or trialkylamine/formic
acid as reductant with or without added solvent.4,5 To our surprise,
subjection of diketone 2 to typical ATH conditions using Ru(p-
cymene)(S,S-TsDPEN) as catalyst and triethylammonium formate
as the reductant resulted principally in alkene rather than ketone
reduction to give dihydro diketone 4,6b hydroquinone 5,10 and a
small amount of recovered starting material (Scheme 2).11 Use of
2-propanol as reductant and solvent gave similar results.

There are at least two possible mechanisms for the formation of
diketone 4: direct alkene reduction, or ketone reduction followed
by isomerization.12 In order to distinguish the two pathways, the
progress of the reduction of 2 in 2-propanol was followed directly
by no-D 1H NMR analysis13 of the reaction mixture (see Supplemen-
tary data). 14 Within 3 min of mixing the reactants, only enedione 2
ll rights reserved.

h).
and a small amount of diketone 4 were detected. After 6 h, all of the
enedione had disappeared, leading principally to diketone 4. No ke-
tone reduction product was detectable. These results imply that
either direct alkene reduction occurred, or isomerization of the keto
alcohol to the diketone was very rapid. Deng et al have reported
that some electron deficient enones undergo preferential alkene
reduction using the Noyori Ru(arene)(TsDPEN) catalyst system,
and that activated alkenes lacking ketones also undergo alkene
reduction.15

The Noyori and related ATH catalysts can effect both reduction
of ketones and oxidation of alcohols. In 1997 Noyori et al reported
the oxidative desymmetrization of meso-diol 616 using Ru(mesity-
lene)(S,S-TsSPEN) to give hydroxy enone 7 in a 70% yield and 96%
ee, although the scale of the reaction was not disclosed (Scheme
3).17 This could also lead to our desired epoxy alcohol 1, although
it would require an additional undesirable reduction/oxidation se-
quence. While Noyori employed the Ru catalyst with the mesity-
lene ligand, we first examined the more widely used p-cymene
variant. On a preparative scale,18,19 the treatment of enediol 6 with
Ru(p-cymene)(S,S-TsDPEN) in acetone at rt afforded none of the
hydroxy enone 7, but rather diketones 2 and 4 in roughly equal
yield, along with recovered diol (20%) and a small amount of
hydroquinone 5. Use of the mesitylene catalyst did indeed provide
hydroxy ketone 7, albeit in our hands in only 42% isolated yield,
along with an equivalent amount of enedione 2 as well as 9% of
dihydro diketone 4 and recovered diol (10%).18,19 The er of hydroxy
enone 7 ranged from 87:13 to 96:4 over the course of the reactions.
This is consistent with a modest intrinsic enantioselectivity in the
oxidation enhanced by kinetic resolution of the minor enantiomer
(vide infra).3c,17
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Scheme 4. Solvent dependent reversal in sense of absolute asymmetric induction.

Scheme 1. Asymmetric transfer hydrogenation substrates.

Scheme 2. Chemoselective alkene reduction of enedione 2.
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In order to better understand the relative rates of formation of
the various products, we again followed the course of the reactions
directly by no-D 1H NMR analysis using acetone as the solvent (see
Supplementary data). 20 Using the p-cymene catalyst, within 3 min
of mixing of the reactants, a small amount of hydroxy enone 7 was
detectable, but by 60 min an equal amount of enedione 2 was also
present. At 20 h the reaction had proceeded to roughly 75% conver-
sion, with enedione 2 predominating and hydroquinone 5 also
present in minor amounts. Use of the mesitylene catalyst was more
selective for the formation of enone 7, although after 24 h it had
proceeded only to ca. 20% conversion. Interestingly, dihydro dike-
tone 4 was not detected either in the NMR experiment, although
it was always present in the preparative scale reactions in signifi-
cant amounts.21

In order to circumvent these problems, we examined the reduc-
tion of meso-epoxy diketone 3 to epoxy keto alcohol 8 using both
iPrOH and NEt3/HCO2H as reductants (Scheme 4).3c,22 We found
that the sense of enantioinduction reversed when changing the
hydrogen source/solvent from neat iPrOH to 1:1 NEt3/HCO2H
(0.2 M) in acetonitrile: 19:81 versus 82:18 8:ent-8, respectively
(see Supplementary data).23 To our knowledge, a reversal in
enantioselectivity as a function of solvent has not been previously
noted, although solvents are known to affect the enantioselectivity
of the reduction.4c

The mechanism of the Noyori ATH is generally agreed to involve
a concerted outer sphere transfer of hydrogen from the catalyst to
a ketone that is hydrogen-bonded to the catalyst via an N–H bond
(Scheme 5).24–27 Details regarding the origin of enantioselectivity
are a subject of dispute, but include steric, solvent, and electro-
static effects as well as dispersion forces. In the case of aryl
ketones, a favorable CH–p interaction has been identified compu-
tationally as contributing to the asymmetric induction.28–30 The
Scheme 3. Results of attempted asymmetric oxidation
sense of enantioinduction relies principally on the absolute config-
uration of the chelating ligand,31 although Andersson reported that
acetophenone and its perfluorophenyl analog gave opposite senses
of asymmetric induction using the same S,S-TsDPEN ligand (95% ee
S vs 12% ee R, respectively).26b

Recently, computational analysis of ATH including explicit sol-
vent (methanol32 or water33) has shown that hydrogen bonding
of the ketone oxygen to solvent lowers the transition state energies
relative to the unsolvated transition states (Scheme 6).34 In the
case of methanol, hydrogen bonding between solvent, ligand, and
ketone (transition state i), and between solvent and ketone in the
case of water (transition state ii), served to lower the transition
state energies.

We speculate that the differing dielectric constants (iPrOH =
19.9; CH3CN = 37.5)35 and hydrogen bonding abilities of the sol-
vents contributed to the reversal in enantioselectivity. The concen-
tration of hydrogen bond donors also differs significantly in the
two sets of conditions: neat iPrOH is 13.3 M, while the concentra-
tion of HNEt3CO2H was 0.2 M in acetonitrile. The epoxide oxygen
may also serve as a hydrogen bond acceptor,36 which might further
differentiate the two transition states. The latter proposal is sup-
ported by the observation that transfer hydrogenation of meso-
diketone 4 reproducibly provided the known keto alcohol 937 with
the same sense of asymmetric induction under both sets of condi-
tions: 63:33 (iPrOH) and 81:19 (HCO2H/NEt3) (Scheme 7).38,39
of meso-diol 6 using Ru(Ar)(S,S)-TsDPEN catalysts.



Scheme 5. Schematic mechanism of transfer hydrogenation.

Scheme 7. Solvent effect on asymmetric reduction of diketone 4.

Scheme 6. Transfer hydrogenation transition states with explicit methanol or
water molecule.
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In summary, we have identified unexpected substrate, ligand,
and solvent effects in the ATH of polycyclic meso-diketones and a
meso-diol. Given the importance of the Noyori and related ATH
methods in industrial and academic syntheses, these results sug-
gest that a careful exploration of reaction parameters may be
necessary in some substrate classes to optimize chemo- and
enantioselectivities.
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