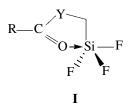
ISSN 1070-3632, Russian Journal of General Chemistry, 2006, Vol. 76, No. 10, pp. 1554–1561. © Pleiades Publishing, Inc., 2006. Original Russian Text © M.G. Voronkov, V.A. Pestunovich, N.F. Chernov, A.I. Albanov, E.F. Belogolova, L.V. Klyba, A.E. Pestunovich, 2006, published in Zhurnal Obshchei Khimii, 2006, Vol. 76, No. 10, pp. 1621–1628.

Intramolecular $O \rightarrow Si$ Donor-Acceptor Interaction in $R_2P(=O)CH_2CH_2SiF_3$ Molecules: Synthesis of Dialkyl [2-(Trifluorosilyl)ethyl]phosphonate and Bis[(chloromethyl)dimethylsilyl] Styrylphosphonate

M. G. Voronkov, V. A. Pestunovich[†], N. F. Chernov, A. I. Albanov, E. F. Belogolova, L. V. Klyba, and A. E. Pestunovich


Favorskii Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, ul. Favorskogo 1, Irkutsk, 664033 Russia e-mail: voronkov@irioch.irk.ru

Received May 25, 2006

Abstract — The reaction of diethyl [2-(triethoxysilyl)ethyl]phosphonate with boron trifluoride etherate was used to synthesize diethyl [2-(trifluorosilyl)ethyl]phosphonate. The reaction of bis(trimethylsilyl) styrylphosphonate with chloro(chloromethyl)dimethylsilane gave bis[(chloromethyl)dimethylsilyl] styrylphosphonate. Multinuclear ¹H, ¹³C, ¹⁹F, ²⁹Si, and ³¹P NMR spectroscopy established the absence of a P=O \rightarrow Si coordination bond in these compounds and the four-coordinate state of the silicon atom. Evidence for this finding was obtained by B3LYP/6-31G(d) quantum-chemical calculations. However, the same calculations for R₂P(=O) · CH₂CH₂SiF₃ (R = Me, Me₂N) showed the presence in such molecules of an O \rightarrow Si coordination bond both in the gas phase and in CHCl₃ solution. The distance between the O and Si atoms in this series molecules decreases with R in the order: MeO > Me > Me₂N. The axial Si–F bond length increases in the same order and parallels the order of the Hammet σ_m^0 constants of these substituents, relating to their interaction with π -electron systems.

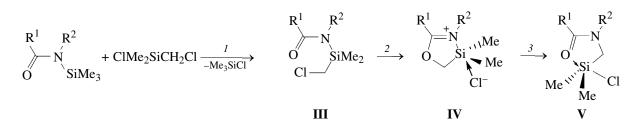
DOI: 10.1134/S1070363206100082

Earlier we discovered a new class of intramolecular complex compounds of five-coordinate silicon atom of general formula **I**,

R = alkyl, aryl, alkoxyl; Y = O, S, NR', CH₂; R' = H, Alk.

More recently we devoted to such compounds a great number of publications which were mostly cited in [2, 3]. This class of compounds can also be considered to include ($N \rightarrow Si$) (3-aminopropyl)trifluorosilane and its methyl derivatives [4, 5].

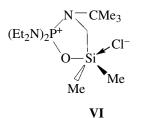
Furthermore, we established that N-trimethylsilyl

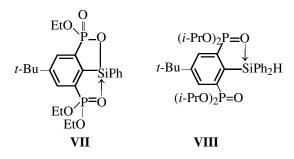


derivatives of acylamides, lactams, cyclic amides, carbamide and acylhydrazines with chloro(chloromethyl)dimethylsilane afford $(O \rightarrow Si)$ chelate *N*chlorodimethylsilylmethyl five-coordinate silicon derivatives with coordination heterocycle V [6–10]. Such compounds are formed in three consecutive steps: (1) persilylation reaction, (2) kinetically controlled intramolecular O-silylmetylation of intermediate **III**, and (3) thermodynamically controlled unusual Chapmen rearrangement of the resulting zwitter-ionic "isoamide" derivative **IV** into chelate reaction product **V** [6–10].

[†] Deceased.

Table 1. Parameters of the ¹H NMR spectra of compounds XVI and Xb


Comp. no.	SiCH ₂	EtOSi		Et	CH ₂ P	
		Me	CH ₂ O	Ме	CH ₂ O	CII ₂ r
XVI Xb	0.85 m 1.32 m	1.21 t	3.81 q	1.31 t 1.35 t	4.09 d.q 4.32 m	1.75 m 2.17 m


$$R^1$$
, $R^2 = Alk$, $-(CH_2)_n$, $n = 3-5$; $R = NAlk_2$, $R^2 = H$, Alk.

Proceeding with these studies we set ourselves the aim to synthesize chelate derivatives with a five-coordinate silicon in which the latter is bonded with phosphoryl group by a donor-acceptor bond.

Our first attempt to prepare such a complex containing an endocyclic P=O \rightarrow Si bond gave un unexpected result [11]: The reaction of *N*,*N*,*N'*,*N'*-tetraethyl-*N''-tert*-butylphosphoric triamide with BuLi and then with (chloromethyl)dimethylsilane yielded a cyclic five-coordinate silicon derivative containing an endocyclic POSi group with the silicon atom coordinated with Cl⁻ anion.

First five-coordinate silicon compounds with a $P=O \rightarrow Si$ coordination bond (VII, VIII) were prepared quite recently [12, 13].

We studied the possibility of existence of an intramolecular $P=O \rightarrow Si$ coordination bond.

$$(\text{RO})_2\text{P(CH}_2)_n\text{SiF}_3 \quad (\text{EtO})_2\text{PCH}_2\text{SiMeF}_2 \\ \bigcup_{\substack{\parallel\\ O \\ O \\ O \\ O \\ \textbf{XI}}}$$

R = Me, Et, n = 1 (IX); n = 2 (X), n = 2, R = Me (Xa), R = Et (Xb), R = Me, Et (Xc).

Such compounds were synthesized by the following scheme.

$$(RO)_{2}P(CH_{2})_{n}Si(OR')_{3} + F_{3}B \cdot OEt_{2}$$

$$\overset{\parallel}{O}$$

$$\longrightarrow (RO)_{2}P(CH_{2})_{n}SiF_{3} + B(OR')_{3} + Et_{2}O. \quad (1)$$

$$\overset{\parallel}{O} \mathbf{x}$$

Compounds **IX** and **XI** (obtained by the same procedure) proved to be unstable and could not be isolated individual, because they decomposed on distillation to form MeP(O)(OEt)₂ (**XII**). Nevertheless, they were identified in the reaction mixture by ¹H, ¹²C, ²⁹Si, and ³¹P NMR and mass spectrometry. As the decomposition products of difluoride **XI** we also identified by the latter method (F_2MeSi)₂O and EtP(O)(OEt)₂.

Phosphonate **Xb** was isolated individual as a colorless liquid, bp 163–165°C (12 mm Hg). Its composition and structure are confirmed completely by elemental analysis and multinuclear NMR (Tables 1 and 2).

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 76 No. 10 2006

Comp. no.	CH ₂ Si	EtOP		EtOSi		CUD	S	5	δ _p
		Me	CH ₂ O	Me	CH ₂ O	CH ₂ P	δ_{Si}	$\delta_{\rm F}$	^О Р
XVI Xb	2.24 d -0.98 d.q	16.14 d 15.65 d	61.17 d 66.91	17.93	58.22		-47.33 d -61.2 q.d		33.89 33.21

Table 2. Parameters of the ¹³C, ¹⁹F, ²⁹Si and ³¹P NMR spectra of compounds XVI^a and Xb^b

^a Coupling constants for **XVI**: ${}^{2}J_{C-C-P}$ 8.1, ${}^{3}J_{C-C-O-P}$ 5.9, ${}^{2}J_{C-O-P}$ 6.63, ${}^{1}J_{C-P}$ 141.9, ${}^{3}J_{Si-C-C-P}$ 36.45 Hz. ^b Couplinf constants for **Xb**: ${}^{2}J_{C-Si-F}$ 22.0, ${}^{3}J_{C-C-O-P}$ 5.5, ${}^{1}J_{C-P}$ 146, ${}^{1}J_{Si-F}$ 277.5, ${}^{3}J_{Si-C-C-P}$ 37.4 Hz.

The ²⁹Si, ³¹P, and ¹⁹F chemical shifts and ²⁹Si–¹⁹F and ²⁹Si–³¹P coupling constants, as well as the invariability of the ²⁹Si chemical shift in the temperature range from –20 to +50°C (CDCl₃) or from 25 to 70°C (CD₃C₆D₅) attest the absence of intramolecular P=O \rightarrow Si interaction in **Xb**, or this interaction is very weak.

Compounds **Xc** and **IX** have the same structure, as follows from their NMR chemical shifts: F_3SiCH_2 . CH₂P(O)(OMe)OEt (**Xc**): δ_{Si} -60 ppm, δ_F -134 ppm, J_{Si-F} 270.7 Hz; $F_3SiCH_2P(O)(OEt)_2$ (**IX**): δ_{Si} -72.2 ppm, δ_F -146 ppm. These values are almost coincident with the chemical shifts of the model four-coordinate compound ClCH₂SiF₃ [14]: δ_{Si} -71.3 ppm, δ_F -144 ppm, J_{Si-F} 267 Hz, thus providing further evidence for the absence of the P=O \rightarrow Si coordination bond.

We failed to confirm the absence of the P=O \rightarrow Si coordination bond in **IX**–**XI** by IR spectroscopy, since absorption bans of the SiF₃ groups in the range 700–1000 cm⁻¹ overlapped with the following absorption bands: v(P–C) 765, v_s(P–O) 796, v_{as}(P–O) 1160, and v(P–O–C) 900–1100 cm⁻¹ [15].

Precursors of compounds **IX** and **XI** were prepared by the Arbuzov reaction [16].

$$R(EtO)_{2}SiCH_{2}X + P(OEt)_{3}$$

$$\longrightarrow R(OEt)_{2}SiCH_{2}P(OEt)_{2} + EtX,$$

$$\parallel O$$
(2)

Precursors of compounds **Xa**–**Xc** were prepared by the addition of diethyl hydrogen phosphite to the corresponding vinyltrialkoxysilane in the presence of AIBN.

$$(\text{RO})_{3}\text{SiCH}=\text{CH}_{2} + (\text{EtO})_{2}\text{PH}$$

$$\overset{\parallel}{\text{O}}$$

$$\longrightarrow (\text{RO})_{3}\text{SiCH}_{2}\text{CH}_{2}\text{P}(\text{OEt})_{2}, \qquad (3)$$

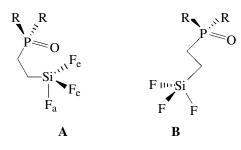
$$\overset{\parallel}{\text{O}}$$

$$R = Me (XVb), R = Et (XVI).$$

It is noteworthy that compound **XVb** is not the major reaction product. Simultaneously, $(MeO)_3Si \cdot CH_2CH_2P(O)(OMe)OEt$ (**XVc**) and $(MeO)_3SiCH_2 \cdot CH_2P(O)(OMe)_2$ (**XVa**) are formed by alkoxyl exchange between phosphorus and silicon. According to NMR and mass spectral data, the **XVa**: **XVb**: **XVc** molar ratio is 1:1:2.

We also studied the possibility of formation of five-coordinate silicon compounds containing a $P=O \rightarrow Si$ bond in the reaction of $ClCH_2SiMe_2Cl$ with earlier unknown bis(trimethylsilyl) styrylphosphonate (**XVII**). The latter compound was prepared by the reaction of styrylphosphonic acid with hexamethyldisilazane in the presence of a catalytic amount of chlorotrimethylsilane.

PhCH=CHP(OH)₂ + (Me₃Si)₂NH


$$\bigcup_{O}$$

 \longrightarrow PhCH=CHP(OSiMe₃)₂ + NH₃. (4)
 \bigcup_{O}
XVII

Further persilylation of phosphonate **XVII** with chloro(chloromethyl)dimethylsilane gave bis[(chloromethyl)dimethylsilyl] styrylphosphonate (**XVIII**). This compound contains no P=O \rightarrow Si bond, and its silicon atom is four-coordinate, as evidenced by ²⁹Si NMR data (δ_{Si} 14.20 ppm).

PhCH=CHP(OSiMe₃)₂ + 2ClCH₂SiMe₂Cl

$$\downarrow 0$$

 \longrightarrow PhCH=CHP(OSiMe₂CH₂Cl)₂. (5)
 $\downarrow 0$
XVIII

Compound **XVIII** undergoes no changes on prolonged heating in boiling toluene or in nitrobenzene at 80°C, as well as under microwave irradiation. To reveal the possibility of formation of a $P=O \rightarrow Si$ coordination bond in compounds **Xa** and **Xb** and related compounds **XIX** and **XX** (structures **A** or **B**), we applied quantum-chemical calculations by the B3LYP/6-31G(d) method.

 $R = OEt (Xb), OMe (Xa), NMe_2 (XIX), Me (XX).$

The positive sign and the value of the experimentally measured ²⁹Ši coordination shift in \mathbf{Xb} , $\Delta \delta_{Si} =$ $\delta_{Si}(Xb) - \delta_{Si}(ClCH_2SiF_3) = 10.1$ ppm, provide indirect evidence for the absence of $Si \leftarrow O$ coordination bonding in this molecule in CDCl₃ solution. This conclusion is confirmed by quantum-chemical calculations which show that in structure A of Xa, where the oxygen lone pair is directed to the silicon atom, the distance between O and Si is 2.917 Å in the gas phase and 3.176 Å in CHCl₃ solution. These distances are only slightly shorter then the sum of the van der Waals radii of the oxygen and silicon atoms (3.62 Å) and much longer than the O-Si bond length in alkoxysilanes (1.63 Å) [17]. The axial Si-F bond length in form A of Xa is close to the equatorial bond lengths and to the Si-F distance in noncoodinated form B (Table 3). The calculated ^{29}Si chemical shifts δ_{Si} in **Xa** and coordination shifts $\Delta \delta_{Si}$ for structures **A** and **B** differ insignificantly and are close to experimental values for **Xb**. The small upfield shift (~4 ppm) of the silicon signal in structure A with respect to that in **B** can point to a very weak electrostatic interaction between the O and Si atoms in the coordinated form of Xa. Structures Xa and Xb are practically equal in energy. Inclusion of entropy factors results in further stabilization of the noncoodinated form (by 1.6-1.9 kcal mol^{-1}).

Replacement of two methoxy groups on phosphorus in **Xa** by the more electron-donor Me₂N groups significantly shortens the distance between Si and O (to 2.177 Å). Therewith, the axial Si–F bond is elongated by 0.28 Å and the deviation of the silicon atom from the plane of three equatorial fluorine atoms (δ_{Si}) is diminished by 0.238 Å. The coordination shift $\Delta \delta_{Si}$ in chelate form **A** of **XIX** in the gas phase is –17.3 ppm. In whole, the structural and spectral parameters of molecule **XIX** in coordinated form **A** show the existence of a P=O \rightarrow Si coordination bond. These data point to equilibrium between the coordinated and noncoordinated forms of **XIX** in the gas phase. At the

Table 3. Selected structural and spectral characteristics and relative energetics of coordinated (A) and noncoordinated (B) forms of Xa molecule in gas phase and in CHCl₃ solution

Form	A	\	В		
гонн	vacuum	CHCl ₃	vacuum	CHCl ₃	
Si-O, Å Si-F _a , Å Si-F _e (1), Å Si-F _e (2), Å C-Si-F _e (2), deg C-Si-F _e (2), deg O-Si-F _a , deg Δ_{Si} , Å ^a	2.917 1.605 1.603 1.591 117.0 179.2 0.453	3.176 1.604 1.596 1.599 114.0 172.8 0.470	5.108 1.596 1.597 1.595 111.1 111.5 - 0.584	5.117 1.599 1.598 111.6 111.9 - 0.595	
O–P–C–C, deg P–C–C–Si, deg ΔE , kcal mol ^{-1 b} ΔH , kcal mol ^{-1 b} ΔG , kcal mol ^{-1 b} δ_{Si} , ppm ^c $\Delta \delta_{Si}$, ppm ^d	20.3 -63.0 0.1 -0.2 -1.9 -63.0 9.6	57.8 -57.7 0.6 0.5 -1.6 -60.4 12.2	-56.2 179.3 0.0 0.0 -59.0 13.6	-57.8 179.0 0.0 0.0 -59.1 13.5	

^a Deviation of the silicon atom from the plane defined by three equatorial fluorine atoms. ^b The energy in form **B** is taken equal to be zero. ^c The δ_{Si} of **Xa** was measured against internal TMS. ^d Coordination shift defined as a difference of the δ_{Si} vales of **Xa** and the model compound ClCH₂SiF₃.

same time, in $CHCl_3$ solution the coordinated form of **XIX** is preferred over noncoordinated by more than 2 kcal mol⁻¹. The P=O \rightarrow Si bond in solution is found to be 0.192 Å shorter than in the gas phase, the axial Si–F bond is 0.024 Å longer, and silicon shielding enhances by 9 ppm.

The calculated $O \rightarrow Si$ and axial Si–F bond lengths in dimethyl[1-(trifluorosilyl)ethyl]phosphine oxide in the gas phase are 2.268 and 1.626 Å, respectively. In CHCl₃ solution, the Si–O bond is shortened to 1.994 Å and Si–F is elongated to 1.657 A. In isolated **XX** molecules, the chelate (**A**) and noncoordinated (**B**) forms are in equilibrium. In CHCl₃ solution, this equilibrium is shifted to form **A**. Inclusion of entropy factors in chloroform makes form **A** preferred over form **B** by 1.1 kcal mol⁻¹.

The calculated distances between the oxygen and silicon atoms in **Xa**, **XIX**, and **XX** are 2.917, 2.177, and 2.268 Å, respectively. In the $R_2P(O)CH_2CH_2SiF_3$ series, this distance decreases with R in the order (parenthesized are the σ_m^0 values of the substituents): MeO (0.06) > Me (-0.07) > Me_2N (-0.12). The axial Si–F bond length in **Xa**, **XX**,

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 76 No. 10 2006

and **XIX** increases in the same order (1.605, 1.626, and 1.885 Å, respectively) and parallels the order of the Hammet σ_m^0 constants of these substituents, relating to their interaction with π -electron systems (in our case, the \gg P=O group).

EXPERIMENTAL

The mass spectra were registered on a Shimadzu QP5050A GC–MS instrument (SPB-5MS column, length 60 m, internal diameter 250 nm, film thickness 0.25 nm; injector temperature 220° C, carrier gas helium, flow rate 0.7 ml min⁻¹, programmed temperature at a rate of 10 deg min⁻¹; electron energy 70 eV; ion source temperature 200° C; detected mass range 34-650 D; total ion monitoring).

The IR spectra were registered on a Specord IR-75 spectrophotometer for thin films and KBr pellets.

The NMR spectra were registered on a Bruker DPX-400 instrument for 5-10% CDCl₃ solutions against internal HMDS.

All calculations were performed with full geometry optimization on a B3LYP/6-31G(d) level of theory using Gaussian-03 [18]. Correspondence of the resulting structures to potential energy minima was confirmed by positive values of the corresponding Hessians. Medium effects were included in the framework of the Tomasi polarized continuum model [19].

The total energies of the structures (E) are corrected for zero-point vibration energy (ZPE). The enthalpies (H) and Gibbs energies (G) were calculated for standard conditions (298.15 K, 1 atm). The ZPE, H, and G values were not scaled.

The magnetic properties were calculated by the B3LYP/6-311++G(2d,p) procedure for the B3LYP/6-31G(d) geometry using the GIAO approach [20].

The starting compounds for the synthesis of diethyl (trifluorosilyl)methylphosphonate (**IX**) and diethyl [difluoro(methyl)silyl]methylphosphonate (**XI**) were diethyl (triethoxysilyl)methylphosphonate (**XIII**) and diethyl [diethoxy)methylsilyl]methylphosphonate (**XIV**), respectively.

Diethyl (triethoxysilyl)methylphosphonate (**XIII**). A mixture of 10.7 g (0.06 mol) triethyl phosphite and 27.0 g (0.13 mol) of (chloromethyl)triethoxysilane was heated for 1 h at 157–196°C. Vacuum distillation gave 6 g (32%) of compound **XIII**, bp 120–122°C (4 mm Hg), n_D^{25} 1.4200. Published data [16]: bp 96.5–97°C (2 mm Hg), n_D^{20} 1.4234. ¹H NMR spectrum, δ , ppm: 1.31 d (PCH₂Si, ²J_{H-P} 24 Hz), 1.23 t (9H, CH₃CH₂OSi, ³J 6.8 Hz), 3.87 q (6H, CH₃CH₂).

OSi), 1.31 t (6H, CH₃CH₂OP), 4.08 · (4H, CH₃CH₂· OP). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 10.1 d (PCH₂Si, $J_{\rm C-P}$ 131.5 Hz), 17.88 (CH₃CH₂OSi), 58.64 (CH₃CH₂· OSi), 16.7 (CH₃CH₂OP), 61.22 d (CH₃CH₂OP, $J_{\rm PC}$ 6.13 Hz). ²⁹Si NMR spectrum: $\delta_{\rm Si}$ –54.9 ppm. ³¹P NMR spectrum: $\delta_{\rm P}$ 30.45 ppm.

Diethyl [(diethoxy)methylsilyl]methylphosphonate (XIV) was prepared similarly, yield 36%, bp 150–151°C (18 mm Hg), n_D^{20} 1.4277. Published data [16]: bp 99–99.5°C (1 mm Hg), n_D^{20} 1.4277. ¹H NMR spectrum, δ , ppm: 1.30 d (2H, PCH₂Si, ²J_{PC}H 22.38 Hz), 0.30 s (3H, MeSi), 1.21 t (6H, CH₃CH₂. OSi, ³J 7.02 Hz), 3.79 q (4H, CH₃CH₂OSi), 1.31 t (6H, CH₃CH₂OP, ³J 7.17 Hz), 4.08 d.q (4H, CH₃C. H_2 OP, ³J_{P-H} 4.6 Hz). ¹³C NMR spectrum, δ_C , ppm: 12.54 d (PCH₂Si, ¹J_{C-P} 129.97 Hz), -3.80 (MeSi), 17.96 (CH₃CH₂OP, ³J_{C-P} 6.52 Hz), 61.03 (CH₃CH₂OP, ²J_{C-P} 6.13 Hz). ²⁹Si NMR spectrum: δ_{Si} -13.6 ppm.

Diethyl [2-(triethoxysilyl)ethyl]phosphonate (**XVI**). Triethoxy(vinyl)silane, 5.4 g (0.03 mol) and 0.12 g of AIBN were added with stirring to 8.3 g (0.06 mol) of diethyl hydrogen phosphite at 120°C. The reaction mixture was heated at the same temperature for an additional 1 h. Yield 3.73 g (38%), bp 186–188°C (6 mm Hg), n_D^{25} 1.4216. Published data [21]: bp 141°C (2 mm Hg), n_D^{25} 1.4216. The NMR spectral data are listed in Tables 1 and 2. Mass spectrum, *m/e* (I_{rel} , %): 328 ($[M]^+$, 7), 300 (53), 283 (33), 282 (23), 255 (56), 254 (10), 238 (15), 227 (100), 226 (12), 210 (18), 199 (66), 182 (11), 171 (26), 163 (25), 153 (25), 143 (13), 125 (50), 119 (25), 109 (10), 91 (13), 81 (10), 79 (42), 63 (22), 62 (13), 45 (28).

Reaction of trimethoxy(vinyl)silane with diethyl hydrogen phosphite (XVa-XVc). A mixture of 20.7 g (0.14 mol) of $(MeO)_3SiCH=CH_2$ and 0.26 g (0.0016 mol) of AIBN was added dropwise to 20.1 g (0.14 mol) of (EtO)₂P(O)H at 120°C. The reaction mixture was heated at the same temperature for an additional 4 h. Vacuum distillation gave 4.0 g of a fraction boiling at 174–176°C (6 mm Hg). According to NMR and mass spectral data, it contains $(MeO)_3$. SiCH₂CH₂P(O)(OMe)OEt (**XVc**), (MeO)₃SiCH₂CH₂. $P(O)(OMe)_2$ (**XVa**), and (MeO)_3SiCH_2CH_2P(O)(OEt)_2 (**XVb**) in a 2:1:1 molar ratio. Correspondingly, its elemental composition obeys to empirical formula C₈H₂₁O₆PSi. Found, %: H 8.29; Si 10.05; P 10.82. C₈H₂₁O₆PSi. Calculated, %: H 7.77; Si 10.31; P 11.38. ¹H NMR spectrum, δ, ppm: 3.73 (MeOSi), 0.86 (CH₂Si), 1.74 (PCH₂), 1.30 (CH₃CH₂OP), 4.08 (CH₃CH₂OP), 3.79 (POMe). ¹³C NMR spectrum, δ_{C} , ppm: 50.6 (MeOSi), 1.39 d (CH₂Si), 18 t (PCH₂, ${}^{2}J_{C-P}$ 7.67 Hz), 16 d (CH₃CH₂OP, ${}^{3}J_{C-P}$ 5.75 Hz), 61.04

(CH₃CH₂OP, J_{P-C} 6.13 Hz). ²⁹Si NMR spectrum: δ_{Si} -45 ppm. ³¹P NMR spectrum: δ_P : 33.5 ppm.

Compound XVa, mass spectrum, *m/e* (I_{rel} , %): 258 ([*M*]⁺, 59), 241 (15), 231 (32), 227 (40), 214 (18), 213 (55), 210 (25), 203 (18), 201 (13), 200 (15), 199 (100), 198 (24), 185 (61), 184 (13), 182 (24), 172 (13), 171 (31), 170 (29), 154 (26), 153 (69), 140 (23), 139 (36), 135 (21), 123 (17), 121 (34), 109 (19), 107 (27), 95 (11), 93 (13), 91 (60), 90 (15), 83 (15), 82 (16), 81 (13), 79 (13), 77 (42), 65 (14), 63 (12), 61 (24), 60 (12), 59 (27), 57 (11), 55 (13), 47 (24), 45 (27), 44 (16), 43 (19), 41 (18).

Compound XVb, mass spectrum, *m/e* (I_{rel} , %): 272 ([*M*]⁺, 53), 255 (22), 241 (17), 227 (52), 213 (39), 199 (100), 185 (45), 171 (27), 153 (34), 139 (35), 135 (31), 125 (11), 109 (19), 107 (24), 93 (16), 91 (28), 82 (12), 81 (14), 77 (52), 59 (20), 47 (11), 45 (21), 44 (12), 43 (16), 41 (14).

Compound XVc, mass spectrum, *m/e* (I_{rel} , %): 286 ([*M*]⁺, 61), 270 (12), 269 (34), 268 (20), 259 (12), 258 (12), 255 (11), 242 (19), 241 (70), 231 (12), 227 (24), 224 (15), 214 (11), 213 (100), 210 (25), 203 (11), 199 (30), 196 (13), 185 (97), 184 (13), 173 (12), 171 (11), 168 (11), 167 (33), 157 (29), 153 (13), 149 (28), 139 (53), 125 (25), 121 (17), 111 (15), 109 (28), 105 (25), 93 (33), 91 (12), 83 (13), 82 (12), 81 (17), 79 (18), 77 (31), 76 (12), 65 (14), 63 (41), 59 (18), 57 (11), 55 (17), 47 (14), 45 (38), 44 (24), 43 (19), 41 (16).

Diethyl (trifluorosilyl)methylphosphonate (IX). A mixture of 2.3 g (0.007 mol) of compound XIII and 1.5 g (0.01 mol) of BF₃ OEt₂ was heated under reflux for 3.5 h. Volatile components were removed by distillation to leave 1 g of a viscous liquid which, according to elemental analysis and multinuclear NMR spectroscopy, is compound IX. Found, %: C 25.35; P 12.89. C₅H₁₂F₃O₃PSi. Calculated, %: C 25.42; P 10.60. ¹H NMR spectrum, δ , ppm: 1.39 (CH₃CH₂OP), 4.32 (CH₃CH₂OP), 2.13 (SiCH₂P). ¹³C NMR spectrum, δ_{C} , ppm: 13 (SiCH₂P), 15.74 (CH₃CH₂OP), 67.36 (CH₃CH₂OP). ²⁹Si NMR spectrum: δ_{P} 36.4 ppm. ¹⁹F NMR spectrum: δ_{F} –146 ppm [J_{Si-F} 254.4 Hz].

Vacuum distillation of this residue yielded as little as 0.2 g of diethyl methylphosphonate (**XII**), bp 86°C (3 mm Hg). Found, %: C 39.30; H 8.53; P 19.87. C₅H₁₃O₃P. Calculated, %: C 39.46, H 8.60; P 20.37. ¹H NMR spectrum, δ , ppm: 1.33 (CH₃), 1.31 (CH₃. CH₂O, J_{P-H} 17.46 Hz). ¹³C NMR spectrum, δ_C , ppm: 16.16 (CH₃), 59.75 (OCH₂), 11.73, 10.30 (PCH₂, ³J_{C-P} 6.13 Hz). ³¹P NMR spectrum: δ_P 30.85 ppm. IR spectrum, v, cm⁻¹: 765 (P-C), 796 v₈(P-O), 1160 v_{as}(P-O), P=O (1230), 900–1100 (P-O-C). **Diethyl [2-(trifluorosilyl)ethyl]phosphonate** (**Xb).** Compound **XVI**, 3 g (0.009 mol), and 2.9 g (0.02 mol) of $F_3B \cdot OEt_2$ was heated with distilling off low-boiling compounds. The residue was distilled in a vacuum to isolate 1 g (44.4%) of compound **Xb**, bp 163–165°C (12 mm Hg). Found, %: H 5.24; P 12.82; Si 11.59. $C_6H_{14}O_3PF_3Si$. Calculated, %: H 5.64; P 12.39; Si 11.22. The NMR spectral data are listed in Tables 1 and 2.

Reaction of compounds XVa–XVc with boron trifluoride etherate. A 1:1:2 mixture of compounds **XVa–XVc**, 1.34 g (0.005 mol), and 0.71 g (0.005 mol) of boron trifluoride etherate was heated under reflux for 1.5 h. Low-boiling compounds were removed by distillation to isolate 0.8 g of a mixture of compounds **Xa–Xc** with the empirical formula $C_5H_{12}F_3O_3PSi$. Found, %: H 5.61; F 24.10; P 12.98. $C_5H_{12}F_3O_3PSi$. Calculated, %: H 5.12; F 24.10; P 13.12.

The NMR spectrum of the product obviously relates to compound **Xc**. ¹H NMR spectrum, δ , ppm: 1.13 (CH₂Si), 1.80 (PCH₂), 1.28 (CH₃CH₂OP), 4.08 (CH₃CH₂OP), 3.76 (P–OMe). ¹³C NMR spectrum, δ_C , ppm: 0 86 (CH₂Si), 18 (PCH₂), 16 (CH₃CH₂OP), 61.5 (CH₃CH₂OP). ²⁹Si NMR spectrum: δ_{Si} –60 ppm. ¹⁹F NMR spectrum: δ_F –134 ppm. ³¹P NMR specrum: δ_P 31.5 ppm (J_{Si-F} 270.7 Hz).

Diethyl [difluoro(methyl)silyl]methylphosphonate (XI). A solution of 0.7 g (0.002 mol) of compound **XIV** and 0.5 g (0.003 mol) of BF₃ · OEt₂ in 1.5 ml of benzene was heated under reflux for 1.5 h. Volatile components were removed by distillation to isolate 0.2 g of compound **XI**. Found, %: P 10.45. C₆H₁₅F₂O₃PSi. Calculated, %: P 10.19. ¹H NMR spectrum, δ , ppm: 1.29 (CH₃CH₂OP), 4.23 (CH₃ · CH₂OP). ¹³C NMR spectrum, δ_{C} , ppm: 12.20 (PCH₂Si). ³¹P NMR spectrum, δ_{P} , ppm: 36.32. We failed to accumulate the ²⁹Si signal.

When injected to the chromatograph, compound **XI** decomposed. The chromatogram contained peaks of three compounds with the relative contents 91, 6, and 2%. By mass spectral library search the main component ($\tau = 9.7$ min) was identified as diethyl methylphosphonate (SI:97) and the second ($\tau = 11.6$ min), as diethyl ethylphosphonate (SI:93). The third component ($\tau = 13.5$ min) obviously is 1,3-dimethyltetrafluorodisiloxane; its main characteristic peak in the mass spectrum is at m/e 159 $[M - F]^+$.

Bis(trimethylsilyl) styrylphosphonate (XVII). A mixture of 1.3 g (0.007 mol) of styrylphosphonic acid, 2.3 g (0.014 mol) of hexamethyldisilazane, and a catalytic amount of chlorotrimethylsilane was heated

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 76 No. 10 2006

for 3 h under reflux. Unreacted starting materials were removed by distillation to isolate 1.7 g (74%) of a liquid compound **XVII**, n_D^{20} 1.4950. Found, %: C 50.89; H 7.94; P 8.94. $C_{14}H_{25}O_3PSi_2$. Calculated, %: C 51.18; H 7.67; P 9.44. ¹H NMR spectrum, δ , ppm: 0.29 s (SiMe₃), 6.29 t (CHP, $J \sim {}^2J_{P-H}$ 17.67 Hz), 7.35 d.d (PhCH=, ${}^3J_{P-H}$ 6.0 Hz), 7.45 m (H_o), 7.35 m (H_{m,p}). ¹³C NMR spectrum, δ_C , ppm: 0.73 (MeSi), 117.95 d (PCH=, ${}^1J_{C-P}$ 199.14 Hz), 127.17, 128.52 (C_{o,m}), 129.50 (C_p), 134.97 d (C_i, ${}^3J_{C-P}$ 24 Hz), 145.34 d (PhCH=, ${}^2J_{C-P}$ 6.47 Hz). ${}^{29}Si$ NMR spectrum: δ_{Si} 20.84 ppm (${}^2J_{sip}$ 6.32 Hz). ${}^{31}P$ NMR spec= trum: δ_P 0.96 ppm. IR spectrum, v, cm⁻¹: 850 (SiMe₃), 990 (SiOP), 1220, 1250 (P=O).

Bis[(chloromethyl)dimethylsilyl)] styrylphosphonate (XVIII). A mixture of 2.5 g (0.008 mol) of phosphonate XVIII, 2.9 g (0.02 mol) of chloro(chloromethyl)dimethylsilane and 5 ml of toluene was heated under reflux for 20 h. Toluene was distilled off to isolate a liquid compound XVIII, n_D^{20} 1.4640. Found, %: Cl 17.87; Si 13.64; P 7.53. C₁₄H₂₃Cl₂O₃. PSi₂. Calculated, %: Cl 17.84; Si 14.14; P 7.80. ¹H NMR spectrum, δ, ppm: 0.42 s (MeSi), 2.92 s (CH₂Cl), 6.31 t (PCH=, ${}^{2}J_{P-H} ~ {}^{3}J_{P-H}$ 18 Hz), 7.45– 7.35 m (PhCH=). ¹³C NMR spectrum, δ_C, ppm: -2.55 (MeSi), 28.84 (CH₂), 116.30 (PCH=, ${}^{1}J_{C-P}$ 200 Hz), 128.49, 127.24 (C_{0,m}), 129.75 (C_p), 130.50 (C_i, ${}^{3}J_{C-P}$ 24.14 Hz), 146.51 (PhCH=, ${}^{2}J_{C-P}$ 6.0 Hz). ²⁹Si NMR spectrum: δ_{Si} 14.20 ppm (${}^{2}J_{sip}$ 5.83 Hz). ³¹P NMR spectrum: δ_P 2.36 ppm.

ACKNOWLEDGMENTS

The authors are grateful to V.F. Sidorkin for help.

The work was financially supported by the Russian Foundation for Basic Research (project no. 04-03-32673) and Council for Grants of the President of the Russian Federation (grant no. NSh-4575-2006.3).

REFERENCES

- 1. Voronkov, M.G., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, no. 12, p. 2664.
- Voronkov, M.G., Zel'bst, E.A., Kashaev, A.A., Katkevich, Yu.V., Fundamenskii, V.S., Bolgova, Yu.I., Trofimova, O.M., Albanov, A.I., Chernov, N.F., and Pestunovich, V.A., *Dokl. Akad. Nauk*, 2003, vol. 393, no. 4, p. 493.
- Voronkov, M.G., Trofimova, O.M., Chernov, N.F., Bolgova, Yu.I., Albanov, A.I., Chipanina, N.N., and Zelbst, E.A., *Heteroatom. Chem.*, 2006, vol. 17, no. 6.
- 4. Voronkov, M.G., Pestunovich, A.E., Albanov, A.I.,

Chipanina, N.N., Sherstyannikova, L.V., and Pestunovich, V.A., *Dokl. Akad. Nauk*, 2002, vol. 386, no. 2, p. 203.

- Chernov, N.F., Bolgova, Yu.I., Trofimova, O.M., Albanov, A.I., Chipanina, N.N., Pestunovich, V.A., and Voronkov, M.G., *Dokl. Akad. Nauk*, 2000, vol. 375, no. 2, p. 210.
- Voronkov, M.G., Pestunovich, V.A., and Baukov, Yu.I., *Metalloorg. Khim.*, 1991, vol. 4, p. 1210.
- Kost, D. and Kalikhman, I., *The Chemistry of Organic Silicon Compounds*, Rappoport, Z. and Apeloig, Y., Eds., New York: Wiley, 1998, vol. 2, p. 1339.
- Voronkov, M.G., Pestunovich, A.E., Albanov, A.I., Vlasova, N.N., and Pestunovich, V.A., *Izv. Akad. Nauk SSSR., Ser. Khim.*, 1989, p. 2841.
- Voronkov, M.G., Pestunovich, A.E., Albanov, A.I., Klyba, L.V., and Pestunovich, V.A., *Zh. Org. Khim.*, 2003, vol. 39, no. 10, p. 1573.
- Pogozhikh, S.A., Ovchinnikov, Yu.E., Kramarova, E.P., Negrebetskii, Vad.V., Shipov, A.G., Albanov, A.I., Voronkov, M.G., Pestunovich, V.A., and Baukov, Yu.I., *Zh. Obshch. Khim.*, 2004, vol. 74, no. 10, p. 1617.
- Albanov, A.I., Kudyakov, N.M., Pestunovich, V.A., Voronkov, M.G., Macharashvili, A.A., and Shklover, V.E., *Metalloorg. Khim.*, 1991, vol. 4, no. 6, p. 1228.
- 12. Peveling, K., Henn, M., Low, C., Mehring, M., Schurmann, M., Costisella, B., and Jurrkschat, K., *Organometallics*, 2004, vol. 23, p. 1501.
- Dannapel, K., Schurmann, M., Costisella, B., and Jurkschat, K., Organometallics, 2005, vol. 24, p. 1031.
- 14. Albanov, A.I., Gubanova, L.I., Larin, M.F., Pestunovich, V.A., and Voronkov, M.G., *J. Organomet. Chem.*, 1983, vol. 244, p. 5.
- Purdela, D. and Vilceanu, R., *Chimia Compulsor* Organici ai Fosforului si ai Acizilor lui, Bucharest: Acad. Rep. Soc. Romania, 1965. Translated under the title *Khimiya organicheskikh soedinenii fosfora*, Kabachnik, M.I., Ed., Moscow: Khimiya, 1972, p. 535.
- Bugerenko, E.F., Chernyshev, E.A., and Petrov, A.D., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, no. 6, p. 1228.
- Lukevits, E.Ya., Pudova, O.A., and Sturkovich, R.Ya., Molekulyarnaya struktura kremniiorganicheskikh soedinenii (Molecular Structure of Organosilicon Compounds), Riga: Zinatne, 1988, p. 192.
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Vreven, Jr.T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V.,

Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., *Gaussian 2003*, Pittsburgh, PA: Gaussian, 2003.

- Tomasi, J. and Persico, M., *Chem., Rev.*, 1994, vol. 94, no. 7, p. 2027.
- Tomasi, J., Cammi, R., Mennucci, B., Cappelli, C., and Corni, S., *Phys. Chem. Chem. Phys.*, 2002, vol. 4, p. 5697.
- 21. Barnes, G.H. and David, M.P., J. Org. Chem., 1960, vol. 25, p. 1191.