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Summary - A series of deltorphin C (H-Tyr-o-Ala-Phe-Asp-Val-Val-Gly-NH,) analogues were synthesized to assess the 
consequences of changing anionic and hydrophobic residues on 6 receptor selectivity. Analogues with altered C-terminal groups, 
inverted sequences, or esterified with tert-butyl, benzyl, or ethyl groups revealed that high 6 selectivity required an unmodified amino 
acid sequence. Shifts of Asp and hydrophobic residues decreased 6 selectivity due to loss in 6 affinity (5 to = 700-fold); p affinity was 
unchanged or increased 14-fold. Suppression of charge or deamidation diminished 6 selectivity through reduced 6 and modified p 
affinities. Data provide evidence that a negative charge does not a priori guarantee high selectivity and specific alignment of anionic 
and hydrophobic residues might facilitate optimum spatial configuration which complements the 8 receptor binding site. 

deltorphin C / peptide synthesis / opioid receptors 

Introduction 

The deltorphins represent a family of amphibian 
peptides [l-3] which contain a D-amino acid at 
position 2 and exhibit high selectivity for 6 opioid 
receptors when tested in pharmacological assays on 
isolated tissues or brain synaptosome preparations [2, 
4-101. In the context of the hypothesis that peptide 

Abbreviations: Boc, Na-tert-butoxycarbonyl; BSA, bovine 
serum albumin; DAGO [D-Ala2,N-Me-Phe4,G1y-ol]enkephalin; 
DCC, N,Wdicyclohexylcarbodiimide; DEL, deltorphin; DEL 
A, deltorphin A (H-Tyr-D-Met-Phe-His-Leu-Met-Asp-NH,), 
which is also referred to as ‘dermenkephlin’ [7] and ‘der- 
morphin gene associated peptide’ [4]); DEL B, deltorphin B, 
H-Tyr-n-Ala-Phe-Glu-Val-Val-Glv-NH,; DIEA, N,N’-diiso- 
propylethylamine; DMF, dimethylformamide; DPDPE, cyclic 
lD-Pen2~51enkeohalin: EtOAc. ethvl acetate: Fmoc. Na-9-fluor- a I  J 

enylmethyloxycarbonyl; HEPES, N-2-hydroxyethylpiperazine- 
N-2-ethanesulfonic acid; HOAc, acetic acid; HOBt, l- 
hydroxybenzotriazole; HPLC, high performance liquid 
chromatography; MA, mixed anhvdrides; NMM. N-methvl- 
morpholine; -OBzl, benzyl ester; dtBu, tert-butyl ester; OEt, 
ethyl ester; ONp, p-nitrophenol ester; OSu, N-succinimidoyl 
ester; PITC, phenylisothiocyanate; TFA, trifluroacetic acid; Z, 
benzyloxycarbonyl. 

hormones contain two structural domains [ 11, 121, 
the deltorphins also appear to be composed of structu- 
ral elements that effect binding parameters to p and 6 
opioid receptor binding sites: a) a N-terminal tri- 
peptide contains the generalized sequence, H-Tyr-D- 
Xaa-Phe (where D-Xaa2 is D-Met2 in DEL A or D-Ala2 
in deltorphins B and C [2], and dermorphins [13]), 
which specifies l.t binding [8-10, 14-161; and b) a C- 
terminal tetrapeptide region which apparently deter- 
mines binding to the 6 receptor site [8, 10, 15, 17, 181. 
Conformational analyses by rH-NMR spectroscopy 
[14, 19-231 indicate that a p-turn occurs in the back- 
bone structure in the N-terminal tetrapeptide which 
appears to form H-bonds with residues in the C-termi- 
nal tripeptide of deltorphin [22, 231 to maintain a 
preferred solution conformation. 

Structure-activity studies of deltorphin analogues 
primarily modified in the C-terminal region focused 
on the involvement of amino acids whose side-chains 
impart a negative charge [8, 15, 17, 221 or confer 
hydrophobic properties [24, 251 to influence 6 recep- 
tor affinity and selectivity. The goal of this study 
therefore was to assess and delineate the role of speci- 
fic residues that facilitate binding to 6 and p opioid 
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receptors in order to test the hypothesis of Schwyzer 
[26] whether a negatively charged ligand specifically 
interacts at the 6 receptor binding site. A variety of 
amino acid inversion and derivatized analogues of 
DEL C were prepared for this study. DEL C was 
chosen since its C-terminal sequence is less polar than 
that of DEL A [2] and yet exhibits twice the receptor 
selectivity of DEL A [2, 171. Our results lead to the 
proposal that 6 receptor affinity and selectivity appar- 
ently require a ligand with a specific, defined amino 
acid sequence that would appear to influence spatial 
conformation: repositioning of residues between 4 
through 7, in addition to derivatization of amino acids 
4,7, or both, appear to be critical for peptide-receptor 
interaction to the receptor site. 

1 2 

TY~ o-Ala 

3 

Phe 

Boc 

Results and discussion 

Chemistry 

DEL C 1 and analogues 2-12 were synthesized by 
solution methods involving tri- and tetrapeptides (3 + 
4 coupling techniques) using established procedures 
[22, 27-291 as detailed in figure 1. The tripeptide 
intermediates were prepared step-wise starting from 
the C-terminal residue using OSu or ONp. C-Terminal 
tetrapeptide intermediates were prepared according to 
the active OSu method followed by a deblocking step 
involving catalytic hydrogenation. Z-Val-OSu, Z-Gly- 
OSu or Z-Asp(OtBu)-OSu were allowed to react with 
aspartic acid OtBu amide, glycine amide, glycine 
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Fig 1. Scheme for the solution synthesis of deltorphin C (peptidet) and analogues 2-12 involving techniques for coupling tri- 
and tetrapeptides (3 + 4 coupling). P, Protecting group of NH,-Tyrl function, where Z was used in the synthesis of peptides 10 
and 11, and Boc for peptides 1-9, and 12. A, Activating group of Tyrl-COOH function, where ONp was used when P = Z and 
05.1 when P = Boc. PI, Protecting group of NH,-X (where X = Asp4, As&, Va14 or Glyh), in which Z was for the synthesis of 
peptides l-11, and Boc for compound 12. Pn, Protecting 

K ‘. 
roup of Asp4(COOH) function, where OtBu was used for the synthe- 

sis of peptides 1, S-8, 10, 11 and OBzl for peptide 12. A, Acttvatmg group of X a-COOH function as follows: MA was used 
for Asp4, OSu for Va14 and Gly4, and ONp for Asn4; X, for Va15 for peptides 1,3,4, 6-12, Gly5 and A~p(0tBu)~ for peptides 2 
and 5; X,, for Va16 peptides 1, 2, 4, 5, 7-12, Gly6 for pe 
COOH function, where X,,, = Gly7, Va17, and Asp(OtBu) 7 

tide 6, and Asp(OtBu)6 for peptide 3. Pm Protecting group of XI,,- 
; NH, was the protecting group for the synthesis of peptides l-6, 10 

and 12; OtBu for peptides 7 and 11; and OEt for peptides 8 and 9. 



OtBu, glycine OEt, or deprotected peptides H-Xii-X,,,- 
Piit. The last synthesis step was the condensation of 
the aspartic acid residue by the mixed anhydride 
method; valine or glycine as 0% activation to give 
protected tetrapeptides. When X was asparagine, the 
corresponding tetrapeptide intermediate was synthe- 
sized using the active ONp of Z-Asn. The final 3 + 4 
condensation was obtained in good yield using DCC 
in the presence of HOBt [27]. 

Receptor evaluation 

The alterations in the hydrophobic and anionic pro- 
perties of DEL C analogues adopted the following 
strategy: i) sequential repositioning of Asp from 
residue 4 through 7 (l-4); ii) inversion of the Val 
residues with Gly modified the hydrophobic side- 
chain spatial localization in the C-terminal sequence 
(5 and 6); iii) changes in C-terminal derivatization (7 
and 8); iv) esterification of Asp4 (10 and 12); and 
v) combined modifications of Asp4 and C-terminus 
(9 and 11). Esterification restricts conformational 
flexibility [30, 3 1, 341 and has the potential to modify 
H-bonding properties [ 14, 20, 22, 231. 

All modifications within the C-terminal tetrapeptide 
portion of the peptides were detrimental for 6 affini- 
ties compared to that of DEL C (1): the analogues 
exhibited substantial losses in 6 selectivities through 
diminished 6 affinities and variable p affinities 
(table I). Movement of Asp from position 4 through 
position 7 (2-4) elicited decreased 6 affinities from 5- 
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to 25-fold and progressively improved lr affinities 
(nearly 14-fold), concomitant with an over 140-fold 
loss in 6 selectivity. Since the N-terminal sequence of 
peptide 4 is identical to that in the l-r selective agonist 
dermorphin (H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH,) 
[ 13, 32, 331, the C-terminal tripeptide sequence would 
appear to confer 6 selectivity on the deltorphins as 
suggested earlier [8, 17, 181. The intercalation of Glys 
5 between Asp4 and the hydrophobic dipeptide, 
Vale-Va17 would alter the spatial relationship between 
their respective side-chains and decreased 6 affinity 
and selectivity = 700-fold without significantly affect- 
ing p affinity. Importance of a hydrophobic residue at 
the fifth position was similarly observed in binding 
studies with analogues of DEL A [25] and DEL B 
[24] and is supported by iH-NMR studies [14, 20, 22, 
231: existence of an amino acid with a hydrophobic 
side-chain at residue 5 appears to be related to the 
maintenance of a hydrophobic surface above the 
molecular plane of the N-terminal p-turn [14, 221. In 
this regard, the nearly lo-fold difference between 6 
affinities of peptides 6 and 5 may be due to the 
presence of the aliphatic side-chains of Va15. The 
importance of a hydrophobic residue at position 6 is 
indicated by the inversion of the C-terminal dipeptide 
sequence (6) which brought about a loo-fold loss in 6 
selectivity. Interestingly, the corresponding modifica- 
tion in DEL A only resulted in a 7-fold decline (un- 
published results), which suggests that the side-chain 
of residue 6 plays a role in receptor binding in DEL C 
WI. 

Table I. Affinities and selectivities of peptide analogues for opioid receptor sites. 

No Peptide K,6 KiP K,~IK,G 

1 Tyr--Ala-Phe-Asp-Val-Val-Gly-NH, 0.32 f 0.06 461.5 + 38.7 1442 
2 Val- Asp- 1.58 + 0.42 154.9 + 27.4 98 
3 Val---- Asp 8.05 f 1.84 83.9 f 13.8 10 
4 GUY Asp - 3.36 f 0.16 33.3 f. 3.1 10 
5 Glyp Val __ 216.5 k 16.8 512.7 + 3.0 2 
6 Gly-Val ~ 25.4 f 5.7 365.6 f 13.8 14 
7 OH 6.78 f 0.84 1704 f 269 251 
8 OEt 2.67 iz 0.87 1116&69 418 
9 Asn OEt 9.00 + 2.4 146.7 + 25.3 16 

10 Asp(OtBu) 1.85 + 0.41 320.1 + 63.1 173 
11 Asp(OtBu) - Gly(OtBu) 85.9 -t 20.8 1156 k 174 13 
12 Asp(OBz1) 1.16 f 0.13 23.4 + 3.0 20 

astraight lines indicate sequence homology with deltorphin C. DEL C [ 171 is also known as [D-Ala*]deltorphin I [2]. Affinities 
of peptides for rat brain membrane 6 and p receptors are given by K, values (nM, mean k standard error; II = 3-9) determined 
according to the formulation of Cheng and Prusoff [36]: Ki = I&/(1 + L/K,,), where L is the concentration of radioactive ligand 
and Kd represents the dissociation constant for either [sH]DAGO or [sH]DPDPE. K,,/K,, is defined as 6 selectivity [33]. 
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Although several of the analogues contain one 
(2-6, 8) or two (7) free carboxyl groups, they exhibit 
a broad spectrum of 6 affinities and selectivities, in 
contrast to the prevailing hypothesis that 6 affinity 
requires an opioid peptide with an anionic functional 
group [26]. The decreased 6 affinity of peptide 7 may 
correlate with lH-NMR data which indicated that a C- 
terminal carboxylate ion can increase solution 
conformational stability by formation of an additional 
H-bond [22, 231; esterification of the C-terminal 
carboxyl group in peptide 9 may therefore interfere 
with formation of such an H-bonded structure. 
Enhancement of p affinity accompanies the suppres- 
sion of the negative charge in deltorphins [6, 9, 15, 
171 as seen in peptides 9,10 and 12 (table I). 

In contrast to the esterification of enkephalin by 
tert-butyl [30, 311, esterification of carboxyl groups at 
the fourth and/or seventh residues in DEL C (10 and 
11) diminished both 6 binding and selectivity: in 
particular, the 6 affinity of the di-tert-butyl ester 
derivative (11) was 270-fold less than that of DEL C. 
However, esterification of the P-carboxyl of Asp4 with 
a tert-butyl or benzyl group only decreased 6 affinities 
4- to 6-fold; on the other hand, the OBzl analogue 
exhibited = 20-fold greater p affinity. These modifica- 
tions in receptor affinities led to a suppression of 8- 
and 72-fold in the 6 selectivities of peptides 10 and 
12, respectively. An increase of p affinity in the OBzl 
analogue (12) may indicate that an aromatic group in 
this peptide might interact with the proposed p recep- 
tor site which recognizes enkephalin [34] but which 
apparently differs from that of dermorphin [33]. Del- 
torphin conformation and its interaction with receptor 
sites is apparently influenced by OtBu in a manner 
that differs from that which occurs in the enkephalins 
[34] : the tert-butylesters sterically constrain enke- 
phalin conformers to yield peptides of relatively high 
6 selectivity [30, 311 in which the OtBu groups rotate 
to minimize interference with binding [34]. 

Conclusion 

Our observations are consistent with the suggestion 
that the combination of molecular configuration and 
spatial orientation of the amino acid side-chains in 
DEL C [ 18, 26, 341 play a definitive role in determin- 
ing selectivity: modifications in sequence of DEL C 
differentially altered 6 and p receptor binding pro- 
perties and, without exception, decreased 6 select- 
ivities. Our results further indicate that the existence 
of a negatively charged group in the opioid peptide 
per se does not necessarily confer high 6 selectivity 
and that the spatial orientation of the hydrophobic 
side-chains appear to be important for the receptor 
selectivity of DEL C, as observed with DEL A [25], 
in addition to providing a possible reflection of the 
physical nature of the receptor binding site. 

Experimental protocols 

Chemical synthesis 

General procedures for the chemical synthesis of peptide 
analogues have been described earlier [i7-291. Amino-acid 
comDosition was determined as meviouslv Dublished 1171. The 
propkrties of the tri- and tetrapeitide integediates are listed in 
table II. 

Specific solution coupling procedures 

Method A 
NMM (1.1 equiv) was added to a stirred solution of 0.5-0.8 M 
DMF containing Boc- or Z-protected amino acid (1 mmol); the 
mixture was cooled to - 10°C and treated with isobutyl chloro- 
formate (1.1 equiv) and allowed to react for 2-3 min. A 
precooled solution of amino component (1.1 mmol) in DMF 
iO.4-0.6 M) was added and the-reaction stirred for 1 h at 
- 10°C and 2-3 h at 0 to - 10°C. then diluted with EtOAc 
(100 ml). The suspension was washkd consecutively with satu- 
rated NaCl (brine), 0.5 N KHSO,, brine, 5% NaHCO,, and 
brine. The organic phase was dried over MgSO,, filtered, and 
evaporated to dryness. The residue was crystallized from 
appropriate solvents or purified by column chromatography [32]. 

Method B 
The following were sequentially added to a solution of the 
carboxy component (2 mmol) in DMF (10 ml) at 0°C: amino 
acid component (2 mmol), NMM (2 mmol if the amino compo- 
nent was-in the protonated form), HOBt (2 equiv), and D& 
(2.1 mmolj. The reaction was stirred for 2 h at 0°C and 24 h at 
ioom temberature; N&-dicyclohexylurea was filtered and the 
solution diluted with EtOAc (100 ml), then worked up as in 
Method A. 

Method C 
To a cooled (0°C) 1 N NaOH (1 ml) solution of the carboxy 
component (2 mmol), the Boc-protected amino acid-OSu 
(4 mmol) in dioxane (6 ml) was added. The mixture was stirred 
for 2 h at 0°C and 10 h at room temperature, evaporated, and 
then diluted with 1 N citric acid (50 ml). The product was 
extracted into EtOAc (3 x 30 ml), back-washed with saturated 
aqueous NaCl, and then worked up as in Method A. 

Method D 
To a solution of amino component (0.5 mmol) in DMF (5 ml) 
containing DIEA (1 mmol), the Z-protected amino acid-OSu or 
ONp (0.6 mmol) and HOBt (0.5 mmol) were added. The re- 
action was stirred for 30 min at 0°C and overnight at room 
temperature. After evaporation in vacua, the residue was tritu- 
rated with 10 ml solvent mixture EtOAc-diethyl ether (40:60, 
v/v) and washed several times with diethyl ether to yield a 
white solid. 

Deprotection procedures 

Method 1 
Boc and OtBu protecting groups were removed by treating the 
peptide with TFA-CH,Cl, (1: 1) for 1 h at 0°C. The solvent was 
removed in vacua and the residue triturated with diethyl ether 
or petroleum ether; the resulting solid was collected and dried. 
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Table II. Physicochemical properties of protected peptides. 

No 

1’ 
2’ 
3’ 
4’ 
5’ 
6’ 
7’ 
8’ 
9’ 

10’ 
11’ 
12’ 
13’ 
14’ 
15’ 
16’ 
17’ 
18’ 
19’ 
20’ 

Z-Tyr-rr-Ala-Phe-OH 68 135-137 + 15.8 0.90 
Boc-Tyr-n-Ala-Phe-OH 75 111-113 + 28.1 0.86 
Z-Val-Val-Gly-NH, 82 184-187 - 9.0 0.22 
Z-Val-Val-Gly-OtBu 78 179-182 - 54.7 0.60 
Z-Gly-Val-Val-NH, 80 239-241 - 12.7 0.44 
Z-Val-Gly-Val-NH, 7.5 25&252 - 147.1 0.33 
Z-Val-Val-Gly-OEt 78 190-194 - 31.8 0.77 
Z-Asp(OtBu)-Val-Gly-NH, 81 175-177 - 18.3 0.63 
Z-Val-Asp(OtBu)-Gly-NH, 77 191-193 -61.4 0.57 
Z-Val-Val-Asp(OtBu)-NH, 65 210-211 - 13.7 0.51 
Z-Asp(OtBu)-Val-Val-Gly-NH, 7.5 215-217 - 14.3 0.32 
Boc-Asp(OBzl)-Val-Val-Gly-NH, 78 210-213 - 1.6 0.54 
Z-Asp(OtBu)-Val-Val-Gly-OtBu 70 180-184 - 11.1 0.63 
Z-Asp(OtBu)-Gly-Val-Val-NH, 74 223-225 - 2.3 0.48 
Z-Asp(OtBu)-Val-Gly-Val-NH, 76 226-228 - 12.1 0.49 
Z-Asp(OtBu)-Val-Val-Gly-OEt 78 188-190 - 13.4 0.59 
Z-Asn-Val-Val-Gly-OEt 64 245-247 + 15.3 0.18 
Z-Val-Asp(OtBu)-Val-Gly-NH, 78 183-185 - 22.4 0.48 
Z-Val-Val-Asp(OtBu)-Gly-NH, 79 215-217 - 42.6 0.54 
Z-Gly-Val-Val-Asp(OtBu)-NH, 67 187-191 - 31.4 0.49 

aOptical rotations were conducted in DMF, except those for intermediates l’, 3’, 4’, 7’ and 8’ which were carried out in metha- 
nol. bsolvent system for intermediates 1’ and 2’ was n-butanol/acetic acid/water (3: 1: 1, v/v/v) and that for the remainder of the 
compounds was methylene chloride/methyl benzene/methanol (17: 1:2, v/v/v). 

Structure Yield 
mi 

Melting 
point (“C) 

TLCb lW,2@3 

Method 2 
Hydrogenations were carried out in HOAc-isopropanol (3:2, 
v/v) at atmospheric pressure and room temperature in the 
presence of 5% palladized charcoal (using a catalyst to peptide 
ratio of 1:9, w/w). The reaction mixture was filtered through a 
Celite bed and evaporated to dryness. The residue was treated 
as in Method D. 

Isolation procedures 

All protected peptides (0.7-l g material) were initially purified 
on a silica gel column (2 x 70 cm) using a linear gradient from 
10% to 50% MeOH in CHCl,. Deprotected peptides [27] were 
further purified by a combination of Sephadex gel filtration, 
partition chromatography, and preparative HPLC [ 171. 
Preparative HPLC of 100 mg quantities of peptide was per- 
formed on a Delta Pak reverse-phase C,, 300 A 15 urn spheri- 
cal particle column (10 x 300 mm) using a linear gradient from 
20% to 50% acetonitrile containing 0.1% TFA over 40 min at a 
flow rate of 30 ml/min. 

Peptide purification 
Preparation of brain membranes 

Analytical HPLC was performed on a Spherisorb 5-ODS2 C,, 
column (4.5 x 250 mm); mobile phases A (10% acetonitrile 

Whole rat brain (minus cerebellum) preparations of synapto- 

containing 0.1% TFA) and B (60% acetonitrile containine 
somes (PJ were obtained by homogenization in a 0.32 M 

0.1% TFA) were employed in the following elution scheme: 
sucrose solution as described using differential centrifugation 

for purification of peptides a flow rates of 1 ml/min: i) linear 
and an incubation step to remove endogenous opioid peptides 
[4]. The membranes (25 mg/ml) were stored in 50 mM Hepes 

gradient from 20% to 80% B in 30 min; ii) linear gradient from (pH 7.5), containing 50 ug/ml soybean trypsin inhibitor and 
50% to 100% B in 15 min; and iii) linear gradient from 50% to 20% glycerol at - 70°C to - 80°C. 

100% B in 15 mitt, then isocratically for 10 min. Eluants were 
monitored at 220 and 254 nm. Data were compiled using an 
Epson (QX-10) computer system. Thin layer chromatography 
was carried out on Merck precoated 0.25 mm analytical silica 
gel plates 60 F,,, using two solvent systems: n-butanollacetic 
acid/water (3: 1: 1, v/v/v) and ethyl acetate/acetic acid/pyridine/ 
water (6:0.6:2.2: 1.2, v/v/v/v). Purities were estimated at 
> 99%. 

Determination of physical and chemical characteristics 

Melting points were determined on a Kofler apparatus and are 
uncorrected. Optical rotations were conducted in DMF or 
methanol as detailed in tables II and III using a lo-cm path- 
length cell in a Perkin-Elmer 241 polarimeter. The chemical 
characteristics of each peptide were routinely monitored by 
‘H-NMR spectrometry using 200 MHz [20] or 500 MHz [22] 
Bruker instruments, which were also used to confirm the 
absence of racemization [35]. The physicochemical properties 
of the peptides are listed in table III. 

Receptor binding assay methods 
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Table III. Analytical properties of deltorphin C and related analogues. 

No Peptide 
TLC V$) 
zb IIb 

HPLC [alo20” 
WI’ 

Melting Amino acid analysis 
point (“C) Y A F D V G 

1 Deltorphin C 0.53 0.44 5.43 
2 [Va14,Asp5] 0.71 0.67 4.65 
3 [Va14,Asp6] 0.79 0.73 4.42 
4 [Gly4&p71 0.68 0.75 4.53 
5 [Gly5,Va17] 0.74 0.44 5.56 
6 [Gly6,Va17] 0.69 0.46 5.49 
7 [G~Y(OW~I 0.54 0.59 5.67 
8 [GMOW’1 0.84 0.39 7.99 
9 [Asn4,Gly(OEt)7] 0.87 0.32 7.34 

10 [Asp(OtBu)4] 0.78 0.75 8.87 
11 [Asp(OtBtQ4, Gly(OtBu)7] 0.88 0.65 8.96 
12 [Asp(OB~l)~l 0.77 0.57 5.41 

-16 
+ 5.3 
-7.2 

- 16.2 
- 8.5 

+ 10 
-9 

-25 
-43 

-I- 2.9 
- 4.4 
- 1.4 

168-170 0.98 1.02 0.98 0.94 1.81 0.99 
172-174 0.89 1.01 0.98 0.95 1.89 1 .O 
160-162 0.91 0.99 1.02 0.96 1.87 1 .O 
158-160 0.95 0.97 0.96 0.93 1.9 1.0 
176-178 0.94 0.95 1.04 0.94 1.69 0.97 
160-162 0.99 0.89 1.02 1.01 1.89 1.0 
168-170 0.92 1.01 1.01 0.97 1.88 1.01 
208-210 0.97 0.98 1.03 0.95 1.84 0.99 
242-244 0.92 0.89 1.03 0.90 1.81 0.98 
21&212 0.95 0.97 0.97 0.95 1.79 1.0 
195-197 1.03 0.95 1.04 0.91 1.85 0.95 
179-181 0.94 1.02 1.03 0.81 1.55 1.0 

aOptical rotations were collected in DMF, except peptide 1 which was taken in methanol. bSolvent systems: I, n-butanol/acetic 
acid/water (3: 1: 1); II, ethyl acetate/acetic acid/pyridine/pyridine (6:0.6:2.2: 1.2). ‘Capacity factor (K) determined with HPLC 
elution scheme (i) as described in Experimental protocols. 

Radioreceptor assay References 
The binding assays for p and 6 receptors were conducted as 
detailed previously [4, 15-17, 25, 32, 331 and in the presence 
of 100 pM PMSF under conditions considered optimal for 
binding. Peptide stock solutions (100 pg peptide/ml) were 
prepared in 15% ethanol containing 10 mM acetic acid and 
stored at 4’C; working solutions were diluted in acidic alcohol 
containing 1 mg BSA/ml. Concentrations of [‘HIDAGO and 
[sH]DPDPE in the p and 6 binding assays were 1.28 * 0.03 and 
0.63 + 0.05 nM, respectively. The 1.6 mg synaptosome protein 
used in duplicate assays was rapidly entrapped on a presoaked 
GF/C filter (50 mM Hepes, pH 7.5, containing 1 mg/ml BSA) 
and washed within 5 s using three 2-ml aliquots of the ice-cold 
buffered BSA solution. The filters were dried (= 75°C) and the 
radioactivity determined using 2 ml CytoScint. Peptides were 
tested at 4-7 concentrations using at least 3-5 synaptosomal 
membrane preparations in 3-9 separate binding experiments to 
provide statistical reliability. Specific binding represents the 
ratio of bound to free labelled ligand; non-specifically bound 
radioactivity was determined in the presence of excess (2 pM) 
unlabelled DAGO or DPDPE for p or 6 binding sites, respect- 
ively. Graphically determined IC,, values, which represented 
nM peptide required to displace 50% of the radiolabelled 
ligand, were used to calculate the competitive inhibition 
constants (K,) for p and 6 receptors according to Cheng and 
Prusoff [36]. 
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