Unique sequence in deltorphin C confers structural requirement for δ opioid receptor selectivity

LH Lazarus¹, S Salvadori², P Grieco³, WE Wilson¹, R Tomatis²

 ¹Peptide Neurochemistry, LMIN, National Institute of Environmental Health Sciences, PO Box 12233, MD 1401, Research Triangle Park, NC 27709 USA;
²Department of Pharmaceutical Science, University of Ferrara, I-44100 Ferrara;
³Department of Pharmaceutical Science, University of Naples, Naples, Italy

(Received 22 November 1991; accepted 21 April 1992)

Summary — A series of deltorphin C (H-Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH₂) analogues were synthesized to assess the consequences of changing anionic and hydrophobic residues on δ receptor selectivity. Analogues with altered C-terminal groups, inverted sequences, or esterified with *tert*-butyl, benzyl, or ethyl groups revealed that high δ selectivity required an unmodified amino acid sequence. Shifts of Asp and hydrophobic residues decreased δ selectivity due to loss in δ affinity (5- to \approx 700-fold); μ affinity was unchanged or increased 14-fold. Suppression of charge or deamidation diminished δ selectivity through reduced δ and modified μ affinities. Data provide evidence that a negative charge does not *a priori* guarantee high selectivity and specific alignment of anionic and hydrophobic residues might facilitate optimum spatial configuration which complements the δ receptor binding site.

deltorphin C / peptide synthesis / opioid receptors

Introduction

The deltorphins represent a family of amphibian peptides [1–3] which contain a D-amino acid at position 2 and exhibit high selectivity for δ opioid receptors when tested in pharmacological assays on isolated tissues or brain synaptosome preparations [2, 4–10]. In the context of the hypothesis that peptide

hormones contain two structural domains [11, 12], the deltorphins also appear to be composed of structural elements that effect binding parameters to μ and δ opioid receptor binding sites: a) a N-terminal tripeptide contains the generalized sequence, H-Tyr-D-Xaa-Phe (where D-Xaa² is D-Met² in DEL A or D-Ala² in deltorphins B and C [2], and dermorphins [13]), which specifies μ binding [8–10, 14–16]; and b) a Cterminal tetrapeptide region which apparently determines binding to the δ receptor site [8, 10, 15, 17, 18]. Conformational analyses by ¹H-NMR spectroscopy [14, 19–23] indicate that a β -turn occurs in the backbone structure in the N-terminal tetrapeptide which appears to form H-bonds with residues in the C-terminal tripeptide of deltorphin [22, 23] to maintain a preferred solution conformation.

Structure–activity studies of deltorphin analogues primarily modified in the C-terminal region focused on the involvement of amino acids whose side-chains impart a negative charge [8, 15, 17, 22] or confer hydrophobic properties [24, 25] to influence δ receptor affinity and selectivity. The goal of this study therefore was to assess and delineate the role of specific residues that facilitate binding to δ and μ opioid

Abbreviations: Boc, Nα-*tert*-butoxycarbonyl; BSA, bovine serum albumin; DAGO [D-Ala²,*N*-Me-Phe⁴,Gly-ol]enkephalin; DCC, *N*,*N*-dicyclohexylcarbodiimide; DEL, deltorphin; DEL A, deltorphin A (H-Tyr-D-Met-Phe-His-Leu-Met-Asp-NH₂), which is also referred to as 'dermenkephlin' [7] and 'dermorphin gene associated peptide' [4]); DEL B, deltorphin B, H-Tyr-D-Ala-Phe-Glu-Val-Val-Gly-NH₂; DIEA, *N*,*N*-diisopropylethylamine; DMF, dimethylformamide; DPDPE, cyclic [D-Pen^{2,5}]enkephalin; EtOAc, ethyl acetate; Fmoc, *Nα*-9-fluorenylmethyloxycarbonyl; HEPES, *N*-2-hydroxyethylpiperazine-*N*²-ethanesulfonic acid; HOAc, acetic acid; HOBt, 1hydroxybenzotriazole; HPLC, high performance liquid chromatography; MA, mixed anhydrides; NMM, *N*-methylmorpholine; OBzl, benzyl ester; OtBu, *tert*-butyl ester; OEt, ethyl ester; OIN, *p*-nitrophenol ester; OSu, *N*-succinimidoyl ester; PITC, phenylisothiocyanate; TFA, trifluroacetic acid; Z, benzyloxycarbonyl.

receptors in order to test the hypothesis of Schwyzer [26] whether a negatively charged ligand specifically interacts at the δ receptor binding site. A variety of amino acid inversion and derivatized analogues of DEL C were prepared for this study. DEL C was chosen since its C-terminal sequence is less polar than that of DEL A [2] and yet exhibits twice the receptor selectivity of DEL A [2, 17]. Our results lead to the proposal that δ receptor affinity and selectivity apparently require a ligand with a specific, defined amino acid sequence that would appear to influence spatial conformation: repositioning of residues between 4 through 7, in addition to derivatization of amino acids 4, 7, or both, appear to be critical for peptide–receptor interaction to the receptor site.

Results and discussion

Chemistry

DEL C 1 and analogues 2–12 were synthesized by solution methods involving tri- and tetrapeptides (3 + 4 coupling techniques) using established procedures [22, 27–29] as detailed in figure 1. The tripeptide intermediates were prepared step-wise starting from the C-terminal residue using OSu or ONp. C-Terminal tetrapeptide intermediates were prepared according to the active OSu method followed by a deblocking step involving catalytic hydrogenation. Z-Val-OSu, Z-Gly-OSu or Z-Asp(OtBu)-OSu were allowed to react with aspartic acid OtBu amide, glycine amide, glycine

Fig 1. Scheme for the solution synthesis of deltorphin C (peptide¹) and analogues 2–12 involving techniques for coupling triand tetrapeptides (3 + 4 coupling). P, Protecting group of NH₂-Tyr¹ function, where Z was used in the synthesis of peptides 10 and 11, and Boc for peptides 1–9, and 12. A, Activating group of Tyr¹-COOH function, where ONp was used when P = Z and OSu when P = Boc. P¹, Protecting group of NH₂-X (where X = Asp⁴, Asn⁴, Val⁴ or Gly⁴), in which Z was for the synthesis of peptides 1–11, and Boc for compound 12. P^{II}, Protecting group of Asp⁴(COOH) function, where OrBu was used for the synthesis of peptides 1, 5–8, 10, 11 and OBzl for peptide 12. A¹, Activating group of X α-COOH function as follows: MA was used for Asp⁴, OSu for Val⁴ and Gly⁴, and ONp for Asn⁴; X₁ for Val⁵ for peptides 1, 3, 4, 6–12, Gly⁵ and Asp(OtBu)⁵ for peptides 2 and 5; X_{II} for Val⁶ peptides 1, 2, 4, 5, 7–12, Gly⁶ for peptide 6, and Asp(OtBu)⁶ for peptide 3. P^{III} Protecting group of X_{III}-COOH function, where X_{III} = Gly⁷, Val⁷, and Asp(OtBu)⁷; NH₂ was the protecting group for the synthesis of peptides 1–6, 10 and 12; OtBu for peptides 7 and 11; and OEt for peptides 8 and 9.

OtBu, glycine OEt, or deprotected peptides $H-X_{II}-X_{III}$ -P^{III}. The last synthesis step was the condensation of the aspartic acid residue by the mixed anhydride method; valine or glycine as OSu activation to give protected tetrapeptides. When X was asparagine, the corresponding tetrapeptide intermediate was synthesized using the active ONp of Z-Asn. The final 3 + 4 condensation was obtained in good yield using DCC in the presence of HOBt [27].

Receptor evaluation

The alterations in the hydrophobic and anionic properties of DEL C analogues adopted the following strategy: i) sequential repositioning of Asp from residue 4 through 7 (1-4); ii) inversion of the Val residues with Gly modified the hydrophobic sidechain spatial localization in the C-terminal sequence (5 and 6); iii) changes in C-terminal derivatization (7 and 8); iv) esterification of Asp⁴ (10 and 12); and v) combined modifications of Asp⁴ and C-terminus (9 and 11). Esterification restricts conformational flexibility [30, 31, 34] and has the potential to modify H-bonding properties [14, 20, 22, 23].

All modifications within the C-terminal tetrapeptide portion of the peptides were detrimental for δ affinities compared to that of DEL C (1): the analogues exhibited substantial losses in δ selectivities through diminished δ affinities and variable μ affinities (table I). Movement of Asp from position 4 through position 7 (2–4) elicited decreased δ affinities from 5-

to 25-fold and progressively improved μ affinities (nearly 14-fold), concomitant with an over 140-fold loss in δ selectivity. Since the N-terminal sequence of peptide 4 is identical to that in the μ selective agonist dermorphin (H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH₂) [13, 32, 33], the C-terminal tripeptide sequence would appear to confer δ selectivity on the deltorphins as suggested earlier [8, 17, 18]. The intercalation of Gly⁵ 5 between Asp⁴ and the hydrophobic dipeptide, Val⁶–Val⁷ would alter the spatial relationship between their respective side-chains and decreased δ affinity and selectivity \approx 700-fold without significantly affecting μ affinity. Importance of a hydrophobic residue at the fifth position was similarly observed in binding studies with analogues of DEL A [25] and DEL B [24] and is supported by ¹H-NMR studies [14, 20, 22, 23]: existence of an amino acid with a hydrophobic side-chain at residue 5 appears to be related to the maintenance of a hydrophobic surface above the molecular plane of the N-terminal β -turn [14, 22]. In this regard, the nearly 10-fold difference between δ affinities of peptides 6 and 5 may be due to the presence of the aliphatic side-chains of Val⁵. The importance of a hydrophobic residue at position 6 is indicated by the inversion of the C-terminal dipeptide sequence ($\mathbf{\hat{6}}$) which brought about a 100-fold loss in δ selectivity. Interestingly, the corresponding modification in DEL A only resulted in a 7-fold decline (unpublished results), which suggests that the side-chain of residue 6 plays a role in receptor binding in DEL C [24].

Table I. Affinities and selectivities of peptide analogues for opioid receptor sites.

No	Peptide	$K_i\delta$	K _i μ	$K_i \mu / K_i \delta$	
1	Tyr–D–Ala–Phe–Asp–Val–Val–Gly–NH ₂	0.32 ± 0.06	461.5 ± 38.7	1442	
2	Val- Asp	1.58 ± 0.42	154.9 ± 27.4	98	
3	Val Asp	8.05 ± 1.84	83.9 ± 13.8	10	
4	——————————————————————————————————————	3.36 ± 0.16	33.3 ± 3.1	10	
5	Gly Val	216.5 ± 16.8	512.7 ± 3.0	2	
6	Gly–Val	25.4 ± 5.7	365.6 ± 13.8	14	
7	ОН	6.78 ± 0.84	1704 ± 269	251	
8	OEt	2.67 ± 0.87	1116 ± 69	418	
9	AsnOEt	9.00 ± 2.4	146.7 ± 25.3	16	
10	——————————————————————————————————————	1.85 ± 0.41	320.1 ± 63.1	173	
11		85.9 ± 20.8	1156 ± 174	13	
12	Asp(OBzl)	1.16 ± 0.13	23.4 ± 3.0	20	

^aStraight lines indicate sequence homology with deltorphin C. DEL C [17] is also known as [D-Ala²]deltorphin I [2]. Affinities of peptides for rat brain membrane δ and μ receptors are given by K_i values (nM, mean \pm standard error; n = 3-9) determined according to the formulation of Cheng and Prusoff [36]: $K_i = IC_{50}/(1 + L/K_d)$, where L is the concentration of radioactive ligand and K_d represents the dissociation constant for either [³H]DAGO or [³H]DPDPE. $K_{i\mu}/K_{i\delta}$ is defined as δ selectivity [33].

Although several of the analogues contain one (2–6, 8) or two (7) free carboxyl groups, they exhibit a broad spectrum of δ affinities and selectivities, in contrast to the prevailing hypothesis that δ affinity requires an opioid peptide with an anionic functional group [26]. The decreased δ affinity of peptide 7 may correlate with ¹H-NMR data which indicated that a C-terminal carboxylate ion can increase solution conformational stability by formation of an additional H-bond [22, 23]; esterification of the C-terminal carboxyl group in peptide 9 may therefore interfere with formation of such an H-bonded structure. Enhancement of μ affinity accompanies the suppression of the negative charge in deltorphins [6, 9, 15, 17] as seen in peptides 9, 10 and 12 (table I).

In contrast to the esterification of enkephalin by *tert*-butyl [30, 31], esterification of carboxyl groups at the fourth and/or seventh residues in DEL C (10 and 11) diminished both δ binding and selectivity: in particular, the δ affinity of the di-tert-butyl ester derivative (11) was 270-fold less than that of DEL C. However, esterification of the β -carboxyl of Asp⁴ with a *tert*-butyl or benzyl group only decreased δ affinities 4- to 6-fold; on the other hand, the OBzl analogue exhibited \approx 20-fold greater μ affinity. These modifications in receptor affinities led to a suppression of 8and 72-fold in the δ selectivities of peptides 10 and 12, respectively. An increase of μ affinity in the OBzl analogue (12) may indicate that an aromatic group in this peptide might interact with the proposed μ receptor site which recognizes enkephalin [34] but which apparently differs from that of dermorphin [33]. Deltorphin conformation and its interaction with receptor sites is apparently influenced by OtBu in a manner that differs from that which occurs in the enkephalins [34]: the tert-butylesters sterically constrain enkephalin conformers to yield peptides of relatively high δ selectivity [30, 31] in which the OtBu groups rotate to minimize interference with binding [34].

Conclusion

Our observations are consistent with the suggestion that the combination of molecular configuration and spatial orientation of the amino acid side-chains in DEL C [18, 26, 34] play a definitive role in determining selectivity: modifications in sequence of DEL C differentially altered δ and μ receptor binding properties and, without exception, decreased δ selectivities. Our results further indicate that the existence of a negatively charged group in the opioid peptide *per se* does not necessarily confer high δ selectivity and that the spatial orientation of the hydrophobic side-chains appear to be important for the receptor selectivity of DEL C, as observed with DEL A [25], in addition to providing a possible reflection of the physical nature of the receptor binding site.

Experimental protocols

Chemical synthesis

General procedures for the chemical synthesis of peptide analogues have been described earlier [27–29]. Amino acid composition was determined as previously published [17]. The properties of the tri- and tetrapeptide intermediates are listed in table II.

Specific solution coupling procedures

Method A

NMM (1.1 equiv) was added to a stirred solution of 0.5–0.8 M DMF containing Boc- or Z-protected amino acid (1 mmol); the mixture was cooled to -10° C and treated with isobutyl chloroformate (1.1 equiv) and allowed to react for 2–3 min. A precooled solution of amino component (1.1 mmol) in DMF (0.4–0.6 M) was added and the reaction stirred for 1 h at -10° C and 2–3 h at 0 to -10° C, then diluted with EtOAc (100 ml). The suspension was washed consecutively with saturated NaCl (brine), 0.5 N KHSO₄, brine, 5% NaHCO₃, and brine. The organic phase was dried over MgSO₄, filtered, and evaporated to dryness. The residue was crystallized from appropriate solvents or purified by column chromatography [32].

Method B

The following were sequentially added to a solution of the carboxy component (2 mmol) in DMF (10 ml) at 0°C: amino acid component (2 mmol), NMM (2 mmol if the amino component was in the protonated form), HOBt (2 equiv), and DCC (2.1 mmol). The reaction was stirred for 2 h at 0°C and 24 h at room temperature; N,N'-dicyclohexylurea was filtered and the solution diluted with EtOAc (100 ml), then worked up as in *Method A*.

Method C

To a cooled (0°C) 1 N NaOH (1 ml) solution of the carboxy component (2 mmol), the Boc-protected amino acid-OSu (4 mmol) in dioxane (6 ml) was added. The mixture was stirred for 2 h at 0°C and 10 h at room temperature, evaporated, and then diluted with 1 N citric acid (50 ml). The product was extracted into EtOAc (3 x 30 ml), back-washed with saturated aqueous NaCl, and then worked up as in *Method A*.

Method D

To a solution of amino component (0.5 mmol) in DMF (5 ml) containing DIEA (1 mmol), the Z-protected amino acid-OSu or ONp (0.6 mmol) and HOBt (0.5 mmol) were added. The reaction was stirred for 30 min at 0° C and overnight at room temperature. After evaporation *in vacuo*, the residue was triturated with 10 ml solvent mixture EtOAc-diethyl ether (40:60, v/v) and washed several times with diethyl ether to yield a white solid.

Deprotection procedures

Method 1

Boc and OtBu protecting groups were removed by treating the peptide with TFA-CH₂Cl₂ (1:1) for 1 h at 0°C. The solvent was removed *in vacuo* and the residue triturated with diethyl ether or petroleum ether; the resulting solid was collected and dried.

No	Structure	Yield (%)	Melting point (°C)	$[\alpha]_D 20^a$	TLC ^b
1'	Z-Tyr-D-Ala-Phe-OH	68	135–137	+ 15.8	0.90
נ2'	Boc-Tyr-D-Ala-Phe-OH	75	111-113	+28.1	0.86
3'	Z-Val-Val-Gly-NH ₂	82	184-187	- 9.0	0.22
4'	Z-Val-Val-Gly-OtBu	78	179–182	- 54.7	0.60
5'	Z-Gly-Val-Val-NH ₂	80	239-241	- 12.7	0.44
6'	Z-Val-Gly-Val-NH ₂	75	250-252	-147.1	0.33
7'	Z-Val-Val-Gly-OEt	78	190-194	- 31.8	0.77
8'	$Z-Asp(OtBu)-Val-Gly-NH_2$	81	175-177	- 18.3	0.63
9'	$Z-Val-Asp(OtBu)-Gly-NH_2$	77	191–193	- 61.4	0.57
10'	Z-Val-Val-Asp $(OtBu)$ -NH ₂	65	210-211	-13.7	0.51
11'	Z-Asp(OtBu)-Val-Val-Gly-NH ₂	75	215-217	- 14.3	0.32
12'	Boc-Asp(OBzl)-Val-Val-Gly-NH ₂	78	210-213	- 1.6	0.54
13'	Z-Asp(OtBu)-Val-Val-Gly-OtBu	70	180-184	-11.1	0.63
14'	Z-Asp(OtBu)-Gly-Val-Val-NH ₂	74	223-225	-2.3	0.48
15'	Z-Asp(OtBu)-Val-Gly-Val-NH ₂	76	226-228	- 12.1	0.49
16'	Z-Asp(OtBu)-Val-Val-Gly-OEt	78	188–190	- 13.4	0.59
17'	Z-Asn-Val-Val-Gly-OEt	64	245–247	+ 15.3	0.18
18'	Z-Val-Asp(OtBu)-Val-Gly-NH ₂	78	183-185	-22.4	0.48
19'	Z-Val-Val-Asp(OtBu)-Gly-NH ₂	79	215-217	- 42.6	0.54
20'	Z-Gly-Val-Val-Asp(OtBu)-NH ₂	67	187–191	- 31.4	0.49

Table II. Physicochemical properties of protected peptides.

^aOptical rotations were conducted in DMF, except those for intermediates 1', 3', 4', 7' and 8' which were carried out in methanol. ^bSolvent system for intermediates 1' and 2' was *n*-butanol/acetic acid/water (3:1:1, v/v/v) and that for the remainder of the compounds was methylene chloride/methyl benzene/methanol (17:1:2, v/v/v).

Method 2

Hydrogenations were carried out in HOAc-isopropanol (3:2, v/v) at atmospheric pressure and room temperature in the presence of 5% palladized charcoal (using a catalyst to peptide ratio of 1:9, w/w). The reaction mixture was filtered through a Celite bed and evaporated to dryness. The residue was treated as in *Method D*.

Isolation procedures

All protected peptides (0.7–1 g material) were initially purified on a silica gel column (2 x 70 cm) using a linear gradient from 10% to 50% MeOH in CHCl₃. Deprotected peptides [27] were further purified by a combination of Sephadex gel filtration, partition chromatography, and preparative HPLC [17]. Preparative HPLC of 100 mg quantities of peptide was performed on a Delta Pak reverse-phase C_{18} 300 Å 15 µm spherical particle column (10 x 300 mm) using a linear gradient from 20% to 50% acetonitrile containing 0.1% TFA over 40 min at a flow rate of 30 ml/min.

Peptide purification

Analytical HPLC was performed on a Spherisorb 5-ODS2 C_{18} column (4.5 x 250 mm); mobile phases A (10% acetonitrile containing 0.1% TFA) and B (60% acetonitrile containing 0.1% TFA) were employed in the following elution schemes for purification of peptides a flow rates of 1 ml/min: i) linear gradient from 20% to 80% B in 30 min; ii) linear gradient from 50% to 100% B in 15 min; and iii) linear gradient from 50% to

100% B in 15 min, then isocratically for 10 min. Eluants were monitored at 220 and 254 nm. Data were compiled using an Epson (QX-10) computer system. Thin layer chromatography was carried out on Merck precoated 0.25 mm analytical silica gel plates 60 F_{254} using two solvent systems: *n*-butanol/acetic acid/water (3:1:1, v/v/v) and ethyl acetate/acetic acid/pyridine/water (6:0.6:2.2:1.2, v/v/v/v). Purities were estimated at > 99%.

Determination of physical and chemical characteristics

Melting points were determined on a Kofler apparatus and are uncorrected. Optical rotations were conducted in DMF or methanol as detailed in tables II and III using a 10-cm pathlength cell in a Perkin-Elmer 241 polarimeter. The chemical characteristics of each peptide were routinely monitored by ¹H-NMR spectrometry using 200 MHz [20] or 500 MHz [22] Bruker instruments, which were also used to confirm the absence of racemization [35]. The physicochemical properties of the peptides are listed in table III.

Receptor binding assay methods

Preparation of brain membranes

Whole rat brain (minus cerebellum) preparations of synaptosomes (P₂) were obtained by homogenization in a 0.32 M sucrose solution as described using differential centrifugation and an incubation step to remove endogenous opioid peptides [4]. The membranes (25 mg/ml) were stored in 50 mM Hepes (pH 7.5), containing 50 µg/ml soybean trypsin inhibitor and 20% glycerol at -70° C to -80° C.

Table III. Analytical properties of deltorphin C and related analogues.

	²¹ · · · · · · · · · · · · · · · · · · ·	$TLC(R_{i})$		HPLC	$[\alpha]_{a}20^{a}$	Melting	Amino acid analysis					
No	Peptide	I ^b	<i>^I</i> ^J ^D	$(K')^{\tilde{c}}$		point (°C)	Y	Α	F	D	<i>V</i>	G
1	Deltorphin C	0.53	0.44	5.43	- 16	168–170	0.98	1.02	0.98	0.94	1.81	0.99
2	[Val ⁴ ,Asp ⁵]	0.71	0.67	4.65	+ 5.3	172-174	0.89	1.01	0.98	0.95	1.89	1.0
3	[Val ⁴ ,Asp ⁶]	0.79	0.73	4.42	- 7.2	160-162	0.91	0.99	1.02	0.96	1.87	1.0
4	[Gly ⁴ ,Asp ⁷]	0.68	0.75	4.53	- 16.2	158–160	0.95	0.97	0.96	0.93	1.9	1.0
5	[Gly ⁵ ,Val ⁷]	0.74	0.44	5.56	- 8.5	176178	0.94	0.95	1.04	0.94	1.69	0.97
6	[Gly ⁶ ,Val ⁷]	0.69	0.46	5.49	+ 10	160–162	0.99	0.89	1.02	1.01	1.89	1.0
7	[Gly(OH) ⁷]	0.54	0.59	5.67	-9	168–170	0.92	1.01	1.01	0.97	1.88	1.01
8	[Gly(OEt) ⁷]	0.84	0.39	7.99	-25	208-210	0.97	0.98	1.03	0.95	1.84	0.99
9	[Asn ⁴ ,Gly(OEt) ⁷]	0.87	0.32	7.34	- 43	242-244	0.92	0.89	1.03	0.90	1.81	0.98
10	$[Asp(OtBu)^4]$	0.78	0.75	8.87	+ 2.9	210-212	0.95	0.97	0.97	0.95	1.79	1.0
11	[Asp(OtBu) ⁴ , Gly(OtBu) ⁷]	0.88	0.65	8.96	-4.4	195–197	1.03	0.95	1.04	0.91	1.85	0.95
12	[Asp(OBzl) ⁴]	0.77	0.57	5.41	- 1.4	179–181	0.94	1.02	1.03	0.81	1.55	1.0

^aOptical rotations were collected in DMF, except peptide **1** which was taken in methanol. ^bSolvent systems: I, *n*-butanol/acetic acid/water (3:1:1); II, ethyl acetate/acetic acid/pyridine/pyridine (6:0.6:2.2:1.2). ^cCapacity factor (K) determined with HPLC elution scheme (i) as described in *Experimental protocols*.

Radioreceptor assay

The binding assays for μ and δ receptors were conducted as detailed previously [4, 15-17, 25, 32, 33] and in the presence of 100 µM PMSF under conditions considered optimal for binding. Peptide stock solutions (100 μ g peptide/ml) were prepared in 15% ethanol containing 10 mM acetic acid and stored at 4°C; working solutions were diluted in acidic alcohol containing 1 mg BSA/ml. Concentrations of [³H]DAGO and [³H]DPDPE in the μ and δ binding assays were 1.28 ± 0.03 and 0.63 ± 0.05 nM, respectively. The 1.6 mg synaptosome protein used in duplicate assays was rapidly entrapped on a presoaked GF/C filter (50 mM Hepes, pH 7.5, containing 1 mg/ml BSA) and washed within 5 s using three 2-ml aliquots of the ice-cold buffered BSA solution. The filters were dried ($\approx 75^{\circ}$ C) and the radioactivity determined using 2 ml CytoScint. Peptides were tested at 4-7 concentrations using at least 3-5 synaptosomal membrane preparations in 3-9 separate binding experiments to provide statistical reliability. Specific binding represents the ratio of bound to free labelled ligand; non-specifically bound radioactivity was determined in the presence of excess (2 μ M) unlabelled DAGO or DPDPE for μ or δ binding sites, respectively. Graphically determined IC_{50} values, which represented nM peptide required to displace 50% of the radiolabelled ligand, were used to calculate the competitive inhibition constants (K_i) for μ and δ receptors according to Cheng and Prusoff [36].

Acknowledgments

The authors are indebted to T Tancredi and PA Temussi (University of Naples, Italy) for the NMR analyses, El Mestikawy, EC Mar and K Pennypacker for their comments on the manuscript, and RJ Hester, F Lyndon, and K Payne for timely library assistance and literature retrieval. This study was supported in part by grants from CNR Progetto Finalizzato Chimica Fine e Secondaria II.

References

- 1 Richter K, Egger R, Kreil G (1987) Science 238, 200-202
- 2 Erspamer V, Melchiorri P, Falconieri Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G (1989) Proc Natl Acad Sci USA 86, 5188–5192
- 3 Richter K, Egger R, Negri L, Corsi R, Severini C, Kreil G (1990) Proc Natl Acad Sci USA 87, 4836–4839
- 4 Lazarus LH, de Castiglione R, Guglietta A, Wilson WE (1989) J Biol Chem 264, 3047–3050
- 5 Kreil G, Barra D, Simmaco M, Erspamer V, Falconieri Erspamer G, Negri L, Severini C, Corsi R, Melchiorri P (1989) Eur J Pharmacol 162, 123–128
- 6 Mor A, Delfour A, Sagan S, Amiche M, Pradelles P, Rossier J, Nicolas P (1989) FEBS Lett 255, 269–274
- 7 Amiche M, Sagan S, Mor A, Delfour A, Nicolas P (1989) Mol Pharmacol 35, 774–779
- 8 Sagan S, Amiche M, Delfour A, Camus A, Mor A, Nicolas P (1989) Biochem Biophys Res Commun 163, 726-732
- 9 Sagan S, Amiche M, Delfour A, Mor A, Camus A, Nicolas P (1989) J Biol Chem 264, 17100–17106
- 10 Melchiorri P, Negri L, Falconieri Erspamer G, Severini C, Corsi R, Soaje M, Erspamer V, Barra D (1991) Eur J Pharmcol 195, 201–207
- 11 Schwyzer R (1977) Ann NY Acad Sci 297, 3–26
- 12 Portoghese PS (1989) Trends Pharmacol Sci 10, 230-235
- 13 Montecucchi PC, de Castiglione R, Piani S, Gozzini L, Erspamer V (1981) Int J Peptide Protein Res 17, 275–283
- 14 Balboni G, Marastoni M, Picone D, Salvadori S, Tancredi T, Temussi PA, Tomatis R (1990) Biochem Biophys Res Commun 169, 617–622
- 15 Salvadori S, Marastoni M, Balboni G, Borea PA, Morari M, Tomatis R (1991) J Med Chem 34, 1656–1661
- 16 Lazarus LH, Salvadori S, Tomatis R, Wilson WE (1991) Biochem Biophys Res Commun 178, 110-115
- 17 Lazarus LH, Salvadori S, Santagada V, Tomatis R, Wilson WE (1991) J Med Chem 34, 1350–1355

- 19 Castiglione-Morelli MA, Lelj F, Pastore A, Salvadori S, Tancredi T, Tomatis R, Temussi PA (1987) J Med Chem 30, 2067–2073
- 20 Temussi PA, Picone D, Tancredi T, Tomatis R, Salvadori S, Marastoni M, Balboni G (1989) FEBS Lett 247, 283-288
- 21 Pattabiraman N, Sorensen KR, Langridge RS, Bhatnagar S, Renugopalakrishnan V, Rapaka RS (1986) Biochem Biophys Res Commun 140, 342–349
- 22 Tancredi T, Temussi PA, Picone D, Amodeo P, Tomatis R, Salvadori S, Marastoni M, Santagada V, Balboni G (1991) *Biopolymers* 31, 751–760
- 23 Amodeo P, Motta A, Tancredi T, Salvadori S, Tomatis R, Picone D, Saviano G, Temussi PA (1992) Peptide Res 5, 48-55
- 24 Sasaki Y, Ambo A, Suzuki K (1991) Biochem Biophys Res Commun 180, 822–827
- 25 Lazarus LH, Salvadori S, Balboni G, Tomatis R, Wilson WE (1992) J Med Chem, 35, 1222–1227
- 26 Schwyzer R (1986) Biochemistry 25, 6335-6342

- 27 Salvadori S, Marastoni M, Balboni G, Sarto G, Tomatis R (1985) Int J Peptide Prot Res 25, 526–533
- 28 Marastoni M, Salvadori S, Balboni G, Marzola G, degli Umbert EC, Tomatis R (1986) Int J Peptide Prot Res 28, 274–281
- 29 Marastoni M, Salvadori S, Balboni G, Borea PA, Marzola G, Tomatis R (1987) J Med Chem 30, 1538– 1542
- 30 Delay-Goyet P, Sequin C, Gacel G, Roques BP (1988) J Biol Chem 263, 4124–4130
- 31 Gacel GA, Fellion E, Baamonde A, Dauge V, Roques BP (1990) Peptides 11, 983–988
- 32 Lazarus LH, Guglietta A, Wilson WE, Irons BJ, de Castiglione R (1989) J Biol Chem 264, 354–362
- 33 Lazarus LH, Wilson WE, Guglietta A, de Castiglione R (1990) Mol Pharmacol 37, 886–897
- 34 Keys C, Payne P, Amersterdam P, Toll L, Loew G (1988) Mol Pharmacol 33, 528–536
- 35 Davies JS, Thomas RJ, Williams, MK (1975) J Chem Soc Chem Commun 76–77
- 36 Cheng YC, Prusoff WH (1973) Biochem Pharmacol 22, 3099–3108