ChemComm

COMMUNICATION

Check for updates

Cite this: DOI: 10.1039/d1cc01565f

Received 23rd March 2021, Accepted 19th April 2021

DOI: 10.1039/d1cc01565f

rsc.li/chemcomm

View Article Online

External-oxidant-free amino-benzoyloxylation of unactivated alkenes of unsaturated ketoximes with O-benzoylhydroxylamines[†]

Jiangfei Chen,^a Yan-Ping Zhu, ⁽¹⁾*^b Jin-Heng Li ⁽¹⁾*^{abcd} and Qiu-An Wang*^a

A new copper-catalyzed two-component amino-benzoyloxylation of unactivated alkenes of unsaturated ketoximes with O-benzoylhydroxylamines as the benzoyloxy sources is developed. Chemoselectivity of this method toward amino-benzoyloxylation or oxy-benzoyloxylation of alkenyl ketoximes relies on the position of the tethered olefins, and provides an external-oxidant-free alkene difunctionalization route that directly utilizes O-benzoylhydroxylamines as the benzoyloxy radical precursors and internal oxidants for the divergent synthesis of cyclic nitrones and isoxazolines.

The alkene difunctionalization reaction has been considered as one of the most powerful methodologies for increasing molecular complexity in synthesis because it can introduce two functional groups across the C=C double bond in a single reaction step.^{1,2} In particular, difunctionalization of alkenes of unsaturated ketoximes is appealing and has attracted considerable attention over the past few decades because it can assemble highly valuable functionalized O- and N-heterocycles through intramolecular cyclization and external functional group incorporation cascades.^{2–5} Classical methods for the difunctionalization of alkenes of unsaturated ketoximes focus on electrophile addition across the C=C bonds followed by intramolecular cyclization³ or transition-metal-catalyzed intramolecular cyclization followed by nucleophile addition.⁴ Despite significant advances in the field, these approaches

suffer from the limited external functional reagents and/or requirement of noble transition-metal catalysts (such as palladium, and nickel).^{3,4} Alternatively, radical-mediated twocomponent difunctionalization of alkenyl ketoximes has been developed recently and is particularly attractive because this method proceeds via the intramolecular addition of oxime radicals across the C=C double bonds to generate the carbon-centered radicals and then cross coupling with a wide range of external functional radical trapping functional reagents wherein oxime radicals can selectively serve as the iminoxyl oxygen-centered radicals or iminoxyl nitrogencentered radicals to divergently access isoxazolines and cyclic nitrones relying on the position of the tethered olefins (Scheme 1a).⁵ In 2012, Han and coworkers first reported dioxygenation, oxyamination, and diamination of β , γ - and γ , δ -unsaturated ketoximes with external radical trapping functional reagents, such as 2,2,6,6-tetramethyl-1-piperidinyl-oxy (TEMPO) and diethyl azodicarboxylate (DEAD).^{5a} This dual radicals-enabled alkene difunctionalization strategy has been proven to be synthetically useful and has been widely applicable to dioxygenation, oxyamination, diamination, carbooxygenation, carboamination, oxyhalogenation, oxysulfonylation and oxythioetherization of alkenyl ketoximes with various radical trapping functional reagents.⁵ However, these approaches are limited to the requirement of stoichiometric classical radical scavengers (such as TENPO, DEAD and ^tBuONO) or external

Scheme 1 Radical-mediated difunctionalization of alkenyl oximes.

^a State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China. E-mail: jhli@hnu.edu.cn, wangqa@hnu.edu.cn

^b School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong, Yantai, 264005, China.

E-mail: chemzyp@foxmail.com

^c Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China

^d State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China

 $[\]dagger$ Electronic supplementary information (ESI) available. CCDC 2057134 and 2057127. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/d1cc01565f

oxidants to trigger these processes. Moreover, to our knowledge, radical-mediated two-component amino-benzoyloxylation or oxy-benzoyloxylation of alkenyl ketoximes with the external benzoyloxy radical precursors remains an unexplored area. Thus, the development of new radical-mediated strategies, especially involving an external-oxidant-free strategy using internal oxidants as the radical trapping functional reagents, to allow new alkenyl ketoxime difunctionalization modes is desirable.

Herein, we report a new radical-mediated two-component amino-benzoyloxylation of unactivated alkenes of unsaturated ketoximes with *O*-benzoylhydroxylamines⁶ using copper catalysis for accessing benzoyloxy-possessing cyclic nitrones (Scheme 1c). This reaction employs *O*-benzoylhydroxylamines as both the benzoyloxy sources and internal oxidants to enable selective amino-benzoyloxylation or oxy-benzoyloxylation of alkenyl ketoximes for producing carbon-quaternary-centercontaining cyclic nitrones and isoxazolines⁷ which depends on the position of the tethered olefins.

We investigated the amino-benzoyloxylation reaction between 2,2,4-trimethyl-1-phenylpent-4-*en*-1-one oxime (1a) and morpholino benzoate (2a) for optimization of the reaction conditions (Table 1). Upon surveying various reaction parameters, we found that treatment of oxime 1a with benzoate 2a, 10 mol% CuCl, and 20 mol% 1,1-binaphthyl-2,2-diyl hydrogenphosphate (BNPA) ligand L1 in $ClCH_2CH_2Cl$ at room

Table 1	Optimization of reaction conditions ^a		
Ph-	$\begin{array}{c} & & & \\ & &$	R^1 N^+ R^2 R^3 $4aa$	~~° ~_`
	$\begin{array}{c c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$		
		Isolated y	vield (%)
Entry	Variation from the standard conditions	3aa	4aa
1	None	76	Trace
2	Without CuCl	0	0
3	CuCl (20 mol%)	70	Trace
4	CuBr instead of CuCl	69	Trace
5	Cu(MeCN) ₄ PF ₄ instead of CuCl	55	Trace
6	CuOAc instead of CuCl	44	Trace
7	$Cu(OAc)_2$ instead of CuCl	66	Trace
8	Without L1	49	6
9	L2 instead of L1	65	Trace
10	L3 instead of L1	63	Trace
11	L4 instead of L1	Trace	Trace
12	L5 instead of L1	61	Trace
13	L6 instead of L1	45	Trace
14	CH ₂ Cl ₂ instead of ClCH ₂ CH ₂ Cl	58	Trace
15	Toluene instead of ClCH ₂ CH ₂ Cl	48	Trace
16	MeCN instead of ClCH ₂ CH ₂ Cl	53	Trace
17	At 50 °C	73	Trace
18^{b}	None	70	Trace

^{*a*} Standard reaction conditions: **1a** (0.2 mmol), **2a** (0.1 mmol), CuCl (10 mol%), **L1** (20 mol%), ClCH₂CH₂Cl (2 mL), argon, room temperature and 12 h. ^{*b*} **2a** (1 mmol) and 24 h.

temperature efficiently afforded the desired cyclic nitrone product 3aa in 76% yield along with a trace of 4aa (entry 1). It is noted that no desired reaction occurs in the absence of a Cu catalyst (entry 2), and a higher loading of CuCl (20 mol%) slightly decreased the yield (entry 3). A series of Cu catalysts, such as CuBr, Cu(MeCN)₄PF₄, CuOAc and Cu(OAc)₂, were examined: the CuBr catalyst showed identical catalytic activity to CuCl (entry 4), but the other Cu catalysts (e.g., Cu(MeCN)₄) PF_4 , CuOAc, Cu(OAc)₂) were less efficient than CuCl along with no side-reactions (entries 5-7). The reason might be that such three Cu catalysts (entries 5–7) are more basic than CuCl (entry 1) or CuBr (entry 4), thus resulting in a decrease of the Lewis acid properties to coordinate and activate the *in situ* generated radical intermediates. The results showed that ligands could affect the reaction but were not the key to the success of the reaction, as the omission of L1 resulted in the formation 3aa in 49% yield and 4aa in 6% yield (entry 8). While both acidic ligands L2-L3 and a basic bipyridine L5 could improve the reaction (entries 9-10 and 12), phosphine L3 completely suppressed the reaction (entry 11) and 1,10-phenanthroline L6 had no effect (entry 13). Other solvents, including CH₂Cl₂, toluene and MeCN, were inferior to ClCH2CH2Cl (entries 14-16). A higher temperature (50 °C) gave identical results to those at room temperature (entry 17). Notably, the reaction with a scale up to 1 mmol of 2a was performed smoothly in good yield (entry 18).

After establishing the optimized reaction conditions, the substrate scope of this alkene amino-benzovloxylation protocol with respect to oximes 1 and morpholino benzoates 2 was explored (Table 2). The substitution effect on the aryl ring of 1-arylpent-4-en-1-one oximes was initially examined in the presence of morpholino benzoate (2a), CuCl, and BNPA L1 (3ba-fa). We found that substituents, including Me, i-Pr, Cl and CF₃, were well tolerated, and both the electronic effect and steric hindrance had a fundamental influence on the reaction. While oximes 1b-c bearing an electron-donating Me or i-Pr group furnished 3ba-ca, respectively, in moderate yields, oximes 1d-f bearing an electron-withdrawing Cl or CF₃ group afforded 3da-fa in good yields. However, oxime 1f having an *m*-Cl group was less reactive than oxime **1d** having a *p*-Cl group 1d bearing a p-Cl group in terms of yields (3da, 3fa). Strikingly, heteroaryl and naphthalen-2-yl-substituted pent-4-en-1-one oximes 1g-i accommodated to the optimized conditions, giving 3ga-ia in moderate yields. This alkene amino-benzoyloxylation protocol could be applicable to the construction of spiro-cyclic rings and polycyclic compounds (3ja-la). For example, using (1-(2-methylallyl)cyclohexyl)(phenyl)methanone oxime 1j smoothly afforded 2-azaspiro[4.5]dec-1-ene 2-oxide 3ja in 53% yield. For 2-(2-methylallyl)-3,4-dihydronaphthalen-1(2H)-one oxime 1l the reaction efficiently executed to construct functionalized 3,3*a*,4,5-tetrahydro-2*H*-benzo[g]indole 1-oxide 3la. The reaction was compatible with 4-methyl-1-phenylpent-4-en-1-one oxime 1m, furnishing 3ma in 62% yield.8 Replacement of the Me group at the 4 position of the alkene moiety by a Ph group accommodated to the reaction (3na). Delightfully, the use of 2,2-dimethyl-1,3-diphenylbut-3-en-1-one oxime 10 resulted in

Table 2 Variations of the unsaturated oximes (1) and morpholino benzoates $(\mathbf{2})^a$

 a Reaction conditions: 1 (0.2 mmol), 2 (0.1 mmol), CuCl (10 mol%), L1 (20 mol%), ClCH₂CH₂Cl (2 mL), argon, room temperature and 12 h.

the formation of 4,5-dihydroisoxazole **50a**, a five-membered O-heterocyclic ring, through intramolecular oxygen atom addition across the C=C bond.

Next, we set out to investigate the scope of morpholino benzoates 2 under the optimized conditions. Morpholino benzoates 2b–e bearing an electron-donating (*e.g.*, MeO) or an electron-withdrawing group (*e.g.*, F, CF₃, Cl) on the aryl ring of the benzoate moiety were successfully converted to **3ab–ae** in moderate to good yields, leaving these groups intact for further derivatization. Notably, the electron-donating group (**3ab**) displayed higher reactivity than the electron-withdrawing groups (**3ac–ae**). To our surprise, both monosubstituted terminal alkenes **1p–q** and internal alkenes **1r–t** underwent intramolecular nitrogen addition across the C=C bond and isomerization to afford alkenyl 3,4-dihydro-2*H*-pyrrole 1-oxides **6p–t**.⁸

As shown in Scheme 2, internal alkene 1u containing a cyclopropyl ring was converted to highly valuable (*E*)-2-(buta-1, 3-dien-1-yl)-3,4-dihydro-2*H*-pyrrole 1-oxide **6u** *via* intramolecular nitrogen addition across the C=C bond, ring-opening and

isomerization cascades (equation 1), suggesting that the reaction involves a radical process. The control experiments also support a radical process and confirm the generation of the oxygen-centered radical (the iminoxyl radical)/the resonance nitrogen-centered radical cation as the reaction was completely inhibited in the presence of a radical scavenger (such as TEMPO and BHT) and afforded the phthalimido-*N*-oxyl-containing 3,4-dihydro-2*H*pyrrole 1-oxide 7 in 68% yield (equation 2). The results of entry 10 in Table 1 showed that the presence of PivOH could improve the reaction. However, no reaction of oxime **1a** with benzoic acid was observed in the presence/absence of **L1** (equation 3). These results imply that the formation of the BzO[•] radical intermediate is crucial to the accomplishment of the desired reaction.

Consequently, the possible mechanisms for this alkene amino-benzoyloxylation reaction were proposed on the basis of the present results and precedent literature (Scheme 3).^{5,6} The highly reactive O-Cu^{III}L_n-N intermediate A is formed from the reaction between the active Cu^IL_n species and morpholino benzoate 2a through the insertion of the C-O bond, which also gives resonance structures B/C and/or D/E.6 Under the external-oxidantfree conditions, the intermediates B/C are more reactive than the intermediates D/E. Subsequently, oxidative single electron transfer between oxime 1a and the N-Cu^{II}L_n intermediate B occurs to afford the nitrogen-centered radical cation $\mathbf{F}(n = 1)$ or the resonance oxygen-centered radical (the iminoxyl radical) \mathbf{F}' (n = 0). Intramolecular 5-exo-trig N-cyclization of the intermediate F occurs to form the N-heterocyclic radical intermediates G, followed by coupling with the intermediate C and reductive elimination to forge the desired N-heterocycle product 3 and regenerate the active Cu^IL_n species.⁵ When $R^4 = H$ in unsaturated oxime **1**, the β -H elimination of the intermediate I takes place to afford the desired product 6.

Scheme 3 Proposed reaction mechanisms

On the other hand, intramolecular 5-exo-trig O-cyclization of the intermediate \mathbf{F}' affords the O-heterocyclic radical intermediates \mathbf{G}' , which sequentially undergoes coupling with the intermediate \mathbf{C} to deliver the C-Cu^{III}-OBz intermediate \mathbf{H}' and then reductive elimination to access the desired O-heterocycle product 5 and regenerate the active Cu^IL_n species.⁵

In summary, we have developed a new copper-catalyzed twocomponent amino-benzoyloxylation of unactivated alkenes of unsaturated ketoximes with *O*-benzoylhydroxylamines for selectively producing cyclic nitrones and isoxazolines under external-oxidant-free conditions. This method enables the preferential formation of the benzoyloxyl radical intermediates to form two new carbon-heteroatom bonds in a single reaction step, and represents the first external-oxidant-free copper-catalyzed alkene amino-benzoyloxylation route through intermolecular cross coupling with the benzoyloxyl radicals using *O*-benzoylhydroxylamines as the benzoyloxyl sources and internal oxidants.

The authors thank the National Natural Science Foundation of China (No. 21625203 and 21871126) and the Talent Induction Program for Youth Innovation Teams in Colleges and Universities of Shandong Province for financial support.

Conflicts of interest

There are no conflicts to declare.

Notes and references

- For selected reviews see: (a) T. T. Dang, T. T. Dang and P. Langer, Synlett, 2011, 2633; (b) K. Narasaka, Pure Appl. Chem., 2003, 75, 19;
 (c) K. Narasaka and M. Kitamura, Eur. J. Med. Chem., 2005, 4505;
 (d) J. Lei, D. Li and Q. Zhu, Heterocycl. Chem., 2018, 54, 285;
 (e) C. Song, X. Shen, Y. Fang, Y. He and S. Yu, Chin. J. Org. Chem., 2020, 40, 3748; (f) X.-Y. Yu, Q.-Q. Zhao, J. Chen, W.-J. Xiao and J.-R. Chen, Acc. Chem. Res., 2020, 53, 1066; (g) I. B. Krylov, S. A. Paveliev, A. S. Budnikov and A. O. Terent'ev, Beilstein J. Org. Chem., 2020, 16, 1234.
- 2 For selected reviews, see: J. Liao, L. Ouyang, Q. Jin, J. Zhang, R. Luo and R. Dalpozzo, *Org. Biomol. Chem.*, 2020, **18**, 4709.
- For representative papers, see: (a) M. Tiecco, L. Testaferri, L. Bagnoli, V. Purgatorio, A. Temperini, F. Marini and C. Santi, *Tetrahedron: Asymmetry*, 2001, 12, 3297; (b) H. A. Dondas, R. Grigg, M. Hadjisoteriou, J. Markandu and P. Kennewell, *Tetrahedron*, 2001, 57, 1119; (c) V. Karapetyan, S. Mkrtchyan, T. T. Dang, A. Villinger, H. Reinke and P. Langer, *Tetrahedron*, 2008, 64, 8010; (d) M. D. Mosher, A. L. Norman and K. A. Shurrush, *Tetrahedron Lett.*, 2009, 50, 5647; (e) W. Kong, Q. Guo, Z. Xu, G. Wang, X. Jiang and R. Wang, Org. Lett., 2015, 17, 3686; (f) R. Suresh, A. K. Simlandy and S. Mukherjee, Org. Lett., 2018, 20, 1300; (g) C. Ye, X. Kou, G. Yang, J. Shen and W. Zhang, *Tetrahedron Lett.*, 2019, 60, 1148; (h) E. F. Lopes, F. Penteado, S. Thurow, M. Pinz, A. S. Reis, E. A. Wilhelm, C. Luchese, T. Barcellos, B. Dalberto, D. Alves, M. S. Silva and E. J. Lenardão, J. Org. Chem., 2019, 84, 12452.
- 4 For representative papers, see: (a) M.-K. Zhu, J.-F. Zhao and T.-P. Loh, J. Am. Chem. Soc., 2010, 132, 6284; (b) D. Jiang, J. Peng and Y. Chen, Org. Lett., 2008, 10, 1695; (c) B. Sun, S. Liu, M. Zhang, J. Zhao and Q. Zhang, Org. Chem. Front., 2019, 6, 388; (d) A. A. Jimoh, S. Hosseyni, X. Ye, L. Wojtas, Y. Hu and X. Shi, Chem. Commun., 2019, 55, 8150; (e) L. Wang, K. Zhang, Y. Wang, W. Li, M. Chen and J. Zhang, Angew. Chem., Int. Ed., 2020, 59, 4421.

- 5 For papers on dual radical enabled difunctionalization of alkenyl oximes, see: (a) B. Han, X.-L. Yang, R. Fang, W. Yu, C. Wang, X.-Y. Duan and S. Liu, Angew. Chem., Int. Ed., 2012, 51, 8816; (b) Y.-T. He, L.-H. Li, Y.-F. Yang, Y.-Q. Wang, J.-Y. Luo, X.-Y. Liu and Y.-M. Liang, Chem. Commun., 2013, 49, 5687; (c) L. Zhu, G. Wang, Q. Guo, Z. Xu, D. Zhang and R. Wang, Org. Lett., 2014, 16, 5390; (d) W. Zhang, Y. Su, K.-H. Wang, L. Wu, B. Chang, Y. Shi, D. Huang and Y. Hu, Org. Lett., 2017, 19, 376; (e) X.-X. Peng, Y.-J. Deng, X.-L. Yang, L. Zhang, W. Yu and B. Han, Org. Lett., 2014, 16, 4650; (f) L. Zhu, H. Yu, Z. Xu, X. Jiang, L. Lin and R. Wang, Org. Lett., 2014, 16, 1562; (g) Q. Wei, J.-R. Chen, X.-Q. Hu, X.-C. Yang, B. Lu and W.-J. Xiao, Org. Lett., 2015, 17, 4464; (h) F. Chen, X.-L. Yang, Z.-W. Wu and B. Han, J. Org. Chem., 2016, 81, 3042; (i) R.-H. Liu, D. Wei, B. Han and W. Yu, ACS Catal., 2016, 6, 6525; (j) L.-J. Wang, M. Chen, L. Qi, Z. Xu and W. Li, Chem. Commun., 2017, 53, 2056; (k) F. Meng, H. Zhang, K. Guo, J. Dong, A.-M. Lu and Y. Zhu, J. Org. Chem., 2017, 82, 10742; (l) F. Chen, F.-F. Zhu, M. Zhang, R.-H. Liu, W. Yu and B. Han, Org. Lett., 2017, 19, 3255; (m) X.-T. Li, Q.-S. Gu, X.-Y. Dong, X. Meng and X.-Y. Liu, Angew. Chem., Int. Ed., 2018, 57, 7668; (n) W.-J. Han, Y.-R. Wang, J.-W. Zhang, F. Chen, B. Zhou and B. Han, Org. Lett., 2018, 20, 2960; (o) D.-J. Wang, B.-Y. Chen, Y.-Q. Wang and X.-W. Zhang, Eur. J. Org. Chem., 2018, 1342; (p) Z.-Q. Xu, L.-C. Zheng, L. Li, L. Duan and Y.-M. Li, Org. Biomol. Chem., 2019, 17, 898; (q) X.-W. Zhang, Z.-F. Xiao, M.-M. Wang, Y.-J. Zhuang and Y.-B. Kang, Org. Biomol. Chem., 2016, 14, 7275; (r) X.-Q. Hu, J. Chen, J.-R. Chen, D.-M. Yan and W.-J. Xiao, Chem. Eur. J., 2016, 22, 14141; (s) X.-L. Yang, F. Chen, N.-N. Zhou, W. Yu and B. Han, Org. Lett., 2014, 16, 6476.
- 6 O-Benzoylhydroxylamines are well-known organic building blocks, especially serving as the amino sources and internal oxidants, in synthesis. For selected reviews and papers, see: (a) X. Dong, Q. Liu, Y. Dong and H. Liu, Chem. - Eur. J., 2017, 23, 2481; (b) Y. S. Sabir, G. Kumarb and J. L. Jat, Org. Biomol. Chem., 2018, 16, 3314; (c) L. Lei, C. Li and D. Mo, Chin. J. Org. Chem., 2019, 39, 2989; (d) R. Sakae, K. Hirano and M. Miura, J. Am. Chem. Soc., 2015, 137, 6460; (e) K. Shen and Q. Wang, Chem. Sci., 2015, 6, 4279; (f) Y. Yang, S.-L. Shi, D. Niu, P. Liu and S. L. Buchwald, Science, 2015, 349, 62; (g) B. N. Hemric, K. Shen and Q. Wang, J. Am. Chem. Soc., 2016, 138, 5813; (h) B. N. Hemric and Q. Wang, Beilstein J. Org. Chem., 2016, 12, 22; (i) K. Kato, K. Hirano and M. Miura, Angew. Chem., Int. Ed., 2016, 55, 14400; (j) F.-L. Wang, X.-Y. Dong, J.-S. Lin, Y. Zeng, G.-Y. Jiao, Q.-S. Gu, X.-Q. Guo, C.-L. Ma and X.-Y. Liu, Chemistry, 2017, 3, 979; (k) J. Davies, S. P. Morcillo, J. J. Douglas and D. Leonori, Chem. - Eur. J., 2018, 24, 12154; (l) L. J. Peterson, J. K. Kirsch and J. P. Wolfe, Org. Lett., 2018, 20, 3513; (m) Z. Wang, M.-Y. Han, P. Li and L. Wang, Eur. J. Org. Chem., 2018, 5954; (n) B. N. Hemric, A. W. Chen and Q. Wang, ACS Catal., 2019, 9, 10070; (o) B. N. Hemric, A. W. Chen and Q. Wang, J. Org. Chem., 2019, 84, 1468; (p) Z.-L. Yao, L. Wang, N.-Q. Shao, Y.-L. Guo and D.-H. Wang, ACS Catal., 2019, 9, 7343; (q) N.-Q. Shao, Z.-L. Yao and D.-H. Wang, Isr. J. Chem., 2020, 60, 429; (r) Y. Kwon and Q. Wang, Org. Lett., 2020, 22, 4141; (s) W. Zhang, C. Wang and Q. Wang, ACS Catal., 2020, 10, 13179; (t) S. Li, Q. Chen, W. Li, G. Gu and J. Zhang, Chin. J. Chem., 2020, 38, 1116; (u) M. Noack and R. Göttlich, Chem. Commun., 2002, 536; (v) S. Ren, S. Song, L. Ye, C. Feng and T.-P. Loh, Chem. Commun., 2016, 52, 10373; (w) N. Matsuda, K. Hirano, T. Satoh and M. Miura, J. Am. Chem. Soc., 2013, 135, 4934; (x) Y. Miki, K. Hirano, T. Satoh and M. Miura, Org. Lett., 2014, 16, 1498; (y) B. N. Hemric, K. Shen and Q. Wang, J. Am. Chem. Soc., 2016, 138, 5813; (z) D. Nishikawa, K. Hirano and M. Miura, Org. Lett., 2016, 18, 4856.
- 7 (a) K. Kaur, V. Kumar, A. K. Sharma and G. K. Gupta, *Eur. J. Med. Chem.*, 2014, 77, 121; (b) S.-I. Murahashi and Y. Imada, *Chem. Rev.*, 2019, **119**, 4684; (c) N. Agrawal and P. Mishra, *Med. Chem. Res.*, 2018, **27**, 1309; (d) L. L. Anderson, Diverse, *Asian J. Org. Chem.*, 2016, **5**, 9; (e) T. M. V. D. Pinho e Melo, *Curr. Org. Chem.*, 2005, **9**, 925; (f) G. Kumar and R. Shankar, *ChemMedChem*, 2021, **16**, 430.
- 8 CCDC 2057134 (**3ma**) and 2057127 (**6s**) contains the supplementary crystallographic data for this paper[†].