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ABSTRACT: Treatment of a dicopper(I,I) complex with nitric 
oxide produces a dicopper -oxo, -nitrosyl complex [LCu2(-
O)(-NO)]2+, representing the first structurally characterized -
oxo, -nitrosyl metal complex. This compound can also be 
synthesized from the reaction of nitrite with a [LCuIICuI]3+ synthon. 
Full characterization of the thermal-sensitive [LCu2(-O)(-
NO)]2+ complex with IR, EPR, and X-ray crystallography suggests 
a localized mixed-valent CuIII, CuII, O2−, NO− formulation. The 
[Cu2(-O)(-NO)]2+ core efficiently oxidizes exogenous 
substrates, such as phosphine, cyclohexadienes, and isochroman to 
afford phosphine oxide, benzene, and 1-isochromanone. Since both 
nitrite and nitric oxide are proposed oxidants in denitrifying 
methane oxidation, the oxidative reactivity of [Cu2(-O)(-NO)]2+ 
core is potentially relevant to anaerobic methane oxidation 
observed in methanotrophic archaea.

The interconversion of nitric oxide (NO•) and nitrite (NO2
) at 

biological metal centers has important implications in 
neurotransmission and vasodilation.1 For example, the heme-
a3/CuB site in cytochrome c oxidase (CcO) reduces NO2

 to NO• 
(Scheme 1A) under hypoxic conditions, triggering a series of 
biochemical responses leading to cellular O2 restoration.2,3 The 
heme-a3/CuB site can also detoxify NO• by promoting the reductive 
coupling of two NO• molecules to form nitrous oxide (N2O), 
leaving behind a FeIII-O-CuII moiety (Scheme 1A). Similar 
reductive coupling of NO• occurs at heme/non-heme4 and flavo-
diiron5 NO reductases (NOR, Scheme 1B). Based on modeling 
studies, it appears that bimetallic centers can promote the coupling 
of adjacent nitrosyl ligands to form hyponitrite (O-N=N-O) 
preceding the release of N2O. For instance, reductive coupling of 
two {CuNO}11 moieties generates a fully characterized 
dicopper(II,II) hyponitrite that releases N2O to form copper(II) 
nitrite ([CuII]-NO2), presumably through a dicopper(II,II) -oxo 
complex (Scheme 1C).6–8 
A common intermediate shared in the interconversion of NO• and 
NO2

 is the bimetallic -oxo (M-O-M) motif, which could be 
generated from either reductive coupling of two NO• molecules or 
activation of the O-N bond in NO2

 (Scheme 1A and 1B).2 Owing 
to our interests in the oxidative reactivity of NO2

, we were curious 
if a dicopper(II,II) -oxo could be formed from the activation of 
NO2

 at a dicopper center in a manner similar to heme-a3/CuB site.2 
Given that dicopper(II,II) -oxo core is proposed as the active site 

for methane selective monooxygenation in Cu-ZSM-5,9,10 nitrite-
derived dicopper -oxo species could be synthetically useful in 
oxidation/oxygenation reactions. Additionally, activation of NO2

 
toward C-H hydroxylation is mechanistically and functionally 
relevant to anaerobic methane oxidation observed in denitrifying 
archaea, a metabolic process that couples reduction of nitrite with 
methane oxidation: 3CH4 + 8NO2

 + 8H+  3CO2 + 4N2 + 
10H2O.11 Although the biochemical mechanism for denitrifying 
methane oxidation is still under investigation, the involvement of 
particulate methane monooxygenase (pMMO)  an enzyme that 
contains copper active sites12–16 – has been proposed.17,18
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In this report, we describe a new nitrite activation mechanism that 
can be harnessed for oxidative reactivity. Cleavage of an O-NO 
bond at a dicopper(I,II) center provides an unprecedented 
dicopper(II,III) -oxo, -nitrosyl complex ([Cu2(-O)(-NO)]2+, 
Scheme 1D). This complex can also be prepared from the reaction 
of dicopper(I,I) with NO•. The [Cu2(-O)(-NO)]2+ core is 
reminiscent of the active species in methane-oxidizing copper-
exchanged zeolite,19–23 and cleanly oxidizes phosphine, 
cyclohexadienes, and isochroman to afford phosphine oxide, 
benzene, and 1-isochromanone respectively. Such oxidative 
reactivity of NO2

 at dicopper centers represents a strategy 
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available to Nature to utilize NO2
 and NO• as oxidants under 

anaerobic conditions. 
To template a dicopper complex with a close Cu…Cu distance,24 we 
linked four pyridine ligands using a rigid 1,2-dimethoxylbenzene 
(DMB) linker. The Py4DMB ligand (1,2-bis(di(pyridin-2-
yl)methoxy)benzene, L) could be prepared from 
dipyridylchloromethane and catechol in 67% yield (Figure 1). 
Insertion of copper(I) ions to L proceeds upon treatment of L with 
two equivalents of [CuI(MeCN)4]BArF

4 (BArF
4 = tetrakis(3,5-

bis(trifluoromethyl)phenyl)borate) or [CuI(MeCN)4]OTf (OTf = 
trifluoromethanesulfonate), affording yellow powders with the 1H 
and 13C NMR signals expected for [LCuI

2(MeCN)2][BAr4
F]2 (1-

BArF
4) in 81% yield or [LCuI

2(MeCN)2][OTf]2  (1-OTf) in 86% 
yield respectively. Complex 1-BArF

4 can be stored as a solid at 40 
°C without decomposition up to several months. Over prolonged 
periods in solution, however, [LCuI

2(MeCN)2]2+ abstracts an aryl 
group from BArF

4 to form [LCuI
2(C6H3(CF3)2)]BArF

4 (Figure S45), 
which is structurally reminiscent of the dicopper -aryl complexes 
reported by Tilley et. al..25,26 To confirm the binucleating nature of 
1, [LCuI

2(phenylacetylene)][BArF
4]2 (1•phenylacetylene-BArF

4) 
was prepared in 87% yield by treating 1 with one equivalent of 
phenylacetylene, which was used to mimic a bridging  donor.27 
The X-ray structure of 1•phenylacetylene-BArF

4 showed a Cu…Cu 
distance of (2.8249(5) Å) and long Cu-O distances (average 2.757 
Å), indicating minimal Cu-O interaction. 
Treatment of 1-BArF

4 with four equivalents of NO• in acetone 
resulted in the formation of a dark green complex, which quickly 
converted to a red species 2-BArF

4 (Figure 2 left, max = 515 nm;  
= 2300 M1cm1) at 40 °C. Similar UV-Vis spectroscopic features 
were observed when 1-OTf was treated with NO• (Figure S19). 
Formation of 1 eq N2O per dicopper complex was detected in 98% 
yield with GC analysis of the reaction headspace (Figure S62-S65). 
The reaction of 1-OTf and NO• was monitored with low-
temperature solution IR spectroscopy. A new band at 1554 cm-1 
assigned to 2-OTf grew in at ‒40 °C and was found to be sensitive 
to 15N labeling (∆NO14N−15N = −30 cm−1, Figure S50). The 1554 
cm-1 N-O stretch was persistent up to 40 °C, matching the 

thermostability of 2-OTf and 2-BArF
4 observed by UV-Vis 

spectroscopy. The NO of 2-OTf is comparable to that of 
dicopper(II,II) -nitrosyl complexes [(XYL-O)CuII

2(-NO)]2+ 
(1536 cm1)28 and lower than that of the mixed-valent [CuICuII(-
NO•)] (1670 cm1)2+.29 
X-ray diffraction analysis of single crystals of 2-BArF

4 grown from 
a mixture of THF and pentane showed a dicopper -oxo, -nitrosyl 
complex [LCu2(-O)(-NO)][BArF

4]2 (Figure 3). Although it is 
difficult to distinguish -O2 ligand from -OH ligand 
crystallographically, further EPR spectroscopy study supports the 
assignment of -O2 (vide infra). The structure of 2-BArF

4 
suggested that the coupling of two {CuNO}11 resulted in the 
formation of N2O and a presumed [CuII-O-CuII]2+ species, which 
was then trapped by another equivalent of NO•. Complex 2-BArF

4 
is the first structurally characterized -oxo, -nitrosyl metal 
complex. The -nitrosyl ligand is disordered over two positions 
(see supporting information). In the major occupancy site (60 %), 
the N-O bond distance is 1.154(19) Å slightly shorter than that in 
[(XYL-O)CuII

2(-NO)]2+ (1.176(1) Å), the only other structurally 
characterized dinuclear copper nitrosyl complex.28 Each copper 
center also coordinates to one THF solvent molecule with a long 
Cu-O bond (Cu-O 2.395(6) and 2.406(9) Å), completing a pseudo-
square pyramidal geometry. The Cu-Cu distance is 2.844(2) Å, 
shorter than that observed in [(XYL-O)CuII

2(-NO)]2+ (3.140(1) 
Å).28 Close examination of the structural parameters of 2-BArF

4 

Figure 1. Synthesis of Py4DMB ligand (L), 1-BArF
4 and 

1•phenylacetylene-BArF
4. Solid-state structure of 1•phenylacetylene-

BArF
4 with thermal ellipsoids shown at 50% probability level. Two 

BArF
4 anions and all hydrogen atoms are omitted for clarity. Selected 

interatomic distances (Å): Cu-Cu 2.8249(5) Å, Cu-O (average) 2.757 
Å. 
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Figure 2. Reaction scheme (top) and corresponding UV-Vis spectra 
(left) for the formation of 2-BArF (−40 °C, 0.75 mM [Cu2], acetone). 
Right: frozen EPR spectrum and simulation of 2 (THF, 20 K, 0.5 mM).
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indicates the [Cu2(-O)(-NO)]2+ core is unsymmetric. 
Specifically, both the -nitrosyl and -oxo are closer to Cu2 (Cu2-
N1 1.987(13) Å; Cu2-O1 1.869(8) Å) than Cu1 (Cu1-N1 2.030(12) 
Å; Cu1-O1 1.892(8) Å), hinting at a valence localized electronic 
structure.30 We also synthesized and crystalized 2-OTf by treating 
1-OTf with NO•. X-ray diffraction data of 2-OTf show that the 
[Cu2(-O)(-NO)]2+ core is bisected by a mirror plane that goes 
through both coppers (Figure S49) and crystallographically 
overlays the -oxo with the -nitrosyl, which somewhat limits the 
insights into the precise bond metrics. Nonetheless, 2-OTf also 
shows an unsymmetric [Cu2(-O)(-NO)]2+ core (Cu1-O(NO) = 
1.943(5) Å; Cu2-O(NO) = 1.927(5) Å) and likewise suggests a 
valence-localized electronic structure. 

Further evidence for the valence-localized [Cu2(-O)(-NO)]2+ 
core was obtained by EPR analysis. A frozen solution EPR 
spectrum of 2-BArF

4 in THF at 20 K (Figure 2 right) displayed an 
axial signal (gx = gy = 2.055, gz = 2.270) with major hyperfine 
couplings to one 63/65Cu (I = 3/2) nucleus (Az(Cu) = 520 MHz). The 
additional superhyperfine structures around 325 mT could be 
modeled in several ways (see supporting information). No 
difference is observed between the EPR spectra of 2-BArF

4 and 
15NO-labeled 2-BArF

4 (Figure S58), indicating that the N atom on 
-NO contributes little to the superhyperfine structures. The EPR 
features of 2-BArF

4 is very similar to that of [CuIIICuII(-OH)]4+ 
complex,31 the only other reported mixed-valent dicopper(II,III) 
complex. The S = 1/2 EPR spectrum lends further support to the 
assignment of a -O2 instead of a -OH ligand, since both 
[CuII(-OH)(-NO)CuII]2+ and [CuI(-OH)(-NO•)CuII]2+ 
species are likely to be EPR silent due to the antiferromagnetic 
coupling of two Cu d9 centers or Cu d9 and NO• centers.32 Together, 
solution IR, frozen EPR, and X-ray crystallography data for 
complex 2 indicate a CuII, CuIII, O2, NO− formulation.

Figure 4. Reaction scheme (left) and corresponding UV-Vis spectra 
(right) (−40 °C, 0.75 mM [Cu2], 1:1 THF:acetone) for the synthesis of 
2-OTf via activation of NO2

. 
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In light of the seminal findings by Tolman33–36 and Karlin,6–8 a 
[CuII-O-CuII]2+ species produced by {CuNO}11 coupling is 
expected to react with NO• to form [CuII]-NO2 or mixed-valent 
[CuII(NO2)CuI]2+ (Scheme 1C).37,38 It is therefore surprising that 
the [LCu2(-O)(-NO)]2+ core could support a nitrosyl and oxo 
ligand at the same time without reductively eliminating NO2

. 
Given that the elimination of NO2

 is not favored in 2, we 
envisioned that a [Cu2(-O)(-NO)]2+ species could be accessed 
from the activation of NO2

 by Cu(II) and Cu(I) templated by L 
(Figure 4). To generate a [LCuICuII]3+ synthon, we first prepared a 
CuII precursor [LCuII][OTf]2 by treating L with CuIIOTf2. Full 
characterization of [LCuII][OTf]2, including UV-Vis, EPR, and X-
ray crystallography, is included in the supporting information. The 
CuII ion in [LCuII][OTf]2 occupies four pyridine donors to form a 

square planar complex (Figure S46). To our delight, we found that 
the in situ generated [LCuICuII]3+ synthon (1 eq [LCuII]OTf2 + 1eq 
[CuI(MeCN)4]OTf]) reacted with TBANO2 (TBA = 
tetrabutylammonium) in a 1:1 mixture of acetone and THF solvent 
(chosen to maximize the solubility of [LCuII]OTf2) at −40 °C to 
afford the [LCu2(-O)(-NO)]2+ core as identified by a strong band 
at 515 nm (Figure 4 right). The formation of [LCu2(-O)(-NO)]2+ 
was also confirmed with solution IR study (Figure S52). A plot of 
the yield of 2-OTf vs. different equivalent of TBANO2 shows a 
maximum at one equivalent TBANO2 per [LCuICuII]3+, indicating 
a 1:1 stoichiometry (Figure S26-S27). Interestingly, addition of 
TBANO2 to the dicopper(I,I) complex 1-OTf did not produce any 
change in the UV-Vis spectroscopy (Figure S28-S29). The lack of 
reaction between 1-OTf and NO2

 is perhaps due to the low Lewis 
acidity of Cu(I) compared to Cu(II). Typically, the activation of 
NO2

 is strongly influenced by the Lewis acidity while rather 
independent of the reducing ability of the bimetallic centers.2,3,39–41 

Scheme 2.
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To determine the role that the binucleating ligand L may have on 
the activation of NO2

, we prepared a mononuclear analog 3 by 
complexing CuIIOTf2 with two equivalents of 2,2'-
(phenoxymethylene)dipyridine (Scheme 2). X-ray structure of 3 
indicates the interaction of copper with both axial O donors are 
quite weak (Figure S47, Cu1-O1(OPh) 2.522 Å, Cu1-O1A(OTf) 
2.393(1) Å). Treatment of 3 with an equimolar amount of 
[CuI(MeCN)4OTf] and TBANO2 did not produce any spectroscopic 
changes expected for a [Cu2(-O)(-NO)]2+ core (Scheme 2, 
Figure S30-S32). Molecular orbital considerations in Scheme 2 
outline the importance of bimetallic cooperativity in the activation 
of the O-NO bond. The dimethoxylbenzene linker in L templates a 
close Cu…Cu distance (ca. 2.8 Å) and aligns the two Cu dx2-y2 
orbitals with the nitrite * orbital in the -2:2-NO2 binding mode, 
which weakens the ON-O bond in NO2

. While the -2:2-NO2 
binding mode is also possible with mononuclear analog 3, the 
commonly observed -1:2-NO2 binding mode is perhaps more 
favorable,37,38,42 since it allows the soft Cu(I) to interact with N 
atom and the hard Cu(II) to interact with O atoms. Since the 
otherwise favored -1:2-NO2 binding mode requires an 
intermetallic distance of at least 4.3 Å,37,38,42 the binuclear L 
prevents the formation of the inactive -1:2-NO2 sink, therefore 
making the O-NO bond cleavage reactivity somewhat unique to the 
linked bimetallic system.

Given that NO2
 and NO• are proposed as active oxidants in 

denitrifying methane oxidation,18 we are interested if the [Cu2(-
O)(-NO)]2+ core derived from NO2

 and NO• could engage in 
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oxidative reactions, such as oxygen atom transfer (OAT), hydrogen 
atom abstraction (HAA), and C-H hydroxylation. As followed by 
UV-Vis and NMR spectroscopy, we found that the complex 2-OTf 
readily transferred an oxygen atom to tricyclohexylphosphine 
(PCy3) to afford tricyclohexylphosphine oxide (OPCy3) in 
quantitative yield. Reactions of 2-OTf with hydrogen atom donor 
1,3-cyclohexadiene (BDE = 74.3 kcal/mol) and 1,4-
cyclohexadiene (BDE = 76.0 kcal/mol)43  at 40 °C furnished 
benzene in 43% and 86% yield respectively. Finally, treatment of 
2-OTf with isochroman44,45 at 40 °C gave oxidized product 1-
isochromanone in 78% yield, assuming the formation of each 1-
isochromanone consumed two equivalents of 2-OTf (Scheme 3). 
These results point to the ability of 2 to perform hydroxylation 
reaction through sequential HAA and radical rebound sequence.

Scheme 3.

2+

Cu Cu
N
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O

86%

PCy3O=PCy3

43%
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O
O
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In summary, we illustrate that activation of NO• and NO2
 at 

dicopper centers provides a dicopper(II,III) -oxo, -nitrosyl 
complex that engages in a range of oxidative reactivity, such as 
OAT, HAA, and C-H hydroxylation. Given that dicopper sites in 
proteins/enzymes could participate in the oxidation/oxygenation of 
many biological substrates, our findings suggest a new anaerobic 
pathway to access a dicopper -oxo moiety that may engage in 
challenging biochemical oxidation processes. The unique geometry 
of LCu2 prevents the reductive coupling of -oxo and -nitrosyl to 
form NO2

. Conversely, there is enough thermodynamic driving 
force to break the O-NO bond of nitrite at CuII and CuI supported 
by L. We expect that NO2

 could serve as a nucleophilic oxyl (O•) 
donor (NO2

   •  O•) to a large class of bimetallic 
complexes to form synthetically useful bimetallic -oxo 
complexes. This will be the subject of our future study. 
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