

Nucleosides, Nucleotides and Nucleic Acids

ISSN: 1525-7770 (Print) 1532-2335 (Online) Journal homepage: http://www.tandfonline.com/loi/lncn20

Synthesis and Antimicrobial Screening of Novel Thioglycosides and Acyclonucleoside Analogs Carrying 1,2,3-Triazole and 1,3,4-Oxadiazole Moieties

M. R. Aouad

To cite this article: M. R. Aouad (2016): Synthesis and Antimicrobial Screening of Novel Thioglycosides and Acyclonucleoside Analogs Carrying 1,2,3-Triazole and 1,3,4-Oxadiazole Moieties, Nucleosides, Nucleotides and Nucleic Acids, DOI: <u>10.1080/15257770.2015.1109098</u>

To link to this article: <u>http://dx.doi.org/10.1080/15257770.2015.1109098</u>

Published online: 25 Jan 2016.

	٢	
Ø	L	

Submit your article to this journal arsigma

View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lncn20

Synthesis and Antimicrobial Screening of Novel Thioglycosides and Acyclonucleoside Analogs Carrying 1,2,3-Triazole and 1,3,4-Oxadiazole Moieties

M. R. Aouad^{a,b}

^aDepartment of Chemistry, Faculty of Sciences, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; ^bLaboratoire de Chimie & Electrochimie des Complexes Métalliques (LCECM) USTO-MB, Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, B.p. 1505 El Mnouar, Oran, Algeria

ABSTRACT

The solvent-free 1,3-dipolar cycloaddition reaction of dimethylacetylene dicarboxylate (1) with 2-chlorophenyl azide (2) afforded 1,2,3-triazole diester 3 that upon hydrazinolysis, furnished the corresponding bis-acid hydrazide 4. The treatment of compound 4 with carbon disulfide in a refluxing potassium hydroxide solution furnished the desired bis-1,3,4-oxadiazole-2-thione 5 tethered to a 1,2,3-triazole moiety. The respective SOx-glycosides 9-11 were obtained by glycosylation of bis-oxadiazole 5 with 2,3,4,6-tetra-O-acetyl- α -d-glucopyranosyl bromide (**6**), 2,3,4,6-tetra-O-acetyl- α -d-galactopyranosyl bromide (**7**), and 2-acetamido-3,4,6-tri-Oacetyl-2-deoxy- α -d-glucopyranosyl chloride (8) in dry acetone in the presence of Et₃N, which acted as a base. However, alkylation of 5 with halogeno-alkanol 12 or 13, chloroglycerol 14, bromoethers 20 or 21, and epichlohydrin 22 in the presence of K₂CO₃ in DMF yielded the corresponding acyclonucleoside analogs 16-18 and 23–25. The isopropylidenes 19 and acetyl derivatives 26–28 of the products were also prepared. The newly synthesized compounds were characterized by ¹H NMR, ¹³C NMR, 2D NMR, and mass spectra. The compounds were screened for their antibacterial and antifungal activities. A number of the tested compounds exhibited significant antimicrobial activity compared to the reference drugs.

ARTICLE HISTORY

Received 8 October 2015

KEYWORDS

1,2,3-Triazoles; 1,3,4-oxadiazoles; thioglycosides; acyclonucleoside analogs; antimicrobial activity

Introduction

Considerable attention has been devoted to the synthesis and biological activity of thioglycosides.^[1] In particular, glycosylthioheterocycles were recently extensively employed as glycosyl donors in glycosidation reactions and as potential therapeutics and enzyme inhibitors.^[2–5] The interest in the chemotherapeutical properties of acyclonucleoside analogs has steadily increased since the discovery of acyclovir.^[6] The

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lncn © 2016 Taylor & Francis Group, LLC

CONTACT M. R. Aouad Communication means and the set of the set o

2 👄 M. R. AOUAD

design of novel acyclonucleoside analogs, such as HBG,^[7] DHPG, iso-NDG,^[8–11] penciclovir^[7] and its oral form famiciclovir, has commanded the world-wide attention of many researchers due to their potential antiviral activity.^[7,12] However, five-membered heterocycles with three heteroatoms, such as 1,2,3-triazoles and 1,3,4-oxadiazoles, were reported to exhibit various pharmacological activities includ-ing antimicrobial, anticancer, anti-inflammatory and antiviral properties.^[13–15] In our ongoing interest in the synthesis of thioglycoside-based heterocycles^[16,17] and acyclonucleoside analogs^[18,19] based on recent interest in glycosylsulfanyl bearing nitrogen containing heterocyles and their acyclonucleoside analogs, we report the synthesis of novel 1,2,3-triazole system based 1,3,4-oxadiazole thioglycosides and their acyclic analogs, as well as the evaluation of their antimicrobial activity.

Results and discussion

Chemistry

The 1,3-dipolar cycloaddition reaction of dimethylacetylene dicarboxylate 1 with 2-chloroazidobenzene 2 under solvent-free conditions at 80–90°C afforded the corresponding 1,2,3-triazole diester 3 in 96% yield within two minutes (Scheme 1). The synthesis of compound 3 has been previously reported by Bouasla et al.^[20] using the same 1,3-dipolar cycloaddition in the presence of dichloromethane as solvent, under both conventional and microwave methods. The reaction required regular stirring for nine days to afford 62% yield, while under MWI 80% yield was obtained after 10 minutes. The aryl azide was prepared *via* the diazotization of *p*-chloroaniline in the presence of a sodium nitrite solution in acidic media followed by addition of sodium azide according to a previously reported protocol.^[21] This optimized method constitutes an efficient eco-friendly method for the synthesis of aromatic 1,2,3-triazoles in quantitative yields in a very short period of time with a simple purification workup.

The ¹H NMR spectrum of compound **3** displayed two characteristic singlets at 3.84 and 3.88 ppm corresponding to the two nonequivalent methoxy groups and four aromatic protons for di-substituted benzene between 7.64 and 7.87 ppm. However, the ¹³C NMR spectrum displayed no signals in the sp-carbon regions, which confirmed the success of the cycloaddition reaction. In addition, two additional signals appeared at 158.50 and 159.79 ppm, which were characteristic of the two ester carbonyl carbons (C=O).

The treatment of 1,2,3-triazole bis-ester **3** with hydrazine hydrate in refluxing ethanol afforded the expected bis-acid hydrazide **4** in excellent yield (90%) *via* a nucleophilic acyl substitution reaction (Scheme 1). The ¹H NMR of compound **4** indicated the disappearance of the two methoxy groups below 4 ppm and the appearance of two new broad singlets at 4.70 and 10.61, which were attributed to the NH₂ and NH groups, respectively. However, the ¹³C NMR spectrum also confirmed the success of the hydrazinolysis reaction based on the disappearance of the two methoxy signals from their chemical shift regions and the upfield shifting of

Scheme 1.

the two carbonyls from the ester moieties (158.50 and 159.79 ppm) to the amide moieties (156.33 and 157.81 ppm).

The thermal condensation of bis-acid hydrazide **4** with carbon disulfide in the presence of potassium hydroxide in ethanol yielded the desired bis-1,3,4-oxadiazole-2-thione **5** tethered to the 1,2,3-triazole nucleus in 84% yield (Scheme 1). The ¹H NMR analysis indicated that the two broad singlets at 12.10 and 15.01 ppm corresponded to the unsymmetrical NH's of the thione isomer. The ¹³C NMR spectrum confirmed the formation of the oxadiazole ring in its thione form based on the appearance of two nonequivalent C=S peaks at 177.82 and 177.94 ppm.

Thioglycosilation was carried out through the coupling of **5** with two equivalents of 2,3,4,6-tetra-*O*-acetyl- α -d-glucopyranosylbromide (**6**), 2-acetamido-3,4,6-tri-*O*-acetyl-2-deoxy- α -d-glucopyranosyl chloride (**7**) and 2,3,4,6-tetra-*O*-acetyl- α -d-galactopyranosylbromide (**8**) in the presence of triethylamine as the base and acetone as the solvent to yield the corresponding bis-(SOx-glycosides) **9–11** in 82–90% (Scheme 1).

The structures of the synthesized thioglycosides have been confirmed based on their ¹H and ¹³C NMR spectra. Therefore, the ¹H NMR spectra of **9–11** indicated

4 👄 M. R. AOUAD

the disappearance of the NH protons of their precursor **5** and the appearance of signals at $\delta_{\rm H}$ 1.81–2.20 ppm belonging to the eight methyl acetate group (OAc), which confirmed the presence of two glycosyl residues. The heteromultiple bond correlation from the ¹H-¹H DQFCOSY and ¹H-¹³C HMQC experiments also facilitated the spectral assignment of the sugar protons and carbons. Therefore, the anomeric protons of **9–11** were assigned as two doublets at 5.49–5.47 ppm for H_{1a} and 5.62– 6.00 ppm for H_{1b} with coupling constant values of $J_{1',2'} = 9.9-10.2$ Hz, confirming the presence of two glycosyl residues in the β -configuration (see experimental part).

The alkylation of bis-1,3,4-oxadiazole **5** with 2.2 equivalents of bromoethanol (**12**), chloropropanol (**13**), 2,3-dihydroxy-1-chloropropane (**14**) or the protected derivative 2,3-O-isopropylidene-1-O-(*p*-tolylsulfonyl)-glycerol (**15**) in the presence of the DMF solvent and potassium carbonate, which acted as the deprotonating basic catalyst, afforded the corresponding S-acyclic analogs **16–19** in 81–88% yield. In addition, isopropylidenation of bis-glycerol **18** with acetone in sulfuric acid afforded the corresponding protected acyclonucleoside analog **19** whose deprotection in refluxing 70% acetic acid yielded compound **18** in 78% yield (Scheme 2).

Scheme 2.

The structures of the S-acyclonucleoside analogs 16-18 were confirmed by the presence of characteristic absorption bands at 3267-3414 cm⁻¹ corresponding to the OH of the acyclic side chains. The ¹H NMR spectrum of compound 16 displayed two characteristic triplets at $\delta_{\rm H}$ 5.03 and 5.07 ppm due to the two OH protons in addition to two triplets at δ_H 3.31 and 4.19 ppm for the two unsymmetrical SCH₂ groups. In addition, the ¹³C NMR spectrum of compound 16 displays these nonequivalent SCH₂ carbons at $\delta_{\rm C}$ 36.40 and 51.60 ppm. In the ¹H NMR spectrum of compound 18, the presence of four characteristic singlets between $\delta_{\rm H}$ 4.79 and 5.15 ppm, which correspond to the four OH protons, confirmed the incorporation of two glycerol side chains. The success of the isopropylidenation reaction of compound 18 has been confirmed by ¹H NMR analysis where the appearance of four characteristic singlets in the upper field region at $\delta_{\rm H}$ 1.35– 1.44 ppm corresponded to the four methyl groups on the two dioxalane rings. The peaks corresponding to the same methyl groups were observed at $\delta_{\rm C}$ 22.63– 29.70 ppm in the ¹³C NMR spectrum. However, when compound 5 was treated with alkylating agents, such as bromoethylmethylether (20), bromoethylethylether (21), and epichlorohydrin (22), using the same procedure, thioether acyclonucleoside analogs 23, 24, and S-methyloxirane 25 were obtained in 93% yields (Scheme 3).

The structure of compound 23 has been deduced by ¹H NMR analysis, which revealed the presence of two triplets at $\delta_{\rm H} = 3.40$ and 4.29 ppm and two singlets at $\delta_{\rm H} = 3.25$ and 3.27 ppm that are characteristic of two SCH₂ and two OCH₃ groups, respectively. The ¹³C NMR spectrum displayed signals at $\delta_{\rm C}$ = 33.09 and 48.64 ppm, which are characteristic of the two nonequivalent SCH₂ carbons. The ¹H NMR spectrum of 25 displayed a multiplet signal at $\delta_{\rm H}$ 5.88– 5.97 ppm for the two CHO groups of the two epoxypropyl moieties in addition to the two triplets at $\delta_{\rm H}$ 3.76 and 4.94 ppm corresponding to the diastereotropic protons of the two S-CH₂ groups. The treatment of hydroxylated acyclic nucleoside analogs 16–18 with acetic anhydride in pyridine at 0°C afforded their acetylated analogs 26-28. The disappearance of the OH protons in the ¹H NMR spectra of compounds 26-28 and the appearance of characteristic singlet peaks in the down field region at $\delta_{\rm H}$ 2.00–2.70 ppm were due to the methyl acetate protons, confirming the success of the acetylation reaction. Their ¹³C NMR spectra confirmed the presence of acetate groups based on the appearance of characteristic signals at $\delta_{\rm C}$ 20.65–21.81 ppm and 170.37–172.05 ppm due to the CH₃ and (C=O) groups, respectively.

The appearance of protons and carbons of glycopyranosyl moieties and acyclic side chains in different chemical shifts confirmed the nonequivalence of the two oxadiazoles rings. This could presumably be due to the restricted rotation around the C=C bond of the 1,2,3-triazole ring which could generates different steric rearrangements of the two oxadiazoles in the geometric cis and trans isomers. Moreover, the anisotropic effect generated by the 2-chlorophenyl ring also affects the chemical shifts of all protons and carbons.

Scheme 3.

Antibacterial and antifungal activity

Both microbial studies were assessed by minimum inhibitory concentration (MIC) using the broth dilution method.^[22–24] Data for the preliminary antimicrobial activities expressed as MIC values are summarized in Table 1. Most of the tested compounds exhibited high inhibition activities at MIC values of $4-31.25 \ \mu g/ml$. Dimethyl 1-(2-chlorophenyl)-1*H*-1,2,3-triazole-4,5-dicarboxylate (**3**) exhibited good antibacterial activity against all Gram positive bacteria at a MIC value of 16 $\mu g/ml$. The evaluation of the antimicrobial activity of bis-acid hydrazide **4** and bis-oxadiazole **5** revealed that these compounds are more effective against Gram-positive bacterial strains and fungal species at a MIC of $4-16 \ \mu g/ml$. However, all of the bacterial strains at MIC values of $4-16 \ \mu g/ml$ and a loss of activity against the tested fungal species. In general, the highest antibacterial activity was exhibited by the hydroxylated acyclonucleoside analogs **16–18** against all of

	Gram-l	Positive Orga	nisms ^a	Gram-Negative Organisms ^b		anisms ^b	Fungi ^c	
Compounds	Sp	Bs	Sa	Ра	Ec	Кр	Af	Са
3	16	16	16	31.25	31.25	31.25	125	250
4	8	4	4	31.25	31.25	31.25	16	16
5	16	16	16	31.25	31.25	31.25	8	4
9	8	16	4	8	4	8	62.5	62.5
10	8	16	8	8	8	16	62.5	125
11	4	16	4	8	4	16	62.5	125
16	4	8	8	8	8	8	16	16
17	8	8	4	8	4	8	16	16
18	4	4	4	8	4	8	16	16
19	16	31.25	16	62.5	62.5	62.5	125	62.5
23	62.5	62.5	62.5	31.25	31.25	31.25	16	16
24	125	62.5	62.5	31.25	31.25	31.25	16	16
25	62.5	62.5	62.5	31.25	31.25	31.25	16	16
26	31.25	31.25	31.25	62.5	62.5	62.5	16	31.25
27	31.25	31.25	31.25	62.5	125	62.5	31.25	16
28	31.25	31.25	31.25	31.25	62.5	31.25	31.25	16
Ciprofloxacin	≤5	≤1	≤5	≤5	≤1	≤1	_	_
Fluconazole	—	—	—	—	—	—	≤1	≤1

Table 1. Antimicrobial act	vity expressed	as MIC (μ g/mL).
----------------------------	----------------	-----------------------

Notes: ^a: Gram-positive bacteria: *Streptococcus pneumonia* (RCMB 010010, Sp), *Bacillus subtilis* (RCMB 010067, Bs), *Staphylococcus aureus* (RCMB 010025, Sa); ^b: Gram-negative bacteria: *Pseudomonas aeuroginosa* (RCMB 010043, Pa), *Escherichia coli* (RCMB 010052, Ec), *Klebsiella pneumonia* (RCMB 010058, Kp); ^c: yeasts: *Aspergillus fumigatus* (RCMB 02568, Af), *Candida albicans* (RCMB 05036, Ca).

bacterial strains at MIC values of $4-8 \mu g/ml$, and compounds **19**, **23–28** exhibited weak antibacterial activities at lower concentrations. Antifungal screening revealed that all of the acyclonucleoside analogs **16–19** and **23–28** exhibited moderate antifungal inhibition against all of the fungal species at MIC values of $16-31.25 \mu g/ml$. Therefore, the antimicrobial activity and structure activity relationship indicated that the cyclization of bis-acid hydrazide **4** to the corresponding oxadiazole derivative **5** resulted in higher inhibition activities against Gram-positive bacterial strains and fungal species. In addition, the incorporation of cyclic sugar moieties to the oxadiazole ring via a thioglycosidic linkage resulted in higher antibacterial activity. However, antimicrobial screening confirmed that the acyclic nucleoside analogs with free hydroxyl groups exhibited improved activity compared to the corresponding ethers, isopropylidene or acetylated analogs against all of the bacterial strains, indicating the influence of the free hydroxyl groups in the acyclic side chains.

Conclusion

This study reports the synthesis and characterization of novel thioglycosides and acyclonucleoside analogs carrying 1,2,3-triazole and 1,3,4-oxadiazole moieties in one scaffold, as potential antimicrobial agents. The antimicrobial screening showed that some of the synthesized compounds displayed significant antimicrobial activity.

Experimental

General. The melting points were determined on a Melt-temp apparatus and are uncorrected. TLC was performed on Merck silica gel 60 F254, and the spots were

visualized by UV light absorption and/or treatment with a solution of 10% H₂SO₄ in aqueous methanol followed by heating. The IR spectra were measured using potassium bromide pellets on a Perkin-Elmer 1430 series FT-IR spectrometer. The ¹H NMR spectra were recorded on an Avance Bruker NMR spectrometer at 400–600 MHz, and the ¹³C NMR spectra were recorded on the same instrument at 100–150 MHz with TMS as the internal standard. The 2D ¹H-¹H DQFCOSY and ¹H-¹³C HMQC experiments were also recoded. Elemental analyses were performed using an elementary analyzer system (i.e., GmbH-vario EL III Element Analyzer). The LC-MS spectra were measured by HPLC-MS (Ion trap) from scientific thermo.

General procedure for the synthesis of dimethyl 1-(2-chlorophenyl)-1*H*-1,2,3triazole-4,5-dicarboxylate (3). Dimethyl acetylenedicarboxylate (2.13 g, 15 mmol) and 1-azido-2-chlorobenzene (3.06 g, 20 mmol) were heated to 80–90°C for 2 minutes. The reaction mixture was cooled, and then, ether was added to precipitate the product. The solid was filtered and washed with ether to give **3** in 96% yield (from EtOH), mp: 113–114°C. FT-IR (\sqrt{max} , KBr/cm⁻¹): 1564 (C=C), 1729 (C=O), 2930– 2985 (CH₃), 3074 (C-H Ar). ¹H NMR (400 MHz, DMSO-*d*₆), δ_H 3.84 (3H, s, OCH₃), 3.88 (3H, s, OCH₃), 7.46–7.63 (m, 2 H, Ar-H), 7.73–7.86 (m, 2 H, Ar-H). ¹³C NMR (100 MHz, DMSO-*d*₆)), δ_C 52.80 (OCH₃), 53.89 (OCH₃), 122.43, 122.52, 124.09, 128.77, 134.67, 136.16, 153.90, 156.40 (Ar-C), 158.50, 159.79 (C=O). Anal. Calcd. for C₁₂H₁₀ClN₃O₄: C, 48.75; H, 3.41; N, 14.21. Found: C, 48.60; H, 3.56; N, 14.08. MS (ESI) *m/z*: 296.03 [M+H]⁺.

General procedure for the synthesis of 1-(2-chlorophenyl)-1*H*-1,2,3-triazole-4,5-dicarbohydrazide (4). A mixture of compound 3 (6 g, 20 mmol) and hydrazine hydrate (2 g, 40 mmol) in ethanol (50 mL) was heated under reflux for 5 hours. After cooling, ethanol was removed under reduced pressure to give 4 in 92% yield (from EtOH), mp: 278–279°C. FT-IR (\sqrt{max} , KBr/cm⁻¹): 1570 (C=C), 1684 (C=O), 3062 (C-H Ar), 3250–3387 (NH, NH₂). ¹H NMR (400 MHz, DMSO-*d*₆), δ_H 4.70 (4H, br s, **NH**₂), 7.41–7.58 (m, 2 H, Ar-H), 7.66–7.80 (m, 2 H, Ar-H), 10.61 (2H, br s, NH). ¹³C NMR (100 MHz, DMSO-*d*₆), δ_C 123.24, 123.03, 124.54, 128.70, 134.83, 137.14, 153.22, 155.06 (Ar-C), 156.33, 157.81 (C=O). Anal. Calcd. for C₁₀H₁₀ClN₇O₂: C, 40.62; H, 3.41; N, 33.16. Found: C, 40.53; H, 3.52; N, 33.32. MS (ESI) *m/z*: 296.06 [M+H]⁺.

General procedure for the synthesis of 5,5'-(1-(2-chlorophenyl)-1*H*-1,2,3triazole-4,5-diyl)bis(1,3,4-oxadiazole-2(3*H*)-thione) (5). To a solution of acid hydrazide 4 (0.327g, 1 mmol) in ethanol (20 ml), potassium hydroxide (0.12 g, 2.2 mmol) in water (5 ml) and carbon disulfide (0.76 g, 10 mmol) were added. The reaction mixture was heated under reflux for 6 hr. The mixture was cooled, diluted with cold water (10 ml) and acidified with dilute HCl. The resulting precipitate was collected by filtration, washed with water, and recrystallized to give the desired compound 5 in 84% yield (from EtOH) as yellow needles. mp: 244–245°C. FT-IR (\sqrt{max} , KBr/cm⁻¹): 1296 (C=S), 1557 (C=C), 1626 (C=N), 3082 (C-H Ar), 3297–3328 (NH). ¹H NMR (600 MHz, DMSO- d_6), δ_H 7.56–7.70 (m, 2 H, Ar-H), 7.79–7.89 (m, 2 H, Ar-H), 12.10 (0.5H, br s, NH), 15.02 (1.5H, br s, NH). ¹³C NMR (150 MHz, DMSO- d_6), δ_C 123.62, 123.92, 124.92, 129.26, 135.37, 138.02, 154.71, 155.28 (Ar-C), 177.82, 177.94 (C=S). Anal. Calcd. for C₁₂H₆ClN₇O₂S₂: C, 37.95; H, 1.59; N, 25.82. Found: C, 37.76; H, 1.43; N, 25.60. MS (ESI) *m/z*: 379.94 [M+H]⁺.

General procedure for the synthesis of thioglycosides (SOx-glycosides) 9– 11. To a stirred solution of compound 5 (0.379 g, 1 mmol) and triethylamine (0.22 g, 2.2 mmol) in dry acetone (25 ml), the appropriate glycosyl halide (2,3,4,6-tetra-O-acetyl- α -d-glucopyranosylbromide (6), 2-acetamido-3,4,6-tri-Oacetyl-2-deoxy- α -d-glucopyranosyl chloride (7) and 2,3,4,6-tetra-O-acetyl- α -dgalactopyranosylbromide (8)) (2.2 mmol) was added portion wise followed by stirring overnight. The reaction mixture was filtered, washed with acetone, evaporated under reduced pressure, and recrystallized from ethanol to afforded Sox-glycosides 9–11.

2,2'-(5,5'-(1-(2-Chlorophenyl)-1H-1,2,3-triazole-4,5-diyl)bis

(1,3,4-oxadiazole-5,2-diyl))bis-(sulfanediyl)bis(2,3,4,6-tetra-O-acetyl-

 β -D-thioglucopyranoside) (9). This compound was obtained as colorless crystals in 88% yield (from EtOH). R_f: 0.35 (ethylacetate/n-hexane 2:1); mp: 197-198°C; FT-IR (\sqrt{max} , KBr/cm⁻¹): 1551 (C=C), 1614 (C=N), 1732 (C=O), 3048 (C-H Ar). ¹H NMR (600 MHz, CDCl₃), δ_H 1.89, 1.98, 2.01, 2.02, 2.05, 2.06, 2.09, 2.11 (8s, 24 H, 8 OAc), 3.90-3.97 (m, 1 H, H-5a), 4.02-4.07 (m, 1 H, H-5b), 4.19 (dd, 1 H, $J_{6,5} = 3.6$ Hz, $J_{gem} = 12.4$ Hz, H-6a), 4.24 (dd, 1 H, $J_{6,5} = 3.6$ Hz, $J_{gem} = 12.4$ Hz, H-6b), 4.27 (dd, 1 H, $J_{6,5} = 6.9$ Hz, $J_{gem} = 12.4$ Hz, H-6 a), 4.35 (dd, 1 H, $J_{6',5} =$ 6.9 Hz, $J_{\text{gem}} = 12.4$ Hz, H-6 b), 5.10 (dd, 1 H, $J_{4,3} = 9.3$ Hz, $J_{4,5} = 10.2$ Hz, H-4a), 5.17 (dd, 1 H, $J_{2,1} = 10.2$ Hz, $J_{2,3} = 9.3$ Hz, H-2a), 5.25 (dd, 1 H, $J_{4,3} = 9.3$ Hz, $J_{4,5} = 10.2$ Hz, H-4b), 5.36 (t, 1 H, $J_{3,2} = J_{3,4} = 9.3$ Hz, H-3a), 5.39 (t, 1 H, J_{3,2} = J_{3,4} = 9.3 Hz, H-3a), 5.39 (t, 1 H, J_{3,2} = J_{3,4} = 9.3 9.6 Hz, $J_{3,4} = 9.3$ Hz, H-3b), 5.64 (d, 1 H, $J_{1,2} = 10.2$ Hz, H-1a), 5.69 (d, 1 H, $J_{1,2} =$ 9.9 Hz, H-1b), 5.86 (t, 1 H, $J_{2,1} = 9.9$ Hz, $J_{2,3} = 9.6$ Hz, H-2b), 7.32–7.40 (m, 2 H, Ar-H), 7.76–7.83 (m, 2 H, Ar-H). ¹³C NMR (150 MHz, CDCl₃), δ_C 20.66, 20.75, 20.79, 21.32 (CH₃CO), 62.68 (C-6b), 63.24 (C-6a), 66.60 (C-4b), 68.81 (C-4a), 69.85 (C-2a), 71.17 (C-2b), 72.77 (C-3a), 73.42 (C-3b), 75.60 (C-5b), 77.90 (C-5a), 83.62 (C-1a), 84.70 (C-1b), 121.35, 122.90, 123.62, 128.86, 135.30, 135.84, 150.94, 157.21 (Ar-C), 167.50, 168.73, 169.84, 170.14, 170.70, 170.94, 171.70 (CH₃CO). Anal. Calcd. for C₄₀H₄₂ClN₇O₂₀S₂: C, 46.24; H, 4.07; N, 9.42. Found: C, 46.35; H, 3.99; N, 9.31. MS (ESI) *m/z*: 1040.22 [M+H]⁺.

2,2'-(5,5'-(1-(2-Chlorophenyl)-1H-1,2,3-triazole-4,5-diyl)bis

(1,3,4-oxadiazole-5,2-diyl))bis-(sulfanediyl)bis(2-acetamido-2-deoxy-3,4,6-tri-O-acetyl- β -D-glucopyranoside) (10). This compound was obtained as colorless crystals in 85% yield (from EtOH). **R**_f: 0.28 (ethylacetate/*n*-hexane 4:1); mp: 221– 222°C. FT-IR ($\sqrt{\max}$, KBr/cm⁻¹): 1562 (C=C), 1619 (C=N), 1727 (C=O), 3072 (C-H Ar). ¹H NMR (600 MHz, CDCl₃), δ_H 1.85, 1.90, 1.97, 1.99, 2.01, 2.04, 2.05 (7s, 24 H, 2 NAc, 6 OAc), 3.73–3.99 (m, 1 H, H-5a), 3.91–3.98 (m, 1 H, H-5b), 4.07 (dd, 1 H, $J_{6,5}$ = 3.6 Hz, J_{gem} = 12.9 Hz, H-6a), 4.21 (dd, 1 H, $J_{6,5}$ = 3.6 Hz, J_{gem} = 12.9 Hz, H-6b), 4.26 (dd, 1 H, $J_{6',5}$ = 6.7 Hz, J_{gem} = 12.9 Hz, H-6'a), 4.28 (dd, 1 H, $J_{6,5}$ = 6.7 Hz, J_{gem} = 12.9 Hz, H-6'b), 4.34 (ddd, 1 H, $J_{2,1}$ = 10.2 Hz, $J_{2,3}$ = 9.6 Hz, $J_{2,NH}$ = 7.9 Hz, H-2a), 4.54 (ddd, 1 H, $J_{2,1}$ = 10.2 Hz, $J_{2,3}$ = 9.9 Hz, $J_{2,NH}$ = 7.9 Hz, H-2b), 5.11 (t, 1 H, $J_{4,3} = J_{4,5} = 9.6$ Hz, H-4a), 5.25 (t, 1 H, $J_{3,2} = J_{3,4} = 9.6$ Hz, H-3a), 5.45 (dd, 1 H, $J_{3,2} = 9.9$ Hz, $J_{3,4} = 9.6$ Hz, H-3b), 5.49 (d, 1 H, $J_{1,2} = 10.2$ Hz, H-1a), 5.69 (dd, 1 H, $J_{4,3} = 9.6$ Hz, $J_{4,5} = 9.9$ Hz, H-4b), 6.00 (d, 1 H, $J_{1,2} = 10.2$ Hz, H-1b), 6.55 (d, 1 H, $J_{NH,2} = 7.9$ Hz, NHAc), 7.38–7.47 (m, 2 H, Ar-H), 7.60–7.65 (m, 1 H, Ar-H), 7.72 (d, 1 H, $J_{NH,2} = 7.9$ Hz, NHAc), 7.81–7.87 (m, 1 H, Ar-H). ¹³C NMR (150 MHz, CDCl₃), $\delta_C = 20.45$, 20.65, 20.77, 20.87 (CH₃CO), 52.78 (C-2a), 53.90 (C-2b), 62.74 (C-6a), 63.85 (C-6b), 67.19 (C-4b), 68.36 (C-4a), 70.64 (C-3b), 73.93 (C-3´a), 74.23 (C-5b), 75.87 (C-5a), 84.70 (C-1a), 85.07 (C-1`b), 121.96, 123.08, 123.81, 128.31, 136.22, 136.72, 150.31, 157.64 (Ar-C), 169.47, 169.87, 170.44, 170.94, 171.33, 171.48, 171.76, 172.05 (CH₃CO). Anal. Calcd. for C₄₀H₄₄ClN₉O₁₈S₂: C, 46.27; H, 4.27; N, 12.14. Found: C, 46.39; H, 4.42; N, 12.30. MS (ESI) *m/z*: 1038.15 [M+H]⁺.

2,2'-(5,5'-(1-(2-Chlorophenyl)-1H-1,2,3-triazole-4,5-diyl)bis (1,3,4-oxadiazole-5,2-diyl))bis-(sulfanediyl)bis(2,3,4,6-tetra-O-acetyl-β-Dthiogalactopyranoside) (11). This compound was obtained as colorless crystals in 90% yield (from EtOH). R_f: 0.43 (ethylacetate/n-hexane 2:1); mp: 170-171°C. FT-IR (\sqrt{max} , KBr/cm⁻¹): 1566 (C=C), 1631 (C=N), 1739 (C=O), 3051 (C-H Ar). ¹H NMR (600 MHz, CDCl₃), δ_H 1.81, 1.87, 1.92, 1.96, 1.99, 2.03, 2.10, 2.20 (8s, 24 H, 8 OAc), 4.03-4.11 (m, 6 H, H-5a, H-5b, H-6a, H-6b, H-6a, H-6b), 5.11 (dd, 1 H, $J_{3,2} = 9.6$ Hz, $J_{3,4} = 4.2$ Hz, H-3b), 5.15 (dd, 1 H, $J_{3,2} = 9.2$ Hz, $J_{3,4} =$ 4.2 Hz, H-3a), 5.48 (dd, 1 H, $J_{2,1} = 10.2$ Hz, $J_{2,3} = 9.2$ Hz, H-2a), 5.51 (d, 1 H, $J_{4,3}$ = 4.2 Hz, H-4a), 5.57 (d, 1 H, $J_{4,3}$ = 4.2 Hz, H-4b), 5.62 (d, 1 H, $J_{1,2}$ = 9.9 Hz, H-1b), 5.74 (d, 1 H, $J_{1,2} = 10.2$ Hz, H-1a), 5.90 (dd, 1 H, $J_{2,1} = 9.9$ Hz, $J_{2,3} = 9.6$ Hz, H-2b), 7.33-7.39 (m, 2 H, Ar-H), 7.72-7.80 (m, 2 H, Ar-H). ¹³C NMR (150 MHz, CDCl₃), δ_C 20.65, 20.75, 20.79, 21.02, 21.42 (CH₃CO), 62.47 (C-6a), 62.93 (C-6b), 66.92 (C-2a), 67.32 (C-2b), 68.72 (C-4a, C-4b), 71.84 (C-3a), 72.96 (C-3b), 73.04 (C-5a), 76.24 (C-5b), 84.82 (C-1a), 86.56 (C-1b), 121.48, 122.61, 123.80, 126.31, 126.85, 127.08, 135.62, 136.07 (Ar-C), 167.02, 168.32, 169.77, 170.24, 170.46, 171.85 (CH₃CO). Anal. Calcd. for C₄₀H₄₂ClN₇O₂₀S₂: C, 46.24; H, 4.07; N, 9.42. Found: C, 46.39; H, 3.93; N, 9.56. MS (ESI) *m/z*: 1040.14 [M+H]⁺.

General procedure for the synthesis of acyclonucleoside analogs 16–19. A solution of compound 5 (0.379 m, 1 mmol) in dry DMF (15 ml) and potassium carbonate (0.30 g, 2.2 mmol) was stirred for two hours, and then, the appropriate alkylating agent 12–15, 20–22 (2.2 mmol) was added. The stirring was continued overnight. The reaction mixture was poured onto crushed ice, and the obtained product was washed with water, dried, and recrystallized from ethanol to yield the corresponding acyclonucleoside analog.

2,2'-(5,5'-(1-(2-Chlorophenyl)-1H-1,2,3-triazole-4,5-diyl)bis

(1,3,4-oxadiazole-5,2-diyl))bis-(sulfanediyl)diethanol (16). This compound was obtained in 88% yield (from EtOH) as colorless crystals. mp: 172–173°C. FT-IR ($\sqrt{\text{max}}$, KBr/cm⁻¹): 1572 (C=C), 1609 (C=N), 3026 (C-H Ar), 3267–3370 (OH). ¹H NMR (600 MHz, DMSO-*d*₆), δ_H 3.31 (t, 2 H, *J* = 6.0 Hz, SCH₂), 3.69–3.72 (q, 2 H, CH₂O), 3.77–3.80 (q, 2 H, CH₂O), 4.19 (t, 2 H, *J* = 6.0 Hz, SCH₂), 5.03 (t, 1 H, *J* = 6.0 Hz, OH), 5.07 (t, 1 H, *J* = 6.0 Hz, OH), 7.43–7.87 (m, 4 H, Ar-H).

¹³C NMR (150 MHz, DMSO-*d*₆), δ_C 36.40 (SCH₂), 51.60 (SCH₂), 59.72 (CH₂O), 60.36 (CH₂O), 127.60, 130.21, 130.93, 131.00, 131.58, 131.92, 152.98, 159.47 (Ar-C, C=N). Anal. Calcd. for C₁₆H₁₄ClN₇O₄S₂: C, 41.07; H, 3.02; N, 20.95. Found: C, 40.88; H, 3.19; N, 20.74. MS (ESI) *m/z*: 468.07 [M+H]⁺.

2,2'-(5,5'-(1-(2-Chlorophenyl)-1*H*-1,2,3-triazole-4,5-diyl)bis(1,3,4oxadiazole-5,2-diyl))bis-(sulfanediyl)dipropanol (17). This compound was obtained in 86% yield (from EtOH) as colorless crystals. mp: 190–191°C. FT-IR (\sqrt{max} , KBr/cm⁻¹): 1561 (C=C), 1595 (C=N), 3072 (C-H Ar), 3284–3350 (OH). ¹H NMR (600 MHz, DMSO-*d*₆), δ_H 1.84–1.87 (m, 2 H, CH₂<u>C</u>H₂CH₂), 1.93–1.96 (m, 2 H, CH₂<u>C</u>H₂CH₂), 3.28 (t, 2 H, *J* = 6.0 Hz, SCH₂), 3.47 (t, 2 H, *J* = 6.0 Hz, CH₂O), 3.52 (t, 2 H, *J* = 6.0 Hz, CH₂O), 4.18 (t, 2 H, *J* = 6.0 Hz, SCH₂), 4.60 (bs, 2 H, 2 × OH), 7.44–7.84 (m, 4 H, Ar-H). ¹³C NMR (150 MHz, DMSO-*d*₆), δ_C 30.38 (CH₂<u>C</u>H₂CH₂), 32.61 (CH₂<u>C</u>H₂CH₂), 32.71 (SCH₂), 45.99 (SCH₂), 58.04 (CH₂O), 59.44 (CH₂O), 127.63, 130.24, 130.96, 131.57, 131.95, 152.11, 159.47 (Ar-C, C=N). Anal. Calcd. for C₁₈H₁₈ClN₇O₄S₂: C, 43.59; H, 3.66; N, 19.77. Found: C, 43.73; H, 3.52; N, 20.03. MS (ESI) *m/z*: 496.01 [M+H]⁺.

3,3'-(5,5'-(1-(2-Chlorophenyl)-1H-1,2,3-triazole-4,5-diyl)bis(1,3,4oxadiazole-5,2-diyl))bis-(sulfanediyl)dipropane-1,2-diol (18). This compound was obtained in 81% yield (from EtOH) as white solid. mp: 274–275°C. FT-IR (\sqrt{max} , KBr/cm⁻¹): 1562 (C=C), 1605 (C=N), 3042 (C-H Ar), 3267–3414 (OH). ¹H NMR (600 MHz, DMSO-*d*₆), δ_H 3.19 (dd, 1 H, *J* = 6.0 Hz, *J* = 8.1 Hz, SCH₂), 3.30–3.46 (m, 5 H, SCH₂, 2 × CH₂O), 3.60–3.69 (m, 1 H, CHO), 3.77–3.83 (m, 1 H, CHO), 4.10 (dd, 1 H, *J* = 7.8 Hz, *J* = 12.9 Hz, SCH₂), 4.30 (dd, 1 H, *J* = 6.0 Hz, *J* = 12.0 Hz, SCH₂), 4.79 (s, 1 H, OH), 4.89 (s, 1 H, OH), 5.08 (s, 1 H, OH), 5.15 (s, 1 H, OH), 7.51–8.02 (m, 4 H, Ar-H). ¹³C NMR (150 MHz, DMSO-*d*₆), δ_c 36.41 (SCH₂), 64.96 (CH₂O), 71.01 (HC-O), 127.90, 130.95, 131.66, 131.91, 132.07, 156.11, 156.50 (Ar-C, C=N). Anal. Calcd. for C₁₈H₁₈ClN₇O₆S₂: C, 40.95; H, 3.44; N, 18.57. Found: C, 41.12; H, 3.27; N, 18.73. MS (ESI) *m/z*: 528.06 [M+H]⁺.

5,5'-(1-(2-Chlorophenyl)-1*H***-1,2,3-triazole-4,5-diyl)bis(2-((2,2-dimethyl-1,3-dioxolan-4-yl)- methylthio)-1,3,4-oxadiazole)** (19). This compound was obtained in 85% yield (from EtOH) as white solid. mp: 188–189°C. FT-IR (\sqrt{max} , KBr/cm⁻¹): 1577 (C=C), 1615 (C=N), 3026 (C-H Ar). ¹H NMR (600 MHz, CDCl₃), δ_H 1.35, 1.39, 1.41, 1.44 (4s, 12 H, 4 × CH₃), 3.49 (dd, 2 H, *J* = 6.0 Hz, *J* = 11.7 Hz, SCH₂), 3.82 (dd, 1 H, *J* = 7.8 Hz, *J* = 10.5 Hz, CH₂O), 4.13 (dd, 1 H, *J* = 7.8 Hz, *J* = 10.5 Hz, CH₂O), 4.16–4.20 (m, 2 H, 2 × CH₂O), 4.22–4.30 (m, 2 H, SCH₂), 4.53–4.60 (m, 2 H, 2 × CHO), 7.44–7.88 (m, 4 H, Ar-H).¹³C NMR (150 MHz, CDCl₃), δ_C 22.63, 23.80, 28.56, 29.70 (4 × Me), 38.07 (SCH₂), 51.44 (SCH₂), 68.89 (CH₂O), 70.05 (CH₂O), 76.94 (CHO), 77.19 (CHO), 127.09, 130.77, 131.52, 131.18, 132.70, 153.27, 159.56 (Ar-C, C=N). Anal. Calcd. for C₂₄H₂₆ClN₇O₆S₂: C, 47.40; H, 4.31; N, 16.12. Found: C, 47.25; H, 4.19; N, 16.29. MS (ESI) *m/z*: 608.14 [M+H]⁺.

5,5'-(1-(2-Chlorophenyl)-1H-1,2,3-triazole-4,5-diyl)bis(2-(2-

methoxyethylthio)-1,3,4-oxadiazole) (23). This compound was obtained in 90% yield (from EtOH) as colorless crystals. mp: 139–140°C. FT-IR ($\sqrt{\max}$, KBr/cm⁻¹):

1576 (C=C), 1613 (C=N), 3064 (CH-Ar). ¹H NMR (600 MHz, DMSO-*d*₆), δ_H 3.25 (s, 3 H, OCH₃), 3.27 (s, 3 H, OCH₃), 3.40 (t, 2 H, *J* = 6.0 Hz, SCH₂), 3.64 (t, 2 H, *J* = 6.0 Hz, CH₂O), 3.74 (t, 2 H, *J* = 6.0 Hz, CH₂O), 4.29 (t, 2 H, *J* = 6.0 Hz, SCH₂), 7.43–7.85 (m, 4 H, Ar-H). ¹³C NMR (150 MHz, DMSO-*d*₆), δ_C 33.09 (SCH₂), 48.64 (SCH₂), 58.33 (OCH₃), 58.57 (OCH₃), 70.05 (CH₂O), 70.67 (CH₂O), 127.65, 130.09, 131.02, 131.55, 131.93, 152.78, 159.61 (Ar-C, C=N). Anal. Calcd. for C₁₈H₁₈ClN₇O₄S₂: C, 43.59; H, 3.66; N, 19.77. Found: C, 43.70; H, 3.79; N, 19.93. MS (ESI) *m/z*: 496.11 [M+H]⁺.

5,5'-(1-(2-Chlorophenyl)-1*H***-1,2,3-triazole-4,5-diyl)bis(2-(2ethoxyethylthio)-1,3,4-oxadiazole) (24)**. This compound was obtained in 91% yield (from EtOH) as colorless crystals. mp: 152–153°C. FT-IR (\sqrt{max} , KBr/cm⁻¹): 1551 (C=C), 1610 (C=N), 3084 (CH-Ar). ¹H NMR (600 MHz, DMSO-*d*₆), δ_H 1.09 (t, 3 H, *J* = 6.0 Hz, CH₃), 1.16 (t, 3 H, *J* = 6.0 Hz, CH₃), 3.33 (t, 2 H, *J* = 6.0 Hz, SCH₂), 3.39–3.46 (m, 4 H, *CH*₂CH₃), 3.68 (t, 2 H, *J* = 6.0 Hz, CH₂O), 3.84 (t, 2 H, *J* = 6.0 Hz, CH₂O), 4.33 (t, 2 H, *J* = 6.0 Hz, SCH₂), 7.40–7.87 (m, 4 H, Ar-H). ¹³C NMR (150 MHz, DMSO-*d*₆), δ_C 14.98 (CH₃), 15.47 (CH₃), 31.77 (SCH₂), 48.90 (SCH₂), 65.56 (*CH*₂CH₃), 67.34 (*CH*₂CH₃), 70.34 (CH₂O), 71.51 (CH₂O), 127.87, 130.56, 131.46, 131.94, 132.22, 153.41, 159.51 (Ar-C, C=N). Anal. Calcd. for C₂₀H₂₂ClN₇O₄S₂: C, 45.84; H, 4.23; N, 18.71. Found: C, 45.69; H, 4.16; N, 18.90. MS (ESI) *m/z*: 524.11 [M+H]⁺.

5,5'-(1-(2-Chlorophenyl)-1H-1,2,3-triazole-4,5-diyl)bis(2-(oxiran-2ylmethylthio)-1,3,4-oxadiazole) (25). This compound was obtained in 93% yield (from EtOH) as yellow crystals. mp 198–199°C. FT-IR (\sqrt{max} , KBr/cm⁻¹): 1580 (C=C), 1620 (C=N), 3078 (C-H Ar). ¹H NMR (600 MHz, DMSO-*d*₆), δ_H 3.76 (d, 2 H, *J* = 6.0 Hz, SCH₂), 4.94 (d, 2 H, *J* = 6.0 Hz, SCH₂), 5.02, 5.08 (2dd, 2 H, *J* = 3.0 Hz, *J* = 15.9 Hz, CH₂O), 5.16, 5.26 (2dd, 2 H, *J* = 3 Hz, *J* = 11.7 Hz, CH₂O), 5.88–5.97 (m, 2 H, 2 × CHO), 7.50–8.07 (m, 4 H, Ar-H). ¹³C NMR (150 MHz, DMSO-*d*₆), δ_c 38.22 (SCH₂), 66.41 (CH₂O), 73.79 (HC-O), 126.44, 132.41, 132.70, 132.97, 133.48, 156.38, 157.82 (Ar-C, C=N). Anal. Calcd. for C₁₈H₁₄ClN₇O₄S₂: C, 43.95; H, 2.87; N, 19.93. Found: C, 44.19; H, 2.76; N, 20.10. MS (ESI) *m/z*: 492.06 [M+H]⁺.

General procedure for the synthesis of acetylated bis(acyclonucleoside) analogs 26–28. To a cold solution of **16, 17**, or **18** (1 mmol) in dry pyridine (5 ml), acetic anhydride (7 ml) was added, and the reaction mixture was maintained overnight at room temperature. Next, the mixture was poured into ice-cold water. The crude product was filtered and crystallized from ethanol.

2,2'-(5,5'-(1-(2-Chlorophenyl)-1*H*-1,2,3-triazole-4,5-diyl)bis(1,3,4oxadiazole-5,2-diyl))bis- (sulfanediyl)bis(ethane-2,1-diyl)diacetate (26). This compound was obtained in 91% yield (from CHCl₃) as colorless plates. mp: 121– 122°C. FT-IR ($\sqrt{\max}$, KBr/cm⁻¹): 1571 (C=C), 1598 (C=N), 1734 (C=O), 3063 (C-H Ar). ¹H NMR (400 MHz, CDCl₃), δ_H 2.00, 2.02 (2s, 6 H, 2 × CH₃), 3.48 (t, 2 H, *J* = 8.0 Hz, SCH₂), 4.35–4.43 (m, 6 H, NCH₂, 2 × CH₂O), 7.26–7.83 (m, 4 H, Ar-H). ¹³C NMR (100 MHz, CDCl₃), δ_c 20.86 (2 × CH₃), 32.32 (SCH₂), 47.78 (NCH₂), 62.02, 62.74 (2 × CH₂O), 126.74, 129.77, 130.23, 130.74, 131.31, 132.76, 152.15, 160.69 (Ar-C, C=N), 170.63, 170.73 (2 × C=O). Anal. Calcd. for $C_{20}H_{18}ClN_7O_6S_2$: C, 43.52; H, 3.29; N, 17.76. Found: C, 43.70; H, 3.39; N, 17.62. MS (ESI) *m/z*: 552.01 [M+H]⁺.

2,2'-(5,5'-(1-(2-Chlorophenyl)-1*H*-1,2,3-triazole-4,5-diyl)bis(1,3,4oxadiazole-5,2-diyl))bis- (sulfanediyl)bis(propane-3,1-diyl)diacetate (27). This compound was obtained in 90% (from EtOH) yield as colorless plates. mp: 106– 107°C. FT-IR (\sqrt{max} , KBr/cm⁻¹): 1547 (C=C), 1593 (C=N), 1724 (C=O), 3081 (C-H Ar). ¹H NMR (400 MHz, CDCl₃), δ_H 2.06, 2.10 (2s, 6 H, 2 × CH₃), 2.02–2.06 (m, 2 H, CH₂CH₂CH₂), 3.39 (t, 2 H, *J* = 8.0 Hz, SCH₂), 4.18 (t, 2 H, *J* = 8.0 Hz, NCH₂), 4.33 (t, 4 H, 2 × CH₂O), 7.35–7.80 (m, 4 H, Ar-H). ¹³C NMR (100 MHz, CDCl₃), δ_c 20.65, 21.81 (2 × CH₃), 32.08 (SCH₂), 46.94 (NCH₂), 62.35, 62.67 (2 × CH₂O), 126.90, 129.26, 130.64, 131.85, 132.10, 132.63, 152.67, 159.46 (Ar-C, C=N), 170.57, 171.82 (2 × C=O). Anal. Calcd. for C₂₂H₂₂ClN₇O₆S₂: C, 45.55; H, 3.82; N, 16.90. Found: C, 45.69; H, 3.94; N, 17.04. MS (ESI) *m/z*: 580.01 [M+H]⁺.

(((1-(2-Chlorophenyl)-1*H*-1,2,3-triazole-4,5-diyl)bis(1,3,4-oxadiazole-5, 2-diyl))bis-(sulfanediyl))bis(propane-3,1,2-triyl)tetraacetate (28). This compound was obtained in 87% yield (from CHCl₃) as colorless plates. FT-IR (\sqrt{max} , KBr/cm⁻¹): 1567 (C=C), 1605 (C=N), 1738 (C=O), 3092 (C-H Ar). ¹H NMR (400 MHz, CDCl₃), δ_H 2.01, 2.05, 2.06, 2.09 (4s, 12 H, 4 × CH₃), 3.49 (dd, 2 H, *J* = 4.0 Hz, *J* = 8.0 Hz, SCH₂), 4.31 (dd, 2 H, *J* = 4.0 Hz, *J* = 8.0 Hz, NCH₂), 4.49–4.56 (m, 4 H, 2 × CH₂O), 5.52–5.58 (m, 2 H, 2 × CHO), 7.38– 7.85 (m, 4 H, Ar-H). ¹³C NMR (100 MHz, CDCl₃), δ_c 20.66, 21.24, 21.53 (3 × CH₃), 33.68 (SCH₂), 48.07 (NCH₂), 65.80, 66.24 (2 × CH₂O), 72.77, 73.61 (2 × CHO), 126.56, 129.79, 131.35, 131.65, 132.66, 132.97, 152.19, 158.80 (Ar-C, C=N), 170.37, 171.34, 172.05 (3 × C=O). Anal. Calcd. for C₂₆H₂₆ClN₇O₁₀S₂: C, 44.86; H, 3.76; N, 17.16. Found: C, 44.98; H, 3.82; N, 17.04. MS (ESI) *m/z*: 696.12 [M+H]⁺.

Acknowledgments

The authors are grateful to Dr. M. M. Elaasser, Regional Center for Mycology and Biotechnology/Antimicrobial unit test organisms, Alazhar University, Cairo-Egypt, for providing the facilities to determine the antibacterial and antifungal activities.

References

- El Ashry, E.S.H.; El Nemr, A. Synthesis of Naturally Ocuuring Nitrogen Heterocycles from Carbohydrates; Blakwell: Oxford, UK, 2005.
- Jung, K.H.; Schmidt, R.R. Glycosyltransferase Inhibitors in Carbohydrate-Based Drug Discovery; C.-H. Wong (Ed.), Willey-VCH, 2003, 23, 609–659.
- Zhu, X.; Slotz, F.; Schmidt, R.R. Synthesis of Thioglycoside-Based UDP-Sugar Analogues. J. Org. Chem. 2004, 69, 7367–7370.
- Plante, O.J.; Andrade, R.B.; Seeberger, P.H. Synthesis and Use of Glycosyl Phosphates as Glycosyl Donors. Org. Lett. 1999, 1(2), 211–214.

- 14 👄 M. R. AOUAD
 - Castaneda, F.; Burse, A.; Boland, W.; Kinne, R.K-H. Thioglycosides as inhibitors of hSGLT1 and hSGLT2: Potential therapeutic agents for the control of hyperglycemia in diabetes. *Int. J. Med. Sci.* 2007, 4(3), 131–139.
 - Shaeffer, H.J.; Beauchamp, L.; de Miranda, P.; Elion, G.B.; Bauer, D.J.; Collins, P. 9-(2-Hydroxyethoxymethyl) guanine activity against viruses of the herpes group. *Nature (London)* 1978, 272, 583–585.
 - Agrofoglio, L.A.; Challand, R.; Challand, S.R. Acyclic Carbocyclic and L-Nucleosides, Kluwer Academic Publishers, Norwell, MA, USA, 1998.
 - Field, A.K.; Davie, M.E.; Dewitt, C.; Perry, H.C.; Liou, R.; Germershausen, J.I.; Karkas, J.D.; Ashton, W.T.; Johnson, D.B.; Tolmn, R.L. 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine: a selective inhibitor of herpes group virus replication. *Proc. Natl. Acad. Sci.* 1983, 80, 4139–4143.
 - Martin, J.C.; Dvorak, C.A.; Smee, D.F.; Mattews T.R.; Verheyden, J.P.H. 9-(1,3-Dihydroxy-2-propoxymethyl)guanine: a new potent and selective antiherpes agent. *J. Med. Chem.* 1983, 26, 759–761.
- Ashton, W.T.; Canning, L.D.; Reynolds, G.F.; Tolman, R.L.; Karkas, J.D.; Liou, R.; Davies, M.-E.M.; DeWitt, C.M.; Perry, H.C.; Field, A.K. Synthesis and antiherpetic activity of (S)-, (R)-, and 9–[(2,3-dihydroxy-1-propoxy)methyl]guanine, linear isomers of 2'-nor-2'deoxyguanosine. J. Med. Chem. 1985, 28, 926–933.
- MacCoss, M.; Chen, A.; Tolman, R.L. Syntheses of all four possible diastereomers of the acyclonucleosides 9-(1,3,4-trihydroxy-2-butoxymethyl)guanine from carbohydrate precursors. *Tetrahedron Lett.* 1985, 26, 4287–4290.
- Vere Hodge, R.A. Advances in experimental medicine and biology. Edited by Paul A. Volberding and Lawrence Corey. *Antiviral Chem. Chemother.* 1993, 4, 67–84.
- Stefely, J.A.; Palchaudhuri, R.; Miller, P.A.; Peterson, R.J.; Moraski, G.C.; Hergenrother, P.J.; Miller, M.J. N-((1-Benzyl-1*H*-1,2,3-triazol-4-yl)methyl)arylamide as a new scaffold that provides rapid access to antimicrotubule agents: Synthesis and evaluation of antiproliferative activity against select cancer cell lines. *J. Med. Chem.* 2010, 53, 3389–3395.
- Montagu, A.; Roy, V.; Balzarini, J.; Snoeck, R.; Andrei, G.; Agrofoglio, L.A. Synthesis of new C5-(1-substituted-1,2,3-triazol-4 or 5-yl)-2'-deoxyuridines and their antiviral evaluation. *Eur. J. Med. Chem.* 2011, 46, 778–786.
- De Oliveira, C.S.; Lira, B.R.; Barbosa-Filho, J.M.; Fernandez Lorenzo, J.G.; De Athayde-Filho, P.F. Synthetic Approaches and Pharmacological Activity of 1,3,4-Oxadiazoles. *Molecules*. 2012, 17, 10192–10231.
- El Ashry, E.S.H.; Kassem, A.A.; Abdel-Hamid, H.M.; Louis, F.; Khattab, Sh.A.N.; Aouad, M.R. New Glycosylation of 5-(3-Chlorobenzo[b]thien-2-yl)4H-1,2,4-Triazole-3-Thiol, Regioselectivity, Role of Catalyst and MWI Irradiation. *Carbohydrate Research*. 2009, 344, 725–733.
- El Ashry, E.S.H.; Aly, A.A.; Aouad, M.R.; Amer, M.R. Revisit of the reaction of O-phenylene diamine with thiosemicarbazide to give benzimidazole-2-thione rather than benzotriazine-2-thione and its glycosylation. *Nucleotides Nucleosides and Nucleic acids*. 2010, 29, 698–706.
- El Ashry, E.S.H.; Kassem, A.A.; Abdel-Hamid, H.M.; Louis, F.; Khattab, Sh.A.N.; Aouad, M.R. Novel regioselective synthesis of acyclonucleoside analogues derived from 5-(3chlorobenzo[b]thien-2-yl)-4H-1,2,4-triazole-3-thiol and a facile synthesis of triazolothiazoles and thiazolo-triazoles. Role of catalyst and MWI. *Nucleotides Nucleosides and Nucleic acids*. 2007, 26, 437–451.
- Aouad, M.R.; Rezki, N.; Messali, M.; El Ashry, E.S.H. Synthesis of Bis-acyclonucleoside analogues bearing benzothienyl-1,2,4-triazol-3-yl-disulfide under Conventional and Microwave Methods. *Nucleosides, Nucleotides and Nucleic Acids.* 2013, *32*, 28–41.
- Bouasla, S.; Fatmi, C. E.; Teguiche, M. Synthesis of some 1,2,3-triazoles derivatives. *Rev. Roum. Chim.* 2012, 57(12), 1037–1040.

- 21. Boyer, J.H.; Canter, F.C. Alkyl and Aryl Azides. Chem. Rev. 1954, 54(10), 1-57.
- 22. Jorgensen, J.H.; Tonover, F.C. Antimicrobial agents and susceptibility testing, section X. In *Clinical Microbiology*; ASM Press: Washinghton, DC, USA, 1995.
- 23. Hassan, E.; Al-Ashmawi, M.I.; Abdel-Fattah, B. Synthesis and antimicrobial testing of certain oxadiazoline and triazole derivatives. *Pharmazie* 1983, 38, 833–835.
- Khalil, M.A.; El-Sayed, O.A.; El-Shamy, H.A. Synthesis and antimicrobial evaluation of novel Oxa(thia)diazolylquinolines and Oxa(thia) diazepino[7,6-*b*] quinolones. *Arch. Pharm.* 1993, 326, 489–492.