FULL PAPER

Highly Enantioselective Conjugate Additions of Phosphites to α,β-Unsaturated N-Acylpyrroles and Imines: A Practical Approach to Enantiomerically Enriched Amino Phosphonates

Depeng Zhao,^[a] Yuan Wang,^[a] Lijuan Mao,^[a] and Rui Wang^{*[a, b]}

Abstract: The first highly enantioselective phosphonylation of α,β -unsaturated *N*-acylpyrroles has been developed. Excellent yields (91–99%) and enantioselectivities (up to >99% enantiomeric excess (*ee*)) were observed for a broad spectrum of both phosphites and *N*-acylpyrroles under mild conditions. In particular, when diethyl phosphite was employed to test the scope of the *N*-acylpyrroles, almost optically pure

Introduction

The catalytic asymmetric synthesis of optically active phosphonates provokes continuing interest because such compounds are usually precursors of many biologically active and pharmaceutically important molecules.^[1] The direct addition of phosphite to electrophiles is, without a doubt, one of the most powerful methods to provide such compounds. Indeed, numerous studies have been focused on the asymmetric hydrophosphonylation of aldehydes,^[2] imines,^[2] and nitroalkenes^[3] in recent decades. In contrast, the asymmetric conjugate additions of phosphites to α , β -unsaturated carbonyl compounds are still challenging and have been much less developed. To the best of our knowledge, there are only two catalytic examples presented to date.^[4] In 2007, Jørgen-

The Hong Kong Polytechnic University Kowloon (Hong Kong) E-mail: bcrwang@polyu.edu.hk

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.200901901.

products (98 to >99% *ee*) were obtained for 20 examples of *N*-acylpyrroles. Moreover, optically pure α -substituted β - or γ -amino phosphonates can be obtained by several simple

Keywords: asymmetric catalysis • hydrophosphonylation • Michael addition • phosphonates • synthetic methods transformations of the pyrrolyl phosphonates. The versatility of the *N*-acylpyrrole moiety makes the phosphorus adducts powerful chiral building blocks that enable the synthesis of various phosphonate-containing compounds. Finally, the present strategy can also be applied to the asymmetric hydrophosphonylation of *N*-acylimines with high enantioselectivities (93 to > 99% *ee*).

sen and co-workers^[5] reported an organocatalytic enantioselective phosphonylation of α,β -unsaturated aldehydes. And recently, we^[6] described the first enantioselective 1,4-addition of phosphite to α,β -unsaturated ketones by using a dinuclear zinc catalyst.^[7] However, there is still high demand in both academia and industry for the asymmetric phospha-Michael reaction of α,β -unsaturated esters or their surrogates,^[8] since these moieties can be readily converted to various functional groups. To achieve this goal, Quirion and coworkers^[9] employed chiral amides and phosphonate salts to synthesize amidophosphonates (Scheme 1a). Unfortunately, the scope is limited and a catalytic version is still required. Herein, we report the first conjugate addition reactions of phosphites to α,β -unsaturated N-acylpyrroles catalyzed by a dinuclear zinc catalyst. Significantly, this new catalytic asymmetric phospha-Michael reaction afforded consistently ex-

Scheme 1. a) Chiral auxiliary-induced asymmetric phospha-Michael reaction of α,β -unsaturated ester surrogates. b) Catalytic protocol for asymmetric hydrophosphonylation of α,β -unsaturated ester surrogates.

Chem. Eur. J. 2009, 15, 10983-10987

© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

[[]a] Dr. D. Zhao, Y. Wang, L. Mao, Prof. R. Wang State Key Laboratory of Applied Organic Chemistry and Institute of Biochemistry and Molecular Biology School of Life Sciences Lanzhou University, Lanzhou 730000 (China) Fax: (+86)931-891-2567 E-mail: wangrui@lzu.edu.cn
[b] Prof. R. Wang Department of Applied Biology and Chemical Technology

CHEMISTRY A EUROPEAN JOURNAL

cellent enantioselectivities with a wide scope for both phosphites and *N*-acylpyrroles.

Results and Discussion

Recently, α,β -unsaturated *N*-acylpyrroles developed by Shibasaki and co-workers have proven to be highly reactive, monodentate ester surrogates.^[10] Importantly, these compounds display similar reactivity to α,β -unsaturated ketones^[10,11] and the *N*-acylpyrrole moiety of the adducts can be readily converted to the alcohol, aldehyde/ketone, or carboxylic acid derivatives.^[12] On the other hand, we recently successfully carried out the phospha-Michael reaction of α,β -unsaturated ketones through a bifunctional mode of catalysis and we assumed that this strategy may also be applied to α,β -unsaturated *N*-acylpyrroles. That is, one metal of the catalyst functions as a Lewis acid to bind with the ester surrogate and another metal functions as a Brønsted base to activate the phosphite (Scheme 1b).

To test this assumption, the reaction of the *N*-acylpyrrole **1a** with diethyl phosphite (**2a**) in THF in the presence of 4 Å molecular sieves and 20 mol % catalyst was chosen as a model. We were pleased to find that *N*-acylpyrrole was stable enough in the catalytic system, such that the addition reaction proceeded in high yield and enantioselectivity (Table 1, entry 1). A solvent screen indicated that the reaction was able to tolerate a series of solvents. In particular, toluene gave the best yield and enantioselectivity (Table 1, entry 5). Thus, toluene was used for further optimization of the reaction conditions. When the catalyst loading was decreased to 10 mol %, the yield and enantioselectivity were both slightly affected.

Having established the optimal reaction conditions, we then examined a series of phosphites. As shown in Table 2, all dialkyl phosphites examined underwent the addition re-

Table 1. Optimization of the phospha-Michael reaction of 1a and 2a.

[a] All reactions were carried out with 1a (0.25 mmol) and 2a (0.375 mmol, 1.5 equiv) in solvent (2.5 mL) at room temperature for 12 h.
[b] Yield of the isolated product. [c] The enantiomeric excess was determined by HPLC analysis on a Chiralpak AD-H column.

Table 2. Examination of the scope of phosphites.

N
ee [%] ^[c]
>99
95
>99
97
92

[a] Unless otherwise noted, reactions were carried out with 1a (0.25 mmol) and 2 (1.5 equiv) in toluene (2.5 mL) at room temperature. [b] Yield of the isolated product. [c] The enantiomeric excess was determined by HPLC analysis (see the Supporting Information).

action in high yields and enantioselectivities (Table 2, entries 1–4). Among the phosphites tested, linear alkyl phosphites 2a and 2c gave the best yields and enantioselectivities (>99% *ee*). Interestingly, we found that diaryl phosphite 2e was also amenable to the present catalysis system (Table 2, entry 5). By comparison, phosphites 2d and 2e with bulkier substituents were found to react more slowly and therefore longer reaction times were required.

The scope of the α,β -unsaturated *N*-acylpyrroles was then investigated by using commercially available 2a. As summarized in Table 3, the reaction was able to tolerate a broad range of substrates. For β -aryl-*N*-acylpyrroles, the adducts could be obtained in almost optically pure form, irrespective of the electronic nature or position of the substituents on the phenyl ring (Table 3, entries 1-6 and 10-14). Good results were also observed for various β-heteroaryl-N-acylpyrroles (Table 3, entries 7–9) and β -alkyl-*N*-acylpyrroles (Table 3, entries 16-20). Interestingly, the reaction proceeded stereoselectively and regioselectively with diene 10 and despite the prolonged reaction time required, exclusive formation of the Michael adduct was observed (Table 3, entry 15). Importantly, when the phospha-Michael addition reaction was performed on a larger scale the yield and enantioselectivity were not significantly affected (Table 3, entry 21).

The synthetic utility of the phosphorous adducts was demonstrated by the following transformations (Scheme 2): The pyrrolyl phosphonates **3** can be easily transformed into methyl esters **4** in the presence of sodium methoxide in methanol. Reactions of pyrrolyl phosphonates **3a** with a primary or secondary amine gave the corresponding amides in good yields. Amide **6** can be further converted to γ -amino phosphonate **7** by reduction. It should be noted that phosphonate **3a** can be directly hydrolyzed by using NaOH to the corresponding carboxylic acid **8**, which can then be transformed into β -amino phosphonate^[13] **9** by the well-established literature procedure.^[14]

Interestingly, the present strategy can also be applied to the asymmetric hydrophosphonylation of imines. To date, several organocatalysts including chiral thiourea derivatives,^[15] cinchona alkaloids,^[16] and chiral phosphoric acids,^[17]

10984 -

Table 3. Examination of the scope of α , β -unsaturated N-acylpyrroles.

•~~		O L/Et₂2	Zn (20 mol %)	EtO_P	
	1	H ^C OEt molect	ular sieves (4 Å) bluene,12 h	3	
Entry ^[a]	1	R	Product	Yield [%] ^[b]	ee [%] ^[c]
1 ^[d]	1 a	Ph	3a	99	>99(S)
2	1b	$4-MeC_6H_4$	3b	99	>99
3	1c	4-MeOC ₆ H ₄	3c	99	>99
4	1 d	$4-ClC_6H_4$	3 d	96	>99
5	1e	$4-BrC_6H_4$	3e	98	>99
6	1 f	$4-FC_6H_4$	3 f	96	98
7	1 g	2-furyl	3 g	99	>99
8	1 h	2-thienyl	3 h	99	>99
9	1i	3-thienyl	3i	94	>99
10	1j	$3-MeOC_6H_4$	3ј	94	99
11 ^[e]	1 k	$2-MeOC_6H_4$	3k	94	98
12	11	$4-NO_2C_6H_4$	31	96	98
13	1 m	1-naphthyl	3 m	95	98
14	1n	2-naphthyl	3n	97	>99
15 ^[f]	10		30	91	>99
16	1p	$\bigcirc \frown$	3 p	96	>99
17	1q	nPr	3q	93	98
18	1r	iPr	3r	99	99
19	1 s	$CH_3(CH_2)_5$	3s	98	98
20	1t	$(CH_3)_2CHCH_2$	3t	92	>99
21 ^[g]	1 a	Ph	3a	98	>99

[a] Unless otherwise noted, reactions were carried out with 1 (0.25 mmol)and 2a (0.375 mmol, 1.5 equiv) in 2.5 mL toluene at room temperature for 12 h. [b] Yield of the isolated product. [c] The enantiomeric excess was determined by HPLC analysis. [d] The absolute configuration of 3nwas determined as S by chemical correlation (see the Supporting Information) and the rest of the products were assigned by analogy. [e] Reaction time: 18 h. [f] Reaction time: 36 h. [g] Reaction performed on a 10 mmol scale.

Scheme 2. Synthetic utility of pyrrolyl phosphonates **3**. a) NaOMe, MeOH, 0°C, 10 min; b) piperidine, THF, reflux, 80%; c) NH₂Bn, THF, reflux, 91%; d) BH₃·SMe₂, THF, 0°C-reflux, 79%; e) NaOH, MeOH, H₂O, RT, 2 h, 93%; f) (PhO)₂PON₃, Et₃N, toluene, *t*BuOH, reflux, 48 h, 48%. Bn=benzyl, Boc=*tert*-butoxycarbonyl.

as well as metal catalysts, such as Shibasaki's heterobimetallic complexes,^[18] chiral aluminium(III),^[19] and chiral scandium(III)^[20] have been successfully utilized for this reaction. However, there is still a great need for the development of a highly enantioselective and efficient catalytic system for this reaction.

In light of the similarity in structure between *N*-acylimines and chalcones, we speculated that the present method could be extended to the use of *N*-acylimines as substrates. Thus, *N*-acylimine **10a** was employed to examine the hypothesis under typical reaction conditions. It seems that the strategy was indeed effective for the hydrophosphonylation reaction (99% *ee*, 90% yield), however, the enantioselectivities were not reproducible. This problem was solved by using Me₂Zn instead of Et₂Zn to form the catalyst. In addition, it was found that 4 Å molecular sieves were not essential to achieve a good result for this reaction.

Under the modified reaction conditions (10 mol% of L/Me_2Zn in toluene at room temperature), the scope of the imines was then examined. We were pleased to find that the reaction showed particularly high reactivity for all imines investigated and reactions were complete within 15 min. Aromatic imines possessing substituents with differing electronic properties showed similar reactivity and enantioselectivity (Table 4, entries 1–9). Moreover, the condensed-ring imine **10j** and the aliphatic imine **10k** were also excellent substrates for the present system (Table 4, entries 10 and 11). It should be noted that this method provided the highest average enantioselectivities of the asymmetric hydrophosphonylation of imines to date.

Finally, the product **11a** can be readily converted into the corresponding amino phosphonic acid **12** (Scheme 3). The benzoyl and ester groups were removed by treating **11a**

Table 4. Examination of the scope of imines.

	Ph				Ph
Ņ	ito T	O Ľ-OEt	L/Me ₂ Zn (10 mol %)	► HŅ	k₀
R		H ^{-P} OEt	toluene < 15 min, RT	R	P(OEt) ₂
10		2a		11	
Entry ^[a]	10	R	Product	Yield [%] ^[b]	ee [%] ^[c]
1 ^[d]	10 a	Ph	11 a	91	>99(R)
2	10 b	$4 - MeC_6H_4$	11 b	91	>99
3	10 c	4-MeOC ₆ H	4 11 c	91	>99
4	10 d		11 d	87	99
5	10 e	3-MeOC ₆ H	4 11e	85	96
6	10 f	$2-FC_6H_4$	11 f	88	98
7	10 g	$4-FC_6H_4$	11 g	91	99
8	10 h	$4-ClC_6H_4$	11 h	91	98
9	10 i	$4-BrC_6H_4$	11 i	88	97
10	10 j	2-naphthyl	11 j	88	98
11 ^[e]	10 k	\bigcup	11 k	87	93

[a] Unless otherwise noted, reactions were carried out with **10** (0.25 mmol) and **2a** (1.5 equiv) in toluene (2.5 mL) at RT. [b] Yield of the isolated product. [c] The enantiomeric excess was determined by HPLC analysis. [d] The absolute configuration of **11a** was determined as R by chemical correlation (see the Supporting Information) and the rest of the products were assigned by analogy. [e] The reaction was performed at 0°C.

FULL PAPER

Scheme 3. Synthesis of α -aminophosphonic acid.

with concentrated HCl to give the desired product in 96 % yield. $^{[21]}$

Conclusion

We have achieved the first highly enantioselective phosphonylation of α,β -unsaturated N-acylpyrroles. Excellent yields and enantioselectivities (up to >99% ee) were observed for a broad spectrum of both phosphites and N-acylpyrroles under mild conditions. Moreover, optically pure α -substituted β - or γ -amino phosphonates can be obtained by several simple transformations of the pyrrolyl phosphonates. The versatility of the N-acylpyrrole moiety makes the phosphorus adduct a powerful chiral building block for the synthesis of various phosphonate-containing compounds. Finally, the present strategy can also be applied to the asymmetric hydrophosphonylation of imines in high efficiency (<15 min) and enantioselectivities (93 to >99% ee). Further applications of this methodology to the synthesis of biologically and pharmaceutically interesting targets are in progress in our laboratory.

Experimental Section

General procedure for asymmetric hydrophosphonylation of a, \beta-unsaturated N-acylpyrroles: Diethylzinc (0.1 mL, 1 m in toluene, 0.1 mmol) was added to a stirred solution of L (32 mg, 0.05 mmol) in toluene (0.5 mL) under an argon atmosphere. The mixture was then stirred at room temperature for 30 min to generate the zinc catalyst. The resulting solution of catalyst was added to a stirred mixture of 4 Å molecular sieves (100 mg, dried at 200 °C under vacuum for 12 h), 1a (52 mg, 0.25 mmol), and 2a (48 µL, 0.375 mmol) in toluene (2 mL) at 0 °C under an argon atmosphere. After the addition, the mixture was allowed to warm slowly to room temperature over 12 h. The reaction was guenched with aqueous HCl (1 M) and extracted with CH2Cl2. The organic layer was washed with saturated NaHCO3 and brine, dried over Na2SO4, and concentrated under vacuum. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate 7:1 to 1:2) to give 3a (99% yield, >99% ee). The optical purity was determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol=90:10, flow rate= 1.0 mLmin^{-1} , $t_{\text{minor}} = 11.5 \text{ min}, t_{\text{major}} = 12.3 \text{ min}); [a]_{\text{D}}^{20} = -31 \text{ (}c = 1.0, \text{ CHCl}_{3}\text{)}; ^{1}\text{H NMR}$ (300 MHz, CDCl₃): $\delta = 7.48-7.38$ (m, 2H), 7.38–7.21 (m, 5H), 6.27 (t, J =2.4 Hz, 2H), 4.18-4.00 (m, 2H), 3.98-3.79 (m, 2H), 3.77-3.60 (m, 1H), 3.60–3.43 (m, 2H), 1.29 (t, *J*=7.2 Hz, 3H), 1.06 (t, *J*=7.2 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 167.7$ (d, J = 18.0 Hz), 135.1 (d, J =6.8 Hz), 129.1 (d, J=6.0 Hz), 128.6 (d, J=2.3 Hz), 127.6 (d, J=3.0 Hz), 119.0, 113.3, 63.2 (d, J=7.5 Hz), 62.1 (d, J=7.5 Hz), 39.5 (d, {J=7.5} 140.3 Hz), 35.5, 16.3 (d, J = 6.0 Hz), 16.1 (d, J = 5.3 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃): $\delta = +27.3$ ppm; IR (neat): $\tilde{\nu} = 2983$, 2927, 1719, 1284, 1052, 967, 747, 558 cm⁻¹; HRMS (ESI): m/z calcd for $C_{17}H_{22}NO_4P$: 336.1359 [*M*+H]⁺; found: 336.1353.

General procedure for asymmetric hydrophosphonylation of N-acylimines: Dimethylzinc (0.167 mL, 1.2 M in toluene, 0.2 mmol) was added to a stirred solution of L (64 mg, 0.1 mmol) in toluene (1.83 mL) under an argon atmosphere and the mixture was stirred at room temperature for 0.5 h to generate the zinc catalyst (~0.05 M). The resulting solution of catalyst (0.5 mL, 0.025 mmol) was added to a stirred solution of 10 (0.25 mmol) and 2a (48 µL, 0.375 mmol) in toluene (2 mL) in one portion at room temperature under an argon atmosphere. After stirring at the same temperature for 15 min, the reaction was quenched with a saturated aqueous solution of NH4Cl. The mixture was extracted with CH2Cl2 and the organic layer was washed with brine, dried over Na₂SO₄, and concentrated under vacuum. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate 4:1 to 1:2) to give 11a (91% yield, >99 % ee). The optical purity was determined by HPLC on a Chiralpak AD-H column (hexane/2-propanol=90:10, flow rate= 1.0 mL min⁻¹, $t_{\text{minor}} = 12.1 \text{ min}$, $t_{\text{major}} = 10.8 \text{ min}$; $[\alpha]_{\text{D}}^{20} = -19$ (c=1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): $\delta = 7.95-7.80$ (m, 3H), 7.59 (d, J =6.0 Hz, 2 H), 7.47 (t, J = 7.5 Hz, 1 H), 7.42–7.28 (m, 5 H), 5.79 (dd, J =21.2, 9.5 Hz, 1H), 4.23-4.02 (m, 2H), 4.01-3.86 (m, 1H), 3.79-3.64 (m, 1 H), 1.27 (t, J=7.5 Hz, 3 H), 1.10 (t, J=7.1 Hz, 3 H) ppm; ¹³C NMR (75 MHz, CDCl₃): $\delta = 166.9$ (d, J = 7.5 Hz), 135.2, 133.8, 131.6, 128.5 (d, J=1.5 Hz), 128.3, 128.27 (d, J=5.3 Hz), 128.0 (d, J=2.3 Hz), 127.4, 63.3 (d, J = 6.8 Hz), 63.0 (d, J = 7.5 Hz), 50.5 (d, J = 153.8 Hz), 16.4 (d, J = 153.8 Hz), 16.8 (d, J = 153.8 (d, J = 153.8 Hz), 16.8 (d, J = 153.8 6.0 Hz), 16.1 (d, J = 6.0 Hz) ppm; ³¹P NMR (121 MHz, CDCl₃): $\delta =$ +21.5 ppm; IR (neat): $\tilde{v} = 3277$, 2986, 1650, 1539, 1244, 1026, 699, 562 cm⁻¹; HRMS (ESI): *m*/*z* calcd for C₁₈H₂₂NO₄P: 348.1359 [*M*+H]⁺; found: 348.1349.

Acknowledgements

We are grateful for the grants from the National Natural Science Foundation of China (20525206, 20621091, 90813012 and 20772052), the National S & T Major Project of China (2009ZX09503–017) and the Chang Jiang Program of the Ministry of Education of China for financial support.

- a) The Role of Phosphonates in Living Systems (Ed.: R. L. Hildebrand), CRC Press, Boca Raton, 1983; b) P. Savignac, B. Iorga in Modern Phosphonate Chemistry, CRC Press, Boca Raton, 2003; c) R. Engel, Chem. Rev. 1977, 77, 349–367; d) V. D. Romanenko, V. P. Kukhar, Chem. Rev. 2006, 106, 3868–3935.
- [2] For reviews on catalytic asymmetric hydrophosphonylations of aldehydes and imines, see: a) M. Ordóñez, H. Rojas-Cabrera, C. Cativiela, *Tetrahedron* 2009, 65, 17–49; b) J. A. Ma, *Chem. Soc. Rev.* 2006, 35, 630–636; c) P. Merino, E. Marqués-López, R. P. Herrera, *Adv. Synth. Catal.* 2008, 350, 1195–1208; d) H. Gröger, B. Hammer, *Chem. Eur. J.* 2000, 6, 943–948.
- [3] a) J. Wang, L. D. Heikkinen, H. Li, L. Zu, W. Jiang, H. Xie, W. Wang, Adv. Synth. Catal. 2007, 349, 1052–1056; b) M. Terada, T. Ikehara, H. Ube, J. Am. Chem. Soc. 2007, 129, 14112–14113; c) V. Rai, I. N. N. Namboothiri, Tetrahedron: Asymmetry 2008, 19, 2335–2338.
- [4] For an example of asymmetric hydrophosphonylation of α-ketoesters, see: F. Wang, X. Liu, X. Cui, Y. Xiong, X. Zhou, X. Feng, *Chem. Eur. J.* 2009, 15, 589–592.
- [5] E. Maerten, S. Cabrera, A. Kjarsgaard, K. A. Jørgensen, J. Org. Chem. 2007, 72, 8893–8903.
- [6] D. Zhao, Y. Yuan, A. S. C. Chan, R. Wang, Chem. Eur. J. 2009, 15, 2738–2741.
- [7] For recent examples of the dinuclear catalyst in asymmetric catalysis, see: a) B. M. Trost, S. Malhotra, B. A. Fried, J. Am. Chem. Soc. 2009, 131, 1674–1675; b) B. M. Trost, J. Hitce, J. Am. Chem. Soc. 2009, 131, 4572–4573; c) B. M. Trost, S. Malhotra, T. Mino, N. S. Rajapaksa, Chem. Eur. J. 2008, 14, 7648–7657; d) B. M. Trost, C. Muller, J. Am. Chem. Soc. 2008, 130, 2438–2439; e) B. M. Trost, D. W. Lupton, Org. Lett. 2007, 9, 2023–2026; f) B. M. Trost, J. Jarat-

10986 -

jaroonphong, V. Reutrakul, J. Am. Chem. Soc. 2006, 128, 2778–2779; g) B. M. Trost, S. Shin, J. A. Sclafani, J. Am. Chem. Soc. 2005, 127, 8602–8603; h) B. M. Trost, A. Fettes, B. T. Shireman, J. Am. Chem. Soc. 2004, 126, 2660–2661.

[8] For asymmetric hydrogenation of unsaturated ester phosphonates, see: a) P. Cheruku, A. Paptchikhine, T. L. Church, P. G. Andersson, J. Am. Chem. Soc. 2009, 131, 8285–8289; b) Y. Huang, F. Berthiol, B. Stegink, M. M. Pollard, A. J. Minnaard, Adv. Synth. Catal. 2009, 351, 1423–1430.

- [9] a) G. Castelot-Deliencourt, X. Pannecoucke, J.-C. Quirion, *Tetrahedron Lett.* 2001, 42, 1025; b) G. Castelot-Deliencourt, E. Roger, X. Pannecoucke, J.-C. Quirion, *Eur. J. Org. Chem.* 2001, 3031–3038.
- [10] S. Matsunaga, T. Kinoshita, S. Okada, S. Harada, M. Shibasaki, J. Am. Chem. Soc. 2004, 126, 7559–7570.
- [11] a) T. Kinoshita, S. Okada, S.-R. Park, S. Matsunaga, M. Shibasaki, Angew. Chem. 2003, 115, 4828–4832; Angew. Chem. Int. Ed. 2003, 42, 4680–4684; b) T. Mita, K. Sasaki, M. Kanai, M. Shibasaki, J. Am. Chem. Soc. 2005, 127, 514–515; c) N. Yamagiwa, H. Qin, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2005, 127, 13419– 13427; d) M. B. Shaghafi, B. L. Kohn, E. R. Jarvo, Org. Lett. 2008, 10, 4743–4746; e) B. Vakulya, S. Varga, T. Soós, J. Org. Chem. 2008, 73, 3475–3480; f) R. Shintani, T. Kimura, T. Hayashi, Chem. Commun. 2005, 3213–3214; g) Y. Arai, M. Kasai, K. Ueda, Y. Masaki, Synthesis 2003, 1511–1516.
- [12] a) D. A. Evans, G. Borg, K. A. Scheidt, Angew. Chem. 2002, 114, 3320–3323; Angew. Chem. Int. Ed. 2002, 41, 3188–3191; b) S. D.

Lee, M. A. Brook, T. H. Chan, Tetrahedron Lett. 1983, 24, 1569–1572.

- [13] For a review of β -amino phosphonic acids, see: F. Palacios, C. Alonso, J. M. de Los Santos, *Chem. Rev.* **2005**, *105*, 899–931.
- [14] A. B. Charette, B. Côté, J. Am. Chem. Soc. 1995, 117, 12721-12732.
- [15] G. D. Joly, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 4102-4103.
- [16] a) D. Pettersen, M. Marcolini, L. Bernardi, F. Fini, R. P. Herrera, V. Sgarzani, A. Ricci, J. Org. Chem. 2006, 71, 6269–6272; b) S. Nakamura, H. Nakashima, A. Yamamura, N. Shibata, T. Toru, Adv. Synth. Catal. 2008, 350, 1209–1212.
- [17] a) T. Akiyama, H. Morita, J. Itoh, K. Fuchibe, Org. Lett. 2005, 7, 2583–2585; b) X. Cheng, R. Goddard, G. Buth, B. List, Angew. Chem. 2008, 120, 5157–5159; Angew. Chem. Int. Ed. 2008, 47, 5079– 5081.
- [18] a) H. Sasai, S. Arai, Y. Tahara, M. Shibasaki, J. Org. Chem. 1995, 60, 6656–6657; b) H. Gröger, Y. Saida, H. Sasai, K. Yamaguchi, J. Martens, M. Shibasaki, J. Am. Chem. Soc. 1998, 120, 3089–3103; c) H. Gröger, Y. Saida, S. Arai, J. Martens, H. Sasai, M. Shibasaki, Tetrahedron Lett. 1996, 37, 9291–9292; d) I. Schlemminger, Y. Saida, H. Gröger, W. Maison, N. Durot, H. Sasai, M. Shibasaki, J. Martens, J. Org. Chem. 2000, 65, 4818–4825.
- [19] a) J. P. Abell, H. Yamamoto, J. Am. Chem. Soc. 2008, 130, 10521–10523; b) B. Saito, H. Egami, T. Katsuki, J. Am. Chem. Soc. 2007, 129, 1978–1986.
- [20] X. Zhou, D. Shang, Q. Zhang, L. Lin, X. Liu, X. Feng, Org. Lett. 2009, 11, 1401–1404.
- [21] T. Schrader, W. Steglich, Synthesis 1989, 97-101.

Received: July 9, 2009 Published online: September 8, 2009