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Abstract: FVT of acenaphtho}/,2-ajacenaphthylene (1) gave acenaphtho|/,2-¢Jacenaphthylene (2).
cyclopentajedlperylene (3) and cyclopenta[rsflbenzolhilchrysene (4). The formation of 3 and 4 indicates
that, besides ring contraction/ring expansion of 1 giving 2, homolytic scission of a five-membered ring
carbon-carbon single bond of 1 is an important competitive process. © 1998 Elsevier Science Ltd. All rights reserved.

In recent years it has been shown that Flash Vacuum Thermolysis (FVT) of (multi) ethynyl-substituted
Polycyclic Aromatic Hydrocarbons (E-PAH) is an excellent method for the preparation of non-alternant
externally (multi) cyclopentafused-PAH (CP-PAH).! Their availability has allowed their identification in
combustion samples? and contributed to unravel the mechanisms responsible for the ubiquitous formation
of those (CP)-PAH representatives invariably generated during incomplete combustion.!-3 Moreover. many
CP-PAH represent (planar) substructures of various fullerenes.3 Of special relevance was the observation
that CP-PAH possessing externally fused CP moieties selectively rearrange into isomers containing an
internally fused CP unit by ring contraction/ring expansion involving 1,2-H/1,2-C shifts in the gas phase
between 800-1000 °C. Examples are the conversions of acephenanthrylene into fluoranthene (CeH o).t
cyclopenta[cd]pyrene into benzo[ghi]fluoranthene (C;3Hg)! and both benz[/}- and
benz(/Jacephenanthrylene into benzo[j]fluoranthene (CooHyp),5 respectively. However, until now only CP-
PAH containing isolated CP rings externally fused to a PAH periphery were studied.

We here report on the FVT behaviour of acenaphtho(/,2-alacenaphthylene (1, C33H 3, Scheme 1).0
Compound 1 contains two abutting CP moieties and represents a substructure of Csq and various possible
Cag isomers.” Besides ring contraction/ring expansion, which converts 1 into the unknown CP-PAH
acenaphthol/,2-eJacenaphthylene (2, CyoH) ), homolytic scission of a five-membered ring carbon-carbon
single bond of 1 is an important competitive process giving access to the transient diradical intermediate 5.
The latter is proposed to be a precursor for cyclopenta[rstlbenzo[hilchrysene (4, CaoH | 2). which
subsequently rearranges into cyclopentalcd]perylene (3, CooHja, Scheme 1).

Aliquots of 1 (20 mg)® were subjected to FVT (unfilled quartz tube length 40 cm, diameter 2.5 cm.
subl. temp. 120-140 °C, rate 20 mgh-! and 10-2 Torr) in the temperature range 900-1200 °C. Whereas at
900 °C 1 was quantitatively recovered, at T > 1000 °C red coloured pyrolysates were obtained: mass
recoveries remained good to excellent throughout the applied temperature range (Table 1). Product analysis
(HPLC, GC-MS) revealed that, besides 1, up to three novel compounds of composition Ca2H 3 (276 amu)
were present in the 1000-1200 °C pyrolysates. Unfortunately, their separation by column chromatography
using various conditions was thwarted due to co-elution of the products. Notwithstanding, '"H NMR
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spectroscopy of the 1000-1200 oC pyrolysates indicated that two of the novel products correspond to the
hitherto unknown CP-PAH acenaphtho[/,2-¢]Jacenaphthylene (2)8 and cyclopenta[cd]perylene (3),%
respectively. Unequivocal evidence for their structural assignment was obtained by independent FVT

syntheses of 2 and 3 (Scheme 2).

Table 1. Pyrolysate product composition upon FVT of 1 between 900-1200 °C (Scheme 1).2

Teo) | 1% | 2% | 3% | 41%(%) | Mass Recovery
S R :t L m
90 | 100 J - - I 100
1000 | 85 | 4 | - oo 79
oo | 77 9 | - 14 | 62
oo as w5 | s

4 1H NMR integral ratios, HPLC as well as capillary GC gave almost identical results. ® The 1200 ©C
pyrolysate contains a trace of perylene (9, ca. 1%) presumably due to C; extrusion from 3 (Scheme 2).

The different approach towards 2 was inspired on earlier results, viz. FVT (T > 1000 °C) of 6-(1-
chloroethenyl)chrysene gave benz[jlacephenanthrylene and its rearrangement product benzo[j]fluoranthene
(1000 ©°C, ratio 90%:10% and 1100 ©C, ratio 84%:16% with mass recoveries of 79% and 73%.
respectively).5 Hence, we anticipated that FVT of 6,12-bis(1-chloroethenyl)chrysene (6)10 should give the
hitherto unknown biscyclopentalhi,gr]chrysene (7), which by ring contraction/ring expansion should
selectively rearrange into 2. Indeed, FVT of 6 (50 mg) at 1100 °C (subl. temp. 150-160 °C. rate 50 mgh-!)
gave a pyrolysate containing only 7!! and 28 (ratio 7:2 78%:22%: mass recovery 42%, Scheme 2). An
enriched fraction consisting primarily of 2 and some 7 (ratio 2:7 90%:10%) could be isolated by column
chromatography (silica, eluent n-hexane).

FVT of 3-(1-chioroethenyl)perylene (8, 50 mg)!2 at 1000 °C (subl. temp. 120-140 ©C, rate 50 mgh-!)
gave a pyrolysate (mass recovery 77%) containing 3% and a trace of perylene (9, Scheme 2).



Scheme 2.
cl il
OO AT OO o an 1,2-HM,2-C Og
selnnaccingcehaih e e
Cl I

6

N II 7 2
9
C 0 U0 . (O
%5 T

8 3

2

Although the conversion of 1 into 2 can be explained by a ring contraction/ring expansion,1.3-5 the
formation of 3 from 1 is less straightforward (Scheme 1). Fortunately, a small amount of the third C2H 2
product (ca. 5 mg) could be isolated from the 1200 °C pyrolysate by tedious preparative HPLC. Its NMR
(1H, 13C and 'H decoupling experiments) data were in line with that expected for the hitherto unknown
CP-PAH cyclopenta[rst]benzo[hi]chrysene (4, Figure 1).13 The identification of 4 suggests that upon FVT
of 1, besides ring contraction/ring expansion, 1.3-5 viz. the conversion of 1 into 2, homolytic scission of a
five-membered ring carbon-carbon single bond giving transient diradical 5 is an important competitive
process. It is expected!4 that 5 after hydrogen shifts and rotation around the other carbon-carbon single
bond or vice versa will finally give 4 upon ring closure. Subsequently, 4 can rearrange into 3 by ring
contraction/ring expansion.!.3-5.15

The propensity of 1 to undergo homolytic scission next to the documented five/six-membered ring
exchange!.3-5 under FVT (1000-1200 °C) conditions is attributed to the presence of two abutting CP
moieties which will impose pentalene-like character and, thus, additional strain. AM1 calculations predict 1
to be 5.8, 24.3 and 19.7 kcalmol-! less stable than 2, 3 and 4, respectively (Scheme 1).16 Furthermore,
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Figure 1. 'H NMR (acetone-ds, 300 MHz) of 4 isolated by preparative HPLC (* and + traces of 3and9,

respectively). The assignments 1/6 vs. 2/5 can be reversed. |3
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the availability of the previously unknown CP-PAH 2, 3 and 4 will enable their identification as possible

combustion effluents as well as the assessment of their genotoxic properties.
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For another example, viz. benz[mno]aceanthrylene: Sarobe, M.; Jenneskens, L.W. J. Org. Chem.,
1997, 62, 8247-8250.

AMI (MOPAC 6.0) gave AH¢® values of 153.3, 147.5, 129.0, 133.6 and 153.8 kcalmol-! for 1, 2,
3,4 and 7, respectively.



