# ORGANOMETALLICS

Article

# (Arylimido)niobium(V) Complexes Containing 2-Pyridylmethylanilido Ligand as Catalyst Precursors for Ethylene Dimerization That Proceeds via Cationic Nb(V) Species

Masaharu Kuboki and Kotohiro Nomura\*®

Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan

**S** Supporting Information

ABSTRACT: (Arylimido)niobium(V) complexes containing 2-pyridylmethylanilido ligand Nb(NAr)X<sub>2</sub>(L)  $[L = 2-(2,6-Me_2C_6H_3) NCH_2(C_5H_4N); X = NMe_2$  (2a,b),  $OCH(CF_3)_2$  (3a-c), Me (4a-c),  $CH_2SiMe_3$  (5a); Ar = 2,6-Me\_2C\_6H\_3 (a), 2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (b), 2-MeC<sub>6</sub>H<sub>4</sub> (c)] have been prepared, and structures of 3a,b, 4b, and 5a were determined by X-ray crystallography. The dimethyl complexes (4a,b) exhibited catalytic activities for ethylene dimerization in the presence of methylaluminoxane (MAO), whereas the activity by 4c was negligible under the same conditions. Complex 4b showed the highest activity, and the activity at 50 °C was higher than those conducted at 25 and 80 °C.



The major product was 1-butene, and 1-hexene was formed by subsequent reaction of ethylene with 1-butene accumulated in the reaction mixture. A first-order relationship between the activity [turnover frequency (TOF)] and ethylene pressure was observed, suggesting that the metal-alkyl species would play a role in this catalysis. The activities further increased remarkably upon addition of  $[Ph_3C][B(C_6F_5)_4]$  at 50 °C; TOF at the initial stage (5 min) of 2 100 000 h<sup>-1</sup> (583 s<sup>-1</sup>) has been attained. Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of  $[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded  $[Nb(NAr)Me(L)]^+[B-Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of <math>[Ph_3C][B(C_6F_$  $(C_6F_5)_4$  [-(Et<sub>2</sub>O)<sub>2</sub> (6a,b), and the reaction of 6b with ethylene afforded 1-butene and 1-hexene even in the absence of MAO, clearly suggesting that the cationic species play a role in this catalysis. X-ray absorption near edge structure spectra of the catalyst solutions containing 4b (in toluene at 25  $^{\circ}$ C) and MAO (10 and 50 equiv) showed no significant differences in the preedge peak positions and intensities from that in the dimethyl complex (4b), strongly suggesting that both the oxidation states and the basic structures are maintained upon addition of MAO in these catalyst solutions.

# 1. INTRODUCTION

Ethylene oligomerization for production of linear  $\alpha$ -olefins, exemplified by nickel complex catalysts containing a chelate P-O ligand (in shell higher olefin process, SHOP),<sup>1</sup> is the key reaction in chemical industry<sup>1,2</sup> and the subject on design of the efficient (highly active and selective) catalysts thus attracts considerable attention in the field of catalysis and organometallic chemistry.<sup>1–8</sup> Many reports using nickel,<sup>1,2c,h,3b–d</sup> iron and cobalt,<sup>2g,i–k,3e,f</sup> chromium,<sup>2d–f,3a</sup> or titanium complex catalysts<sup>4</sup> have been known, but the reports using group 5 complex catalysts,<sup>5-8</sup> in particular, homogeneous niobium complex catalysts, have been limited (especially in recent 30 vears).

(Imido)Vanadium(V) complexes containing 2-pyridylmethylanilido or 5,6,7-trihydroquinolyl-8-anilido ligands, V(NR')- $Cl_2[2-(2,6-Me_2C_6H_3)NCH_2(C_5H_4N)]$  or  $V(NR')Cl_2[8-(2,6-Me_2C_6H_3)NCH_2(C_5H_4N)]$  $Me_2C_6H_3N(C_9H_{10}N)$  [R' = 1-adamantyl (Ad), 2-MeC<sub>6</sub>H<sub>4</sub>,  $C_6H_5$  etc.], have been known to exhibit remarkably high both activities and selectivity for ethylene dimerization in the presence of the methylaluminoxane (MAO) cocatalyst (Scheme 1).<sup>6</sup> It was demonstrated that a steric bulk in the imido ligand affects the ethylene reactivity (dimerization or polymerization).<sup>6a</sup> On the basis of some reaction chemistry (isolation

of cationic methyl complex, confirmation of the catalyst performance with the dimethyl complex, ethylene pressure dependence and effect of Al cocatalyst), <sup>51</sup>V NMR and ESR spectra of the catalyst solution, and the solution phase V K edge XAS [X-ray absorption spectroscopy; XANES (X-ray Absorption Near Edge Structure) and FT-extended X-ray absorption fine structure] analysis, it was concluded that the cationic vanadium(V) species play a role in this catalysis.<sup>6 $\epsilon$ </sup>

The arylimido ligand has been used to stabilize the high oxidation state early transition-metal complexes, which are often used as the catalysts or catalyst precursors in olefin metathesis and olefin insertion polymerization.<sup>9</sup> Synthesis and some reaction chemistry of (arylimido)niobium complexes have thus also been known;<sup>10,11</sup> however, there are no examples applied to catalyst precursors for ethylene oligomerization, whereas (arylimido)niobium(V)-alkylidene complexes exhibit unique characteristics as catalysts for olefin metathesis polymerization.<sup>11i</sup> Because of promising characteristics demonstrated in the above-mentioned (imido)vanadium(V) complexes containing 2-pyridylmethylanilido ligand (shown in Scheme 1),<sup>6</sup> we

Received: January 14, 2019



thus have an interest for synthesis of the niobium analogues, especially the dimethyl complexes (Scheme 2), as catalysts for reaction with ethylene.

Scheme 2. Ethylene Oligomerization Using Nb(NAr)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, 2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, 2-MeC<sub>6</sub>H<sub>4</sub>) in the Presence of Cocatalysts



We herein present synthesis and structural analysis of (arylimido)niobium(V) complexes containing 2-pyridylmethylanilido ligands,  $Nb(NAr)X_2[2-(2,6-Me_2C_6H_3)-NCH_2(C_5H_4N)]$  [Ar = 2,6-Me\_2C\_6H\_3, 2,6-<sup>i</sup>Pr\_2C\_6H\_3, 2 $MeC_6H_4$ ; X = NMe<sub>2</sub>, OCH(CF<sub>3</sub>)<sub>2</sub>, Me, CH<sub>2</sub>SiMe<sub>3</sub>] (Scheme 2). We wish to demonstrate that Nb(N-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] exhibits notable catalytic activity for ethylene dimerization in the presence of MAO especially at 50 °C and both the activity and selectivity of oligomer further increased with addition of [Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>]. On the basis of isolation of cationic complexes and the reaction with ethylene, as well as XANES analysis of the catalyst solution, we herein propose the catalytically active species in this catalysis.<sup>12</sup>

# 2. RESULTS AND DISCUSSION

2.1. Synthesis and Structural Analysis of Nb(NAr)X<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] [Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, 2,6-<sup>*i*</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>, 2-MeC<sub>6</sub>H<sub>4</sub>; X = NMe<sub>2</sub>, OCH(CF<sub>3</sub>)<sub>2</sub>, Me, CH<sub>2</sub>SiMe<sub>3</sub>]. The (arylimido)niobium(V)tris(dimethylamide) complexes, Nb(NAr)(NMe<sub>2</sub>)<sub>3</sub> [Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (1a), 2,6-<sup>*i*</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (1b), 2-MeC<sub>6</sub>H<sub>4</sub> (1c), Scheme 3], have been chosen as the starting complexes for the syntheses of the dimethyl complexes, Nb(NAr)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)-NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (4a-c, shown in Schemes 2 and 3) because 1b is known as a solvent-free four coordinate (arylimido)niobium(V) complex,<sup>11c</sup> which folds a distorted tetrahedral

Scheme 3. Synthesis of Nb(NAr)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] [Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4a), 2,6-<sup>*i*</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4b), 2-MeC<sub>6</sub>H<sub>4</sub> (4c)] and Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (5a); Detailed Synthetic Procedures are Described in the Experimental Section, and Selected NMR Spectra are Shown in the Supporting Information<sup>14</sup>



в



**Figure 1.** ORTEP drawings for Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)[OCH(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (**3a**, left) and Nb(N-2,6<sup>-i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)[OCH(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (**3b**, right). Thermal ellipsoids are drawn at 30% probability level, and H atoms were omitted for clarity.<sup>16</sup> Selected bond distances (Å) in **3a**: Nb–O(1) 1.9743(17), Nb–O(2) 1.9769(17), Nb–N(1) 1.7913(19), Nb–N(2) 2.3415(19), Nb–N(3) 1.991(2), N(1)–C(1) 1.388(3). Selected bond angles (°) in **3a**: Nb–N(1)–C(1) 177.24(17), N(1)–Nb–N(2) 172.21(8), N(1)–Nb–N(3) 99.35(9), N(2)–Nb–N(3) 74.92(8), O(1)–Nb–(O2) 116.92(7), O(1)–Nb–N(3) 115.58(8), O(2)–Nb–N(3) 118.60(8), Nb–O(1)–C(23) 142.56(15), Nb–O(2)–C(26) 131.24(15).  $\tau = (\beta - \alpha)/60 = (172.21-118.60)/60 = 0.894$ .<sup>17</sup> Selected bond distances (Å) in **3b**: Nb–O(1) 1.9875(17), Nb–O(2) 1.9618(15), Nb–N(1) 1.7899(17), Nb–N(2) 2.3475(17), Nb–N(3) 119.891(19), N(1)–C(1) 1.402(3). Selected bond angles (°) in **3b**: Nb–N(1)–C(1) 169.53(17), N(1)–Nb–N(2) 173.37(8), N(1)–Nb–N(3) 103.12(8), N(2)–Nb–N(3) 75.38(7), O(1)–Nb–(O2) 117.93(7), O(1)–Nb–N(3) 117.50(7), O(2)–Nb–N(3) 114.66(7), Nb–O(1)–C(27) 127.96(14), Nb–O(2)–C(30) 143.75(14).  $\tau = (\beta - \alpha)/60 = (173.37-117.93)/60 = 0.924$ .<sup>17</sup>

geometry around Nb. This is also because, as reported previously,<sup>11j</sup> it seemed difficult to remove coordinated solvent (such as 1,2-dimethoxyethane, dme) from the trichloride analogues, Nb(NAr)Cl<sub>3</sub>(dme).<sup>11j,13</sup> Complexes **1a** and **1c** could be prepared according to the analogous procedure for **1b**<sup>11c</sup> and were used for the next step without further purifications (as described in the Experimental Section).

It turned out that reactions of  $Nb(NAr)(NMe_2)_3$  (1a,b) with  $2-(2,6-Me_2C_6H_3)N(H)CH_2(C_5H_4N)$  (LH) in *n*-hexane afforded corresponding bis(amide) complexes, Nb(NAr)- $(NMe_2)_2(L)$  [2a,b; L = 2-(2,6-Me\_2C\_6H\_3)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)], by amine (HNMe<sub>2</sub>) elimination.<sup>14</sup> The *o*-tolylimido analogue (2c)could also be obtained from 1c by treating with L-H (confirmed formation by <sup>1</sup>H NMR spectrum and was used for the next step without further purification, as described in the Experimental Section). Attempt for the synthesis of the dichloride complexes from 2b by treating with excess Me<sub>3</sub>SiCl  $(5 \text{ equiv}, -30 \text{ to } 25 \degree \text{C}, \text{ overnight})^{15}$  recovered **2b**. In contrast, treatments of 2a,b with 2.0 equiv of  $(CF_3)_2$ CHOH gave the corresponding bis(alkoxide) complexes, Nb(NAr)[OCH- $(CF_3)_2]_2(L)$  (**3a**,**b**) in high yields (85.2, 77.8%, respectively).<sup>14</sup> Analytically pure Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)[OCH(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>(L) (3c) could also be isolated by treating 2c with 2.0 equiv of  $(CF_3)_2$ CHOH. Complexes 3a,b and 3c were isolated as whiteyellow microcrystals, and structures of 3a,b were determined by X-ray crystallographic analysis (shown below as Figure 1).<sup>16</sup> Complexes 2a,b and 3a-c were identified by NMR spectra and elemental analysis.<sup>14</sup>

Reactions of 3a,b and 3c with MeMgBr (2.5 equiv) in toluene yielded the corresponding dimethyl complexes, Nb(NAr)-Me<sub>2</sub>(L) (4a-c). Complexes 4a,b and 4c were identified by NMR spectra and elemental analysis,<sup>14</sup> and the structure of 4b could be determined by X-ray crystallography (shown below, Figure 2).<sup>16</sup> The structure of 4c could also be confirmed by Xray crystallographic analysis.<sup>16</sup> Similarly, treatment of 4a with Me<sub>3</sub>SiCH<sub>2</sub>MgCl (2.4 equiv) afforded another dialkyl complex, Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(L) (5a). Complex 5a could



**Figure 2.** ORTEP drawings for Nb(N-2,6<sup>-i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (**4b**). Thermal ellipsoids are drawn at 30% probability level, and H atoms were omitted for clarity.<sup>16</sup> Selected bond distances (Å): Nb-C(19) 2.195(2), Nb-N(1) 1.800(2), Nb-N(2) 2.385(2), Nb-N(3) 2.012(3). Selected bond angles (°): Nb-N(1)-C(1) 174.2(2), N(1)-Nb-N(2) 169.74(10), N(1)-Nb-N(3) 96.73(10), N(2)-Nb-N(3) 73.00(9), C(19)-Nb-C(19<sup>i</sup>) 111.71(9), C(19)-Nb-N(1) 101.38(7), C(19)-Nb-N(2) 84.23(7), C(19)-Nb-N(3) 119.91(7).  $\tau = (\beta - \alpha)/60 = (169.74 - 111.71)/60 = 0.967.$ 

be identified by NMR spectra and elemental analysis,<sup>14</sup> and the structure could be determined by the X-ray crystallographic analysis (shown below, Figure 3).<sup>16</sup> Attempt for the synthesis of (arylimido)niobium(V)–alkylidene complex from **5a** in the presence of 12 equiv of PMe<sub>3</sub> (by  $\alpha$ -hydrogen abstraction, at 25 °C for 22 h and 80 °C for 37 h) recovered **5a**.<sup>14</sup>

Figure 1 shows Oak Ridge thermal ellipsoid plot (ORTEP) drawings of Nb(NAr)[OCH(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>(L) (**3a,b**).<sup>16</sup> These complexes fold a distorted trigonal bipyramidal geometry around niobium with the pyridyl N donor of the bidentate 2-



**Figure 3.** ORTEP drawings for Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] **(5a)**. Thermal ellipsoids are drawn at 30% probability level, and H atoms were omitted for clarity.<sup>16</sup> Selected bond distances (Å): Nb–C(23) 2.179(3), Nb–C(27) 2.196(3), Nb–N(1) 1.796(2), Nb–N(2) 2.407(2), Nb–N(3) 2.0195(19). Selected bond angles (°): Nb–N(1)–C(1) 177.38(16), N(1)–Nb–N(2) 170.80(7), N(1)–Nb–N(3) 98.59(9), N(2)–Nb–N(3) 72.73(7), C(23)–Nb–C(27) 114.15(9), C(23)–Nb–N(1) 101.57(10), C(23)–Nb–N(2) 81.33(8), C(23)–Nb–N(3) 123.28(9), C(27)–Nb–N(1) 99.91(10), C(27)–Nb–N(2) 86.65(8), C(27)–Nb–N(3) 113.62(9), Nb–C(23)-Si(1) 131.31(11), Nb–C(27)–Si(2) 119.91(14).  $\tau = (\beta - \alpha)/60 = (170.80-114.15)/60 = 0.944.$ 

pyridylmethylanilido ligand and the imido N atom lying on the axis and an equatorial plane consisted of the two alkoxide ligands and the anilido N atom. The axial N(1)–Nb–N(2) bond angle in **3a**  $[172.21(8)^{\circ}]$  is slightly smaller than that in **3b**  $[173.37(8)^{\circ}]$ , and the Nb–N(1)–C(1) bond angle in **3a**  $[177.24(17)^{\circ}]$  is larger than that in **3b**  $[169.53(17)^{\circ}]$ . The sums of the equatorial O(1)–Nb–O(2), O(1)–Nb–N(3) and O(2)–Nb–N(3) bond angles in **3a,b** are 351.1, 350.09°, respectively. These indicate that the nitrogen atom in the pyridine is located at trans-position of the imido ligand and that

complexes **3a,b** fold a linear structure from C(1) through N(2). Furthermore,  $\tau$ -value, one for an ideal trigonal bipyramid and zero for a square-pyramidal coordination [ $\tau = (\beta - \alpha)/60$  with  $\alpha$  and  $\beta$  being the largest basal angles] is 0.894, 0.924, respectively,<sup>17</sup> suggesting their trigonal bipyramidal structures. The N(1)–Nb–N(3) bond angles in **3a,b** [99.35(9)°, 103.12(8)°, respectively] are larger than the N(2)–Nb–N(3) bond angles [74.92(8)°, 75.38(7)°, respectively]. The Nb–O(1) and Nb–O(2) distances [1.9618(15)–1.9875(17) Å] are shorter than those in Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(N=C<sup>t</sup>Bu<sub>2</sub>)[OCH-(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>(HN=C<sup>t</sup>Bu<sub>2</sub>) [1.9879(14), 1.9986(12) Å],<sup>11</sup> whereas the Nb–N(1) bond distances [1.7913(19), 1.7899(17) Å for **3a**, **3b**, respectively] are close [1.790(2) Å].<sup>11</sup>

Figure 2 shows ORTEP drawings for Nb(N-2,6- ${}^{i}Pr_{2}C_{6}H_{3}$ )-Me<sub>2</sub>(L) (4b, different views).<sup>16</sup> The complex also folds a distorted trigonal bipyramidal geometry around niobium ( $\tau$  = 0.967), as observed in 3a,b. The axial N(1)-Nb-N(2) bond angle  $[169.74(10)^{\circ}]$  is smaller than that in the alkoxide analogue (3b)  $[173.37(8)^{\circ}]$ , but the Nb-N(1)-C(1) bond angle  $[174.2(2)^{\circ}]$  is larger than that in **3b**  $[169.53(17)^{\circ}]$ . As observed in 3b, the N(1)–Nb–N(3) bond angle  $[96.73(10)^{\circ}]$  is larger than the N(2)–Nb–N(3) bond angle  $[73.00(9)^\circ]$ . The sum of the equatorial  $C(19)-Nb-C(19^i)$ , C(19)-Nb-N(3) and  $C(19^i)$ -V-N(3) bond angles is 351.53°, clearly suggesting that complex 4b folds a linear structure from C(1) through N(2). Moreover, as shown in Figure 2, the torsion angles in 4b  $[N(1)-Nb-N(3)-C(13) (180.0^{\circ}), N(1)-Nb-N(3)-C(14)]$  $(0.0^{\circ}), N(2)-Nb-N(3)-C(13) (0.0^{\circ}), N(2)-Nb-N(3) C(14) (180.0^{\circ}), N(3)-Nb-N(2)-C(8) (180.0^{\circ}), and N(3)-$ Nb-N(2)-C(12)  $(0.0^{\circ})$ ] strongly suggest that the pyridine ligand frame possesses a plane perpendicular to a plane consisting of two methyl groups and niobium atoms as well as two phenyl rings (in the arylimido and anilide ligands). These results clearly indicate that the basic structure in 4b is similar to that in the vanadium analogue,  $V(N-1-adamantyl)Me_2(L)$ .<sup>66</sup>

Figure 3 shows an ORTEP drawing for Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)-(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(L) (**5a**).<sup>16</sup> The complex also folds a distorted trigonal bipyramidal geometry around niobium ( $\tau$  = 0.944). The axial N(1)–Nb–N(2) bond angle [170.80(7)°] is smaller than that in the alkoxide analogue (**3a**) [172.21(8)°] but is larger

Table 1. Reaction with Ethylene by Nb(NAr)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] [Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4a), 2,6-<sup>*i*</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4b)]–MAO Catalyst Systems (Ethylene 8 atm, in Toluene, 10 min)<sup>*a*</sup>

|     |                 |                    |                  | oligomo        | $PE^g$                  |                         |                  |                 |
|-----|-----------------|--------------------|------------------|----------------|-------------------------|-------------------------|------------------|-----------------|
| run | cat./µmol       | Al/Nb <sup>b</sup> | TON <sup>d</sup> | $TOF^e/h^{-1}$ | $C_{4}^{\prime f} / \%$ | $C_{6}^{\prime f} / \%$ | TON <sup>d</sup> | wt %            |
| 1   | <b>4a</b> (3.0) | 25                 | trace            |                |                         |                         |                  |                 |
| 2   | <b>4a</b> (3.0) | 50                 | 74               | 444            | 96.3                    | 3.7                     | 6                | 7.4             |
| 3   | <b>4a</b> (3.0) | 100                | 103              | 617            | 96.0                    | 4.0                     | 17               | 14              |
| 4   | <b>4a</b> (3.0) | 250                | 112              | 671            | 95.8                    | 4.2                     | 59               | 35 <sup>h</sup> |
| 5   | <b>4a</b> (3.0) | 250                | 126              | 755            | 94.9                    | 5.1                     | 51               | 29              |
| 6   | <b>4a</b> (3.0) | 500                | trace            |                |                         |                         | trace            |                 |
| 7   | <b>4b</b> (1.0) | 100                | 398              | 2390           | 95.4                    | 4.6                     | 18               | 4.3             |
| 8   | <b>4b</b> (1.0) | 250                | 2960             | 17 800         | 94.5                    | 5.5                     | 39               | 1.3             |
| 9   | <b>4b</b> (1.0) | 250                | 2810             | 16 800         | 94.3                    | 5.7                     | 68               | 2.4             |
| 10  | <b>4b</b> (1.0) | 500                | 1250             | 7480           | 94.9                    | 5.1                     | 154              | 11              |
| 11  | <b>4b</b> (1.0) | 1000               | 570              | 3420           | 91.0                    | 9.0                     | 225              | 28              |
| 12  | <b>4b</b> (1.0) | 2000               | 354              | 2120           | 90.3                    | 9.7                     | 264              | 43              |
| 13  | <b>4b</b> (1.0) | 3000               | 175              | 1050           | 92.9                    | 7.1                     | 292              | 63              |

<sup>*a*</sup>Conditions: toluene 30 mL, ethylene 8 atm, 25 °C, 10 min, D-MAO white solid (prepared by removing AlMe<sub>3</sub>, toluene from TMAO-S). <sup>*b*</sup>Al/Nb molar ratio. <sup>*c*</sup>Oligomer = 1-butene + 1-hexene formed. <sup>*d*</sup>TON = (molar amount of ethylene reacted)/mol-Nb. <sup>*e*</sup>TOF = TON/h. <sup>*f*</sup>By GC analysis vs internal standard. <sup>*g*</sup>Collected as MeOH–HCl insoluble portion. <sup>*h*</sup>Melting temperature at 134.1 °C by DSC thermogram.<sup>19</sup>

|     |                    |          |                  | oligom           | $PE^g$                  |                         |                  |                  |
|-----|--------------------|----------|------------------|------------------|-------------------------|-------------------------|------------------|------------------|
| run | Al/Nb <sup>b</sup> | temp./°C | TON <sup>d</sup> | $TOF^{e}/h^{-1}$ | $C_{4}^{\prime f} / \%$ | $C_{6}^{\prime f} / \%$ | TON <sup>d</sup> | wt %             |
| 8   | 250                | 25       | 2960             | 17 800           | 94.5                    | 5.5                     | 39               | 1.3              |
| 14  | 50                 | 50       | 202              | 1210             | 94.0                    | 6.0                     | 18               | 8.1              |
| 15  | 100                | 50       | 2120             | 12 700           | 92.6                    | 7.4                     | 75               | 3.4              |
| 16  | 250                | 50       | 3250             | 19 500           | 92.5                    | 7.5                     | 160              | 4.7 <sup>h</sup> |
| 17  | 250                | 50       | 2980             | 17 900           | 92.5                    | 7.5                     | 228              | 7.1              |
| 18  | 50                 | 80       | trace            |                  |                         |                         | 113              |                  |
| 19  | 100                | 80       | 1270             | 7640             | 91.6                    | 8.4                     | 121              | 8.7              |
| 20  | 250                | 80       | 2150             | 12 900           | 89.2                    | 10.8                    | 296              | 12               |
| 21  | 250                | 80       | 2350             | 14 100           | 91.4                    | 8.6                     | 143              | 5.7              |
| 22  | 500                | 80       | 857              | 5140             | 89.4                    | 10.6                    | 157              | 15               |

<sup>*a*</sup>Conditions: complex 4b 1.0  $\mu$ mol, toluene 30 mL, ethylene 8 atm, 10 min, D-MAO white solid (prepared by removing AlMe<sub>3</sub>, toluene from TMAO-S). <sup>*b*</sup>Al/Nb molar ratio. <sup>*c*</sup>Oligomer = 1-butene + 1-hexene formed. <sup>*d*</sup>TON = (molar amount of ethylene reacted)/mol-Nb. <sup>*e*</sup>TOF = TON/h. <sup>*f*</sup>By GC analysis vs internal standard. <sup>*g*</sup>Collected as MeOH–HCl insoluble portion. <sup>*h*</sup>Melting temperature at 133.9 °C by DSC thermogram.<sup>19</sup>

Table 3. Ethylene Dimerization by Nb(N-2,6-<sup>*i*</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (4b)-MAO Catalyst System: Time Course and Ethylene Pressure Dependence<sup>*a*</sup>

|     |              |         |          | oligomer <sup>b</sup> |                  |               |                       | $PE^{f}$         |      |  |
|-----|--------------|---------|----------|-----------------------|------------------|---------------|-----------------------|------------------|------|--|
| run | ethylene/atm | temp/°C | time/min | TON <sup>c</sup>      | $TOF^{d}/h^{-1}$ | $C_4'^{e}/\%$ | $C_{6}^{\prime e}/\%$ | TON <sup>c</sup> | wt % |  |
| 23  | 8            | 25      | 5        | 1500                  | 18 100           | 95.4          | 4.6                   | 29               | 1.9  |  |
| 8   | 8            | 25      | 10       | 2960                  | 17 800           | 94.5          | 5.5                   | 39               | 1.3  |  |
| 24  | 8            | 25      | 20       | 4540                  | 13 600           | 92.1          | 7.9                   | 171              | 3.6  |  |
| 25  | 8            | 50      | 5        | 1770                  | 21 200           | 93.1          | 6.9                   | 114              | 6.1  |  |
| 16  | 8            | 50      | 10       | 3250                  | 19 500           | 92.5          | 7.5                   | 160              | 4.7  |  |
| 26  | 8            | 50      | 20       | 5460                  | 16 400           | 90.3          | 9.7                   | 214              | 3.8  |  |
| 27  | 8            | 80      | 5        | 1310                  | 15 700           | 93.6          | 6.4                   | 107              | 7.6  |  |
| 21  | 8            | 80      | 10       | 2350                  | 14 100           | 91.4          | 8.6                   | 143              | 5.7  |  |
| 28  | 8            | 80      | 20       | 2910                  | 8720             | 86.6          | 13.4                  | 271              | 8.5  |  |
| 29  | 2            | 25      | 10       | 668                   | 4010             | 96.0          | 4.0                   | 14               | 2.1  |  |
| 30  | 4            | 25      | 10       | 1320                  | 7920             | 94.9          | 5.1                   | 57               | 4.1  |  |
| 31  | 6            | 25      | 10       | 2190                  | 13 200           | 93.9          | 6.1                   | 86               | 3.8  |  |

<sup>*a*</sup>Conditions: complex **4b** 1.0  $\mu$ mol, toluene 30 mL, D-MAO white solid, Al/Nb = 250 (molar ratio). <sup>*b*</sup>Oligomer = 1-butene + 1-hexene formed. <sup>*c*</sup>TON = (molar amount of ethylene reacted)/mol-Nb. <sup>*d*</sup>TOF = TON/h. <sup>*e*</sup>By GC analysis vs internal standard. <sup>*f*</sup>Collected as MeOH–HCl insoluble portion.

than that in 4b [169.74(10)°]. The angle is smaller than that in the vanadium analogue, V(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(L)  $[V, 173.78(5)^{\circ}]^{.18}$  The Nb-N(1)-C(1) bond angle  $[177.38(16)^{\circ}]$  is close to that in 3a  $[177.24(17)^{\circ}]$  and V  $[176.96(11)^{\circ}]^{18}$  but is larger than that in 4b  $[174.2(2)^{\circ}]$ . As also shown in 3a,b and 4b, the N(1)-Nb-N(3) bond angle  $[98.59(9)^{\circ}]$  is larger than the N(2)-Nb-N(3) bond angle  $[72.73(7)^{\circ}]$ . The sum of the equatorial C(23)-Nb-C(27), C(23)-Nb-N(3) and C(27)-Nb-N(3) bond angles is 351.05°, clearly suggesting that complex 5a folds a linear structure from C(1) through N(2). The Nb–C bond distances in **5a** [2.179(3), 2.196(3) Å] are close to those in **4b** [2.195(2) Å] but longer that those in the V–C [2.0758(19), 2.0864(18) Å].<sup>18</sup> The C(23)–Nb–C(27) bond angle in  $5a [114.15(9)^{\circ}]$  is larger than the  $C(19)-Nb-C(19^i)$  bond angle in 4b  $[111.71(9)^{\circ}]$ , probably because of a steric bulk of SiMe<sub>3</sub> group in 5a compared with the methyl group in 4b; the angle in **5a** is also close to the vanadium analogue [114.08(6)].<sup>1</sup>

2.2. Reaction with Ethylene by Nb(NAr)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] [Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4a), 2,6-Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4b), 2-MeC<sub>6</sub>H<sub>4</sub> (4c)] in the Presence of MAO and Borate. Reactions with ethylene using the dimethyl complexes, Nb(NAr)Me<sub>2</sub>(L) [Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4a),

 $2,6-{}^{i}Pr_{2}C_{6}H_{3}$  (4b), 2-MeC<sub>6</sub>H<sub>4</sub> (4c)], were conducted in the presence of MAO cocatalyst, according to the similar procedures employed for the vanadium analogues (shown in Scheme 1).<sup>6</sup> The results in toluene at 25 °C with various Al/Nb molar ratios are summarized in Table 1.<sup>19</sup>

It turned out that reactions with ethylene by 4a,b afforded 1butene (and 1-hexene) as the major products accompanied byproducing linear polyethylene [PE, confirmed by differential scanning calorimetry (DSC) thermogram, melting temperature at 134.1 °C, run 4].<sup>19</sup> In contrast, the activity by 4c was negligible under the same conditions (as in runs 4, 5 and runs 8, 9, Al/Nb = 250, shown in the Supporting Information).<sup>19</sup> This might be the similar observation in the ethylene polymerization using [NbCl<sub>2</sub>(O-2,4-R'<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)<sub>3</sub>N] (R' = Me, <sup>t</sup>Bu) that the activity in *n*-octane was much higher than those conducted in toluene.<sup>20c</sup> The probable reason would be assumed as due to coordination of toluene in the formed active (cationic alkyl) species.<sup>20,21</sup>

It was revealed that the activities [expressed as turnover number (TON), turnover frequency (TOF)] by 4a,b-MAO catalyst systems were affected by Al/Nb molar ratios. It seems likely that the percentage of PE especially by 4b increased with increasing the ratio (runs 7–13):<sup>19</sup> the ratio of 250 (runs 4,5,

and 8,9) seemed to be optimized in terms of the activity and the selectivity of oligomer. The diisopropylphenyl analogue (4b) showed higher activity than the dimethylphenyl analogue (4a), the major product was 1-butene (94.3–94.5%, runs 8,9), and the results are reproducible (runs 8,9 and the data are shown in the Supporting Information).<sup>19</sup>

It should be noted that both the high activity and selectivity of 1-butene are maintained (or became rather high) even if these reactions by 4b were conducted at 50 °C (runs 16,17, Table (2).<sup>19</sup> This is the noteworthy contrast to that using the vanadium analogues, whereas the activity by the V(NAd)Cl<sub>2</sub>(L)-MAO catalyst system extensively decreased at 50 °C.<sup>6d</sup> The activity by 4b, however, slightly decreased at 80 °C. The activities at 50 and 80 °C were also affected by the Al/Nb molar ratios, and, as observed in Table 2, the ratio of 250 (runs 16,17, and 20,21) seemed to be optimized in terms of both the activity and selectivity. It seems likely that amount of PE byproduced increased at high temperature, probably because of partial decomposition of the catalytically active species and/or partial ligand dissociation (probably leading formation of another active species) assumed previously in the vanadium catalyst systems.<sup>6a,c,19</sup>

Table 3 summarizes results in the time course dependences at 25, 50, and 80 °C, and the ethylene pressure dependence (at 25 °C) toward both the activity and selectivity in the ethylene dimerization using the **4b**–MAO catalyst system.<sup>19</sup> Figure 4 also



**Figure 4.** Time course in ethylene dimerization by Nb(N- $_{2,6}$ -<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (4b)–MAO catalyst system (ethylene 8 atm): temperature dependence toward TONs (filled circle) and C'<sub>4</sub> selectivity (circle in plain). Detailed data are shown in Table 3.

shows the time course dependences toward the TONs and the selectivity of 1-butene, and the selectivity decreased over time course, suggesting that, as observed in the reaction using the vanadium analogues,<sup>6b,d</sup> the initial products in the reaction was 1-butene and 1-hexene was formed by the subsequent reaction of ethylene with 1-butene accumulated in the reaction mixture. Importantly, degree of decrease in the selectivity of 1-butene after 20 min was affected by the reaction temperature; the selectivity decreased rapidly at 80 °C (runs 21, 27, 28) compared with those conducted at 25, 50 °C (runs 8, 16, 23–26).<sup>19</sup> It should be noted that the activities (expressed as TONs and TOFs) conducted at 50 °C were higher than those conducted at 25 °C; the decrease in the activity over time course at 80 °C was rather significant, suggesting a possibility of the catalyst deactivation.<sup>19</sup>

As shown in Figure 5, a first-order relationship between TOF value and the ethylene pressures was observed (runs 8, 29-31, Table 3). It has been known that the ethylene oligomerization



Figure 5. Ethylene pressure dependence in ethylene dimerization by  $Nb(N-2,6-{}^{i}Pr_{2}C_{6}H_{3})Me_{2}[2-(2,6-Me_{2}C_{6}H_{3})NCH_{2}(C_{5}H_{4}N)]$  (4b)– MAO catalyst system (25 °C). Detailed data are shown in Table 3.

proceeds via a metal-hydride (metal-alkyl) or metallacycle intermediate, and the ethylene pressure dependence toward the activity is different in these pathways.<sup>2d,6b</sup> Therefore, the result (first-order dependence) could suggest that the metal-hydride (or metal-alkyl) species play a role in this catalysis.

It should be noted that, as shown in Table 4, significant increases in the activities were observed in ethylene dimerization by 4a,b-MAO catalyst systems by addition of [Ph<sub>3</sub>C][B- $(C_6F_5)_4$ ] (borate) as the cocatalyst.<sup>19</sup> The activity by 4a–MAO catalyst system increased upon addition of 1.5 equiv of  $[Ph_3C][B(C_6F_5)_4]$  [TOF = 31 700 h<sup>-1</sup> (run 32) vs 755 (run 5), at 25 °C]; the activity increased at 50 °C (run 33). Remarkable increase in the activity by addition of the borate was also observed in the ethylene dimerization by 4b-MAO catalyst system [ex. TOF = 19 500 h<sup>-1</sup> (run 16) vs 650 000 h<sup>-1</sup> (run 37, Al/Nb = 100], and the selectivity of oligomers also increased in the presence of MAO and borate cocatalysts [ex. percentage of PE byproduced = 4.7 wt % (run 16) vs 1.0 wt % (run 37)]. The reaction did not take place when only borate was added in the solution without MAO (run 34), suggesting that both MAO and borate are necessary in this catalysis. The activity in the presence of Al<sup>i</sup>Bu<sub>3</sub> and borate cocatalysts (run 35) was the same level as that in the presence of MAO (run 16), and the selectivity of 1butene was apparently low (63.1%, run 35). It was also revealed that the activity was affected by the Nb/Al molar ratios (runs 36-40, runs 41, 42, 45, 46),<sup>19</sup> and as observed in Table 1, the percentage of PE byproduced increased high Nb/Al molar ratios (runs 39, 40, and 46).<sup>19</sup> The resultant PEs byproduced were ethylene oligomers containing terminal olefinic double bonds (confirmed by <sup>1</sup>H NMR spectrum as well as DSC thermograms).<sup>1</sup>

Moreover, the activity under low catalyst concentration conditions (**4b** 0.5  $\mu$ mol) increased upon further addition of borate (3.0 equiv).<sup>19</sup> It should be noteworthy that under optimized conditions with low **4b** concentration conditions at 50 °C, TON of 234 000 (TOF 1 400 000 h<sup>-1</sup>) could be attained after 10 min (run 43), and the TOF at the initial stage (after 5 min) was 2 100 000 h<sup>-1</sup> (583 s<sup>-1</sup>), which is the same level as that by the vanadium analogue, V(NAd)Cl<sub>2</sub>(L)–MAO catalyst system, conducted at 25 °C (508 s<sup>-1</sup>).<sup>6d</sup> Because the selectivity of 1-butene decreased over time course (runs 43, 44), this also suggests that 1-hexene was formed by the subsequent reaction of ethylene with 1-butene accumulated in the reaction mixture. Although the observed selectivity of 1-butene seems rather low, the **4b**–MAO and [Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] (borate) catalyst system showed the highest activity for ethylene dimerization at 50 °C with minimizing of the byproduction of PE.

|                 |                 |                                    |                      |         | oligomer <sup>c</sup> |                  |                         | $PE^g$                  |                  |      |
|-----------------|-----------------|------------------------------------|----------------------|---------|-----------------------|------------------|-------------------------|-------------------------|------------------|------|
| run             | cat.            | cocat.                             | Al/B/Nb <sup>b</sup> | temp/°C | TON <sup>d</sup>      | $TOF^{e}/h^{-1}$ | $C_{4}^{\prime f} / \%$ | $C_{6}^{\prime f} / \%$ | TON <sup>d</sup> | wt % |
| 5               | 4a (3.0)        | MAO                                | 250                  | 25      | 126                   | 755              | 94.9                    | 5.1                     | 51               | 29   |
| 32              | <b>4a</b> (1.0) | MAO/B                              | 250/1.5              | 25      | 5280                  | 31 700           | 90.9                    | 9.1                     | 328              | 5.9  |
| 33              | <b>4a</b> (1.0) | MAO/B                              | 250/1.5              | 50      | 5650                  | 33 900           | 80.1                    | 19.9                    | 428              | 7    |
| 34              | <b>4b</b> (1.0) | В                                  | 1.5                  | 50      | trace                 |                  |                         |                         | trace            |      |
| 16              | <b>4b</b> (1.0) | MAO                                | 250                  | 50      | 3250                  | 19 500           | 92.5                    | 7.5                     | 160              | 4.7  |
| 35              | <b>4b</b> (1.0) | Al <sup>i</sup> Bu <sub>3</sub> /B | 100/1.5              | 50      | 3460                  | 20 800           | 63.1                    | 17.3                    | 310              | 8.2  |
| 36              | <b>4b</b> (1.0) | MAO/B                              | 50/1.5               | 50      | 73 100                | 439 000          | 77.6                    | 20.0                    | 228              | 0.3  |
| 37              | <b>4b</b> (1.0) | MAO/B                              | 100/1.5              | 50      | 108 000               | 650 000          | 77.0                    | 20.3                    | 1080             | 1.0  |
| 38              | <b>4b</b> (1.0) | MAO/B                              | 200/1.5              | 50      | 42 900                | 257 000          | 90.7                    | 7.6                     | 727              | 1.7  |
| 39              | <b>4b</b> (1.0) | MAO/B                              | 250/1.5              | 50      | 19 500                | 117 000          | 88.7                    | 11.3                    | 677              | 3.4  |
| 40              | <b>4b</b> (1.0) | MAO/B                              | 400/1.5              | 50      | 4920                  | 29 500           | 89.2                    | 10.8                    | 913              | 16   |
| 41              | <b>4b</b> (0.5) | MAO/B                              | 100/1.5              | 50      | 10 700                | 64 300           | 89.9                    | 10.1                    | 349              | 3.2  |
| 42              | <b>4b</b> (0.5) | MAO/B                              | 200/1.5              | 50      | 178 000               | 1 070 000        | 79.3                    | 18.4                    | 884              | 0.5  |
| 43              | <b>4b</b> (0.5) | MAO/B                              | 200/3.0              | 50      | 234 000               | 1 400 000        | 80.5                    | 17.5                    | 656              | 0.3  |
| 44 <sup>h</sup> | <b>4b</b> (0.5) | MAO/B                              | 200/3.0              | 50      | 175 000               | 2 100 000        | 84.4                    | 14.1                    | 328              | 0.2  |
| 45              | <b>4b</b> (0.5) | MAO/B                              | 300/1.5              | 50      | 117 000               | 700 000          | 83.0                    | 15.4                    | 863              | 0.7  |
| 46              | <b>4b</b> (0.5) | MAO/B                              | 400/1.5              | 50      | 20 000                | 112 000          | 89.2                    | 10.8                    | 1070             | 5.1  |

<sup>*a*</sup>Conditions: toluene 30 mL, ethylene 8 atm, 25 °C, 10 min, D-MAO white solid. <sup>*b*</sup>Al/B/Nb molar ratio,  $B = [Ph_3C][B(C_6F_5)_4]$ . <sup>*c*</sup>Oligomer = 1-butene + 1-hexene formed. <sup>*d*</sup>TON = (molar amount of ethylene reacted)/mol-Nb. <sup>*e*</sup>TOF = TON/h. <sup>*f*</sup>By GC analysis vs internal standard. <sup>*g*</sup>Collected as MeOH–HCl insoluble portion. <sup>*h*</sup>Time 5 min.

2.3. Reaction of Nb(NAr)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)-NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] [Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4a), 2,6-<sup>*i*</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4b)] with [Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] and the Reaction with Ethylene. To obtain further information concerning the assumed catalytically active species, reaction of the dimethyl complex (4a) with 1.0 equiv of [Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] was conducted in Et<sub>2</sub>O (Scheme 4).<sup>14</sup> After removal of volatiles in the mixture, the resultant oil

 $\begin{array}{l} \label{eq:2.1} Scheme \ 4. \ Synthesis \ of \ [Nb(NAr)Me(Et_2O)_n\{2-(2,6-Me_2C_6H_3)NCH_2(C_5H_4N)\}]^+ \ [Ar=2,6-Me_2C_6H_3 \ (6a), \\ 2,6-^iPr_2C_6H_3 \ (6b)] \ from \ Nb(NAr)Me_2[2-(2,6-Me_2C_6H_3)NCH_2(C_5H_4N)] \ (4a,b) \ by \ Treating \ with \ 1.0 \ equiv \ of \ [Ph_3C][B(C_6F_5)_4] \ in \ Et_2O, \ and \ Reaction \ of \ Ethylene \ with \ 6b \ in \ the \ Presence \ of \ Al(n-C_8H_{17})_3 \end{array}$ 



was washed with *n*-hexane and was dried in vacuo. A resonance ascribed to niobium–methyl protons (1.35 ppm), which is different from that in 4a (0.56 ppm), was observed in the <sup>1</sup>H NMR spectrum (in CDCl<sub>3</sub> at 25 °C, Figure 6b,c), and resonance ascribed to methylene protons (N– $CH_2$ -py) became two doublet and two resonances ascribed to methyl protons



Figure 6. <sup>1</sup>H NMR spectra (in CDCl<sub>3</sub>) for (a) Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)-Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (4a) and (b,c) [Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me(Et<sub>2</sub>O)<sub>n</sub>{2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)}]<sup>+</sup> (6a) prepared from 4a by treating with [Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] in Et<sub>2</sub>O. Resonances marked with + are impurities.

connected to anilide ligand (in high certainty) were observed (marked with \* in Figure 6b,c). Most of all resonances observed in the <sup>1</sup>H NMR spectra, shown in Figure 6b,c, were thus assigned to protons of an assumed cationic complex. Moreover, resonances ascribed to protons in  $Ph_3C(CH_3)$  (ca. 2.3 ppm)

in the <sup>1</sup>H NMR spectrum (in CDCl<sub>3</sub>),<sup>22</sup> and three resonances ascribed to  $C_6F_5$  group were also observed in the  $^{19}F$  NMR spectrum.<sup>14</sup> The similar reaction in toluene- $d_8$  afforded two separated solution consisting of toluene soluble portion (clear pale brown) and toluene insoluble deep brown tan residue at the bottom. This is a similar observation in the reaction of  $V(NAd)Me_2(L)$  with  $[Ph_3C][B(C_6F_5)_4]^{6e}$  and  $Cp*TiMe_2(O-C)$ 2,6-<sup>*i*</sup> $Pr_2C_6H_3$ )<sup>23c</sup> and the others, <sup>23</sup> strongly suggesting formation of cationic methyl species. Moreover, on the basis of integration ratio in the <sup>1</sup>H NMR spectra (Figure 6b), 2 equiv of Et<sub>2</sub>O molecules, that seemed to be difficult to remove in vacuo, were contained in 6a. The VT-NMR spectra showed that a broad resonances ascribed to  $Et_2O$  at 25 °C became two sets at -60  $^{\circ}$ C: one Et<sub>2</sub>O was coordinated to the niobium and free Et<sub>2</sub>O, suggesting an existence of the fast exchange (coordination and dissociation of Et<sub>2</sub>O, Figure 6b,c) in the solution. Therefore, the formula of the isolated cationic complex could be expressed as  $[Nb(N-2,6-Me_2C_6H_3)Me(L)]^+[B(C_6F_5)_4]^-(Et_2O)_2$  (6a) in high certainty. Similarly, the treatment of  $Nb(N-2,6-Pr_2C_6H_3)$ - $Me_2(L)$  (4b) with  $[Ph_3C][B(C_6F_5)_4]$  in  $Et_2O$  yielded  $[Nb(N-C_6F_5)_4]$  $2,6^{-i}\Pr_2C_6H_3)Me(L)]^+[B(C_6F_5)_4]^-(Et_2O)_2$  (6b).<sup>14</sup>

Importantly, the cationic methyl complex **6b** afforded 1butene, 1-hexene, and PE without MAO [Scheme 4, in the presence of Al(n-C<sub>8</sub>H<sub>17</sub>)<sub>3</sub>, which should be the weak reagent for alkylation and/or chain transfer and plays a role as scavenger as well as for removal of coordinated Et<sub>2</sub>O].<sup>23g,h,24</sup> The result thus strongly suggests that the cationic methyl complex plays a role in this catalysis.<sup>25,26</sup>

2.4. Solution Phase XANES Analysis of Catalyst Solution Containing Nb(NAr)Me<sub>2</sub>(L) in the Presence of MAO Cocatalyst: Exploring the Oxidation State of the Catalytically Active Species in the Ethylene Dimerization. On the basis of the first-order relationship between the activity and ethylene pressure (Table 3 and Figure 5), isolation of the stable cationic complexes,  $[Nb(NAr)Me(L)]^+[B (C_6F_5)_4$  (6a,b), and reaction of 6b with ethylene to afford 1-butene (Scheme 4), it is highly suggested that the cationic alkyl complex plays a role in this catalysis of ethylene dimerization using  $Nb(NAr)Me_2(L)$  (4a,b)-cocatalyst systems. Synchrotron XAS of the catalyst solution has also been chosen in this study, as conducted previously in the vanadium catalysis,<sup>27</sup> because the method (Nb K edge analysis, 18.98 keV, through the use of synchrotron radiation at SPring-8, BL01B1 beamline) enables us obtainment of the information concerning oxidation state and the basic structure (by Nb K pre-edge and edge peaks in XANES analysis, XANES = X-ray absorption near edge structure) in the catalyst solution.<sup>27–30</sup>

Figure 7 shows Nb K-edge XANES spectra of toluene solution containing the dimethyl complexes (4a,b) and the spectra of 4b in the presence of MAO (10, 50 equiv) at 25 °C (Nb 50  $\mu$ mol/ mL). The XANES spectra of 4a and 4b show pre-edge peaks at 18 974.7 and 18 975.3 eV, respectively, which have been ascribed to a transition from 1s to 3d + 4p.<sup>29,30</sup> Note that, no significant differences in the pre-edge peak positions and intensities in the pre-edge peaks from those in 4b were observed upon addition of MAO [18 974.7 eV upon addition of 10 and 50 equiv of MAO, Figure 7]. Also note that the XANES spectra (edge region in addition of pre-edge) of 4b in the presence of MAO (10 and 50 equiv) are very close to that in the homogeneous toluene solution containing the dimethyl complex (4b). Therefore, the results strongly suggest in high certainty that both the oxidation states and the basic structures



**Figure 7.** The solution-phase Nb K-edge XANES spectra (in toluene at 25 °C) for Nb(NAr)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] [Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (**4a**), 2,6-<sup>*i*</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (**4b**)], and the spectra for **4b** in the presence of MAO (10, 50 equiv). The Nb K-edge XANES spectra (in Et<sub>2</sub>O at 25 °C) for **4a,b** upon addition of 1.0 equiv of [Ph<sub>3</sub>C][B-(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] (borate).

are maintained upon addition of MAO in these catalyst solutions consisting of **4b** and MAO.

Moreover, no significant changes in the spectra in the edge region were observed when **4a** and **4b** was added 1.0 equiv of  $[Ph_3C][B(C_6F_5)_4]$  (borate) in Et<sub>2</sub>O (formation of **6a,b** according to Scheme 4), whereas slightly shifts (ca. 0.3 eV) in the pre-edge peaks were observed [18 975.0 (**4a** and borate, **6a**), 18 974.7 (**4b** and borate, **6b**)]. These also strongly suggest in high certainty that both the oxidation states and the basic structures are maintained upon addition of borate.

### 3. CONCLUDING REMARKS

The experimental results observed through this study can be summarized as follows.

- (1) (Arylimido)niobium(V) complexes containing 2-pyridylmethylanilido ligands, Nb(NAr)X<sub>2</sub>(L) [L = 2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N); X = NMe<sub>2</sub> (**2a**,**b**), OCH-(CF<sub>3</sub>)<sub>2</sub> (**3a**-**c**), Me (**4a**-**c**), CH<sub>2</sub>SiMe<sub>3</sub> (**5a**); Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (**a**), 2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (**b**), 2-MeC<sub>6</sub>H<sub>4</sub> (**c**)] have been prepared and identified.<sup>14</sup> Structures of **3a**,**b**, **4b**, and **5a** were determined by X-ray crystallography.<sup>16</sup> In particular, the dimethyl complexes (**4a**-**c**) were prepared from the bis(alkoxo) analogues (**3a**-**c**) by reaction with MeMgBr.
- (2) Two dimethyl complexes (4a,b) exhibited from moderate and high catalytic activities for ethylene dimerization in the presence of MAO, whereas the activity by 4c was negligible under the same conditions.<sup>17</sup> The activity by 4b was higher than that by 4a, indicating that a steric bulk in the arylimido ligand play a role in this catalysis. This is an interesting contrast to that in the related (imido) vanadium complex catalysts (shown in Scheme 1),<sup>6a,c</sup> in which the dimethylphenylimido analogue, V(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Cl<sub>2</sub>(L), afforded PE<sup>6a</sup> and both the phenylimido and *o*-tolylimido analogues showed notable catalytic activity for the selective ethylene dimerization.<sup>6a,c</sup>

The activity by **4b** at 50 °C was higher than those conducted at 25 and 80 °C, whereas significant decrease in the activity was

observed by the vanadium analogue, V(NAd)Cl<sub>2</sub>(L), at 50 °C.<sup>6d</sup> The major product was 1-butene, and 1-hexene was formed by subsequent reaction of ethylene with 1-butene accumulated in the reaction mixture. A first-order relationship between the activity (TOF) and ethylene pressure was observed, suggesting that the metal-alkyl species (via coordination, insertion, and  $\beta$ -hydrogen elimination pathway) would play a role in this catalysis.

- (3) Significant increases in the activities by **4a,b** have been attained upon further addition of  $[Ph_3C][B(C_6F_5)_4]$ . Under optimized conditions with low **4b** concentration conditions at 50 °C, TON of 234 000 (TOF 1 400 000 h<sup>-1</sup>) has been attained after 10 min (run 43, Table 4), and the TOF at the initial stage (after 5 min) was 2 100 000 h<sup>-1</sup> (583 s<sup>-1</sup>), which is the same level as that by the vanadium analogue, V(NAd)Cl<sub>2</sub>(L)–MAO catalyst system, conducted at 25 °C (508 s<sup>-1</sup>).<sup>6d</sup>
- (4) Reactions of the dimethyl complexes (4a,b) with 1.0 equiv of  $[Ph_3C][B(C_6F_5)_4]$  in Et<sub>2</sub>O afforded the cationic complexes,  $[Nb(NAr)Me(L)]^+[B(C_6F_5)_4]^-(Et_2O)_2$  (6a,b). The reaction of 6b with ethylene afforded 1-butene and 1-hexene even in the absence of MAO, clearly suggesting that the cationic complex plays a role as the catalytically active species.
- (5) XANES spectra of the catalyst solutions containing 4b (in toluene at 25 °C) and MAO (10 and 50 equiv) showed no significant differences in the pre-edge peak positions and the intensities from that in the dimethyl complex (4b). The results thus strongly suggest that the oxidation states and basic structures are maintained upon addition of MAO in the catalyst solutions consisting of 4b and MAO.

Taking into account the above facts, it is demonstrated in high certainty that the cationic niobium(V)-alkyl species play a role in this catalysis, and a nature of the catalytically active species (steric bulk of the arylimido ligand) directly affects the reactivity. As far as we know, this is the first demonstration of homogeneous niobium complex catalysts that exhibit remarkable catalytic activity for ethylene dimerization even at 50 °C. At this stage, we have not yet had clear explanation concerning the difference between the vanadium and niobium analogues in terms of activity, thermal stability, selectivity (byproduction of PE in the niobium systems), and so forth. We however highly believe the information should be potentially important for designing efficient molecular catalysis with niobium for precise olefin polymerization, oligomerization.

#### 4. EXPERIMENTAL SECTION

**4.1. General Procedure.** All experiments were carried out under a nitrogen atmosphere in a Vacuum Atmospheres drybox. Anhydrous grade toluene, *n*-hexane, diethyl ether, and dichloromethane (Kanto Kagaku Co., Ltd.) were transferred into a bottle containing molecular sieves (a mixture of 3A 1/16, 4A 1/8, and 13X 1/16) in the drybox under nitrogen stream and were passed through an alumina short column under N<sub>2</sub> stream prior to use. Nb(NMe<sub>2</sub>)<sub>5</sub> (Strem Chemicals, Inc.) was used as received, and Nb(N-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(NMe<sub>2</sub>)<sub>3</sub> was prepared according to the reported procedure. <sup>11c</sup> Reagents such as (CF<sub>3</sub>)<sub>2</sub>CHOH (TCI Co., Ltd.), MeMgBr (3.0 M in diethyl ether, Aldrich Chemical Co.) were used as received. Polymerization grade ethylene (purity > 99.9%, Sumitomo Seika Co. Ltd.) was used as received. Toluene and AlMe<sub>3</sub> in the commercially available MAO [T-MAO, 9.5 wt % (Al) toluene solution, Tosoh Finechem Co.] were removed under reduced pressure (at ca. 50 °C for removing toluene,

AlMe<sub>3</sub>, and then heated at >100  $^{\circ}$ C for 1 h from completion) in the drybox to give white solids.<sup>6</sup>

Elemental analyses were performed by using an EAI CE-440 CHN/ O/S elemental analyzer (Exeter Analytical, Inc.). All <sup>1</sup>H, <sup>13</sup>C, and <sup>19</sup>F NMR spectra were recorded on a Bruker AV500 spectrometer (500.13 MHz for <sup>1</sup>H, 125.77 MHz for <sup>13</sup>C). All spectra were obtained in the solvent indicated at 25 °C unless otherwise noted. Chemical shifts are given in ppm and are referenced to SiMe<sub>4</sub> ( $\delta$  0.00 ppm, <sup>1</sup>H, <sup>13</sup>C) and CFCl<sub>3</sub> ( $\delta$  0.00 ppm, <sup>19</sup>F), and the coupling constants are given in hertz. GC analysis was performed with a SHIMADZU GC-17A gas chromatograph (Shimadzu Co. Ltd.) equipped with a flame ionization detector.

4.2. Synthesis of Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(NMe<sub>2</sub>)<sub>2</sub>[2-(2,6- $Me_2C_6H_3)NCH_2(C_5H_4N)$ ] (2a). 4.2.1. Synthesis of Nb(N-2,6- $Me_2C_6H_3/(NMe_2)_3$  (1a). Into a toluene solution (30 mL) containing  $Nb(NMe_2)_5$  (988 mg, 3.19 mmol) was added toluene solution (12 mL) containing 2,6-dimethylaniline (386 mg, 3.19 mmol) at -78 °C. The mixture was stirred at -78 °C for 30 min, and the solution was warmed slowly to room temperature over 2 h. The mixture was then heated slowly to 70 °C over 2 h. and the solution was stirred at 80 °C for 1 h and at 90 °C for 1 h for completion. The reaction mixture was then placed in a rotary evaporator to remove the volatiles. The resultant oil was dissolved in *n*-hexane and the solution was passed through a celite pad, and the filtercake was washed with *n*-hexane. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles, and the resultant brown oil was confirmed as tris(dimethylamido) complex,  $Nb(N-2,6-Me_2C_6H_3)(NMe_2)_3$  (1a) (1038 mg), confirmed by <sup>1</sup>H NMR spectra (resonances assigned as formation of the desired complex). <sup>1</sup>H NMR ( $C_6D_6$ ):  $\delta$  7.11 (d, 2H, J = 7.35 Hz, Ar-H), 6.87  $(t, 1H, J = 7.45 \text{ Hz}, \text{Ar-}H), 3.11 (s, 18H, N(CH_3)_2), 2.62 (s, 6H, \text{Ar-}H)$ CH<sub>3</sub>). The resultant sample was used for the next reaction without further purification.

4.2.2. Synthesis of Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(NMe<sub>2</sub>)<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (2a). Into a *n*-hexane solution (80 mL) containing Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(NMe<sub>2</sub>)<sub>3</sub> (1a, 1038 mg, 3.015 mmol) was added a n-hexane solution (8 mL) containing 2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)N(H)- $CH_2(C_5H_4N)$  (600 mg, 2.83 mmol) at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred overnight. The solution was passed through a celite pad, and the filtercake was washed with *n*-hexane. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles. The resultant oil was dissolved in a minimum amount of toluene and was layered with *n*-hexane. The chilled solution placed in the freezer  $(-30 \degree C)$  afforded yellow microcrystals of 2a, and the concentrated mother liquor layered with *n*-hexane placed in the freezer  $(-30 \degree C)$  afforded the second crop. Yield: 52.2% (total 850 mg, 1.66 mmol). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.51 (d, 1H, J = 5.35 Hz, Ar-H), 7.80 (t, 1H, J = 7.65 Hz, Ar-H), 7.41 (d, 1H, J = 7.90 Hz, Ar-H), 7.26 (t, 1H, J = 6.40 Hz, Ar-H), 7.10 (d, 2H, J = 7.40Hz, Ar-H), 6.91 (q, 3H, J = 6.70 Hz, Ar-H), 6.65 (t, 1H, J = 7.43 Hz, Ar-H), 4.87 (s, 2H, NCH<sub>2</sub>), 3.17 (br s, 6H, N(CH<sub>3</sub>)<sub>2</sub>), 2.78 (br s, 6H, N(CH<sub>3</sub>)<sub>2</sub>), 2.40 (s, 6H, Ar-CH<sub>3</sub>), 2.16 (s, 6H, Ar-CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>): *δ* 163.4, 155.3, 153.5, 149.1, 137.4, 134.6, 131.7, 127.8, 127.1, 123.1, 121.7, 121.1, 120.2, 63.7, 47.3, 18.7. Anal. Calcd for C<sub>26</sub>H<sub>36</sub>N<sub>5</sub>Nb (+0.5× toluene): C, 63.54; H, 7.23; N, 12.56. Found: C, 63.23; H, 7.22; N, 12.28

**4.3. Synthesis of Nb(N-2,6-**<sup>i</sup>**Pr<sub>2</sub>C**<sub>6</sub>**H**<sub>3</sub>)(**NMe**<sub>2</sub>)<sub>2</sub>[**2**-(**2,6-Me**<sub>2</sub>**C**<sub>6</sub>**H**<sub>3</sub>)-**NCH**<sub>2</sub>(**C**<sub>5</sub>**H**<sub>4</sub>**N**)] (**2b**). Into a *n*-hexane solution (60 mL) containing Nb(N-2,6-<sup>i</sup>**Pr**<sub>2</sub>**C**<sub>6</sub>**H**<sub>3</sub>)(NMe<sub>2</sub>)<sub>3</sub> (**1b**, 700 mg, 1.75 mmol) was added a *n*-hexane solution (20 mL) containing 2-(2,6-Me<sub>2</sub>**C**<sub>6</sub>**H**<sub>3</sub>)N(H)-CH<sub>2</sub>(**C**<sub>5</sub>**H**<sub>4</sub>**N**) (373 mg, 1.75 mmol) at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred overnight. The solution was passed through a celite pad, and the filtercake was washed with *n*-hexane. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles. The resultant oil was dissolved in a minimum amount of toluene and was layered with *n*-hexane. The chilled solution placed in the freezer (-30 °C) afforded yellow microcrystals of **2b** (662 mg, 1.17 mmol). Yield: 66.7%. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  8.24 (d, 1H, *J* = 5.35 Hz, Ar-H), 7.12 (d, 4H, *J* = 7.60 Hz, Ar-H), 6.97 (m, 2H, Ar-H), 6.81 (td, 1H, *J* = 1.52 and 7.68 Hz, Ar-H), 6.57 (d, 1H, *J* = 7.90 Hz, Ar-H), 6.36 (t, 1H, *J* = 6.40 Hz, Ar-H),

4.70 (d, 1H, *J* = 20.5 Hz, NCH<sub>2</sub>), 4.39 (d, 1H, *J* = 20.5 Hz, NCH<sub>2</sub>), 4.23 (sep, 2H, *J* = 6.86 Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 3.21 (s, 6H, N(CH<sub>3</sub>)<sub>2</sub>), 2.95 (s, 6H, N(CH<sub>3</sub>)<sub>2</sub>), 2.50 (s, 3H, Ar-CH<sub>3</sub>), 2.34 (s, 3H, Ar-CH<sub>3</sub>), 1.38 (d, 6H, *J* = 5.90 Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 0.92 (d, 6H, *J* = 5.80 Hz, CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  163.2, 153.7, 152.4, 149.0, 143.1, 136.9, 135.3, 134.3, 123.7, 122.6, 122.4, 121.8, 120.8, 63.7, 48.1, 46.8, 27.8, 24.9, 24.4, 19.5, 18.7. Anal. Calcd for C<sub>30</sub>H<sub>44</sub>N<sub>5</sub>Nb: C, 63.48; H, 7.81; N, 12.34. Found: C, 63.76; H, 7.96; N, 12.04.

4.4. Synthesis of Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)[OCH(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>[2-(2,6- $Me_2C_6H_3$ )NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (3a). Into a toluene solution (25 mL) containing Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(NMe<sub>2</sub>)<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (2a, 279 mg, 0.545 mmol) was added a toluene solution (6 mL) containing (CF<sub>3</sub>)<sub>2</sub>CHOH (182 mg, 1.09 mmol) slowly at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred for 3 h. The solution was passed through a celite pad, and the filtercake was washed with toluene. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles. The resultant oil was dissolved in a minimum amount of toluene and was layered with *n*-hexane. The chilled solution placed in the freezer  $(-30 \circ C)$  afforded white-yellow microcrystals (352 mg, 0.464 mmol). Yield: 85.2%. <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>): δ 8.56 (d, 1H, J = 5.30 Hz, Ar-H), 6.83 (d, 2H, J = 7.40 Hz, Ar-H), 6.77 (t, 2H, J = 7.13 Hz, Ar-H), 6.72 (d, 2H, J = 7.50 Hz, Ar-H), 6.61 (t, 1H, J = 7.48 Hz, Ar-H), 6.47 (t, 1H, J = 6.48 Hz, Ar-H), 6.33 (d, 1H, J = 7.90 Hz, Ar-H), 5.17 (sep, 2H, J = 5.84 Hz,  $CH(CF_3)_2$ ), 4.32 (s, 2H,  $NCH_2$ ), 2.25 (s, 6H, Ar-CH<sub>3</sub>), 2.23 (s, 6H, Ar-CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  159.9, 156.1, 152.1, 147.1, 138.5, 135.0, 131.6, 128.8, 127.5, 125.4, 124.6, 122.9 (q,  ${}^{1}J_{CF}$  = 283.6 Hz), 122.78 (q,  ${}^{1}J_{CF}$  = 285.5 Hz), 122.76, 120.4, 80.0 (sep,  ${}^{2}J_{CF}$  = 32.6 Hz), 64.1, 18.6, 18.0.  ${}^{19}F$  NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  -75.96 (d,  ${}^{2}J_{FF} = 6.87$  Hz), -76.23 (d,  ${}^{2}J_{FF} = 5.65$  Hz). Anal. Calcd for C<sub>28</sub>H<sub>26</sub>F<sub>12</sub>N<sub>3</sub>NbO<sub>2</sub>: C, 44.40; H, 3.46; N, 5.55. Found: C, 44.35; H, 3.45; N, 5.52.

4.5. Synthesis of Nb(N-2,6-'Pr2C6H3)[OCH(CF3)2]2[2-(2,6- $Me_2C_6H_3$ )NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (3b). Into a toluene solution (20 mL) containing Nb(N-2,6-<sup>*i*</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(NMe<sub>2</sub>)<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (2b, 200 mg, 0.352 mmol) was added a toluene solution (10 mL) containing (CF<sub>3</sub>)<sub>2</sub>CHOH (118 mg, 0.705 mmol) slowly at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred for 3 h. The solution was passed through a celite pad, and the filtercake was washed with toluene. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles. The resultant oil was dissolved in a minimum amount of toluene and was layered with *n*-hexane. The chilled solution placed in the freezer  $(-30 \circ C)$  afforded white-yellow microcrystals (223 mg, 0.274 mmol). Yield: 77.8%. <sup>1</sup>H NMR ( $C_6D_6$ ):  $\delta$  8.57 (d, 1H, J = 5.35 Hz, Ar-H), 6.87 (d, 2H, J = 7.45 Hz, Ar-H), 6.83 (d, 2H, J = 7.50 Hz, Ar-H), 6.81–6.70 (m, 3H, Ar-H), 6.45 (t, 1H, J = 6.40 Hz, Ar-H), 6.32 (d, 1H, J = 7.95 Hz, Ar-H), 5.19 (sep, 2H, J = 5.95 Hz, CH(CF<sub>3</sub>)<sub>2</sub>), 4.28 (s, 2H, NCH<sub>2</sub>), 3.80 (sep, 2H, J = 6.79 Hz, CH(CH<sub>3</sub>)<sub>2</sub>), 2.27 (s, 6H, Ar-CH<sub>3</sub>), 1.21 (d, 12H, J = 6.80 Hz, CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>): δ 160.1, 155.8, 149.1, 147.1, 146.5, 138.6, 131.6, 129.2, 125.7, 125.3, 122.9 (q,  ${}^{1}J_{CF}$  = 284.2 Hz), 122.87, 122.84 (q,  ${}^{1}J_{CF}$  = 284.9 Hz), 122.6, 120.5, 79.2 (sep,  ${}^{2}J_{CF}$  = 32.4 Hz), 64.8, 28.0, 24.5, 17.9. <sup>19</sup>F NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  -76.11 (dd,  ${}^{2}J_{FF}$  = 6.63 and 40.2 Hz). Anal. Calcd for  $C_{32}H_{34}F_{12}N_3NbO_2$ : C, 47.24; H, 4.21; N, 5.17. Found: C, 47.04; H, 4.12; N, 5.10.

**4.6.** Synthesis of Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)[OCH(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (3c). 4.6.1. Synthesis of Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)-(NMe<sub>2</sub>)<sub>3</sub> (1c). Into a toluene solution (30 mL) containing Nb(NMe<sub>2</sub>)<sub>5</sub> (500 mg, 1.59 mmol) was added toluene solution (10 mL) containing *o*-toluidine (171 mg, 1.59 mmol) at -78 °C. The mixture was stirred at -78 °C for 30 min, and the solution was warmed slowly to room temperature over 2 h. The mixture was then heated slowly to 70 °C over 2 h, and the solution was stirred at 80 °C for 1 h and at 90 °C for 1 h for completion. The reaction mixture was then placed in a rotary evaporator to remove the volatiles. The resultant oil was dissolved in *n*-hexane and the solution was passed through a celite pad, and the filtercake was washed with *n*-hexane. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles, and the resultant brown oil was confirmed as tris(dimethylamido) complex,

Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)(NMe<sub>2</sub>)<sub>3</sub> (1c, 503 mg), confirmed by <sup>1</sup>H NMR spectrum (resonances assigned as formation of the desired complex). <sup>1</sup>H NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  7.28 (d, 1H, *J* = 7.75, Ar-*H*), 7.06 (t, 1H, *J* = 7.08, Ar-*H*), 6.89–6.84 (m, 2H, Ar-*H*), 3.13 (s, 18H, N(CH<sub>3</sub>)<sub>2</sub>), 2.56 (s, 3H, Ar-CH<sub>3</sub>). The resultant sample was used for the next reaction without further purification.

4.6.2. Synthesis of Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)(NMe<sub>2</sub>)<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (2c). Into a *n*-hexane solution (30 mL) containing  $Nb(N-2-MeC_6H_4)(NMe_2)_3$  (1c, 503 mg, 1.52 mmol) was added a *n*hexane solution (8 mL) containing 2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)N(H)- $CH_2(C_5H_4N)$  (307 mg, 1.45 mmol) at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred overnight. The solution was passed through a Celite pad, and the filtercake was washed with *n*-hexane. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles, and the resultant dark brown oil was confirmed as bis(dimethylamido) complex, Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)(NMe<sub>2</sub>)<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (2c, 765 mg), confirmed by <sup>1</sup>H NMR spectra (resonances assigned as formation of the desired complex). <sup>1</sup>H NMR  $(C_6D_6): \delta 8.27$  (d, 1H, J = 5.40 Hz, Ar-H), 7.13 (t, 3H, J = 7.53 Hz, Ar-H), 7.06–6.96 (m, 3H, Ar-H), 6.81–6.77 (m, 2H, Ar-H), 6.49 (d, 1H, J = 7.90 Hz, Ar-H), 6.38 (t, 1H, J = 6.40 Hz, Ar-H), 4.50 (s, 2H, NCH<sub>2</sub>), 3.11 (s, 12H, N(CH<sub>3</sub>)<sub>2</sub>), 2.45 (s, 6H, Ar-CH<sub>3</sub>), 2.43 (s, 3H, Ar-CH<sub>3</sub>). The resultant sample was used for the next reaction without further purification.

4.6.3. Synthesis of Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)[OCH(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (3c). Into a toluene solution (30 mL) containing Nb(N- $2-MeC_6H_4)(NMe_2)_2[2-(2,6-Me_2C_6H_3)NCH_2(C_5H_4N)]$  (2c, 765 mg, 1.54 mmol) was added a toluene solution (8 mL) containing  $(CF_3)_2$ CHOH (409 mg, 2.43 mmol) slowly at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred for 3 h. The solution was passed through a celite pad, and the filtercake was washed with toluene. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles. The resultant oil was dissolved in a minimum amount of n-hexane. The chilled solution placed in the freezer  $(-30 \,^{\circ}\text{C})$  afforded brown microcrystals. The resultant crystals were dissolved in a minimum amount of toluene and were layered with n-hexane. The chilled solution placed in the freezer (-30 °C) afforded white-brown microcrystals (357 mg, 0.504 mmol). Yield: 41.5%. <sup>1</sup>H NMR ( $C_6D_6$ ):  $\delta$  8.51 (d, 1H, I = 5.35 Hz, Ar-H), 6.92 (d, 2H, J = 7.50 Hz, Ar-H), 6.83 (t, 1H, J = 7.50 Hz, Ar-H), 6.78 (t, 2H, J = 5.85 Hz, Ar-H), 6.72 (t, 1H, J = 7.73 Hz, Ar-H), 6.66 (t, 1H, J = 7.43 Hz, Ar-H), 6.44 (t, 1H, J = 6.45 Hz, Ar-H), 6.35 (d, 1H, J = 8.05 Hz, Ar-H), 6.24 (d, 1H, J = 7.90 Hz, Ar-H), 5.30 (sep, 2H, J = 5.68 Hz, CH(CF<sub>3</sub>)<sub>2</sub>), 4.27 (s, 2H, NCH<sub>2</sub>), 2.29 (s, 6H, Ar-CH<sub>3</sub>), 2.26 (s, 3H, Ar-CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (C<sub>6</sub>D<sub>6</sub>):  $\delta$  159.7, 155.8, 152.9, 147.0, 138.4, 132.6, 131.8, 129.8, 128.8, 127.0, 125.9, 125.3, 124.7, 123.0 (q,  ${}^{1}J_{CF}$  = 283.2 Hz), 122.8 (q,  ${}^{1}J_{CF}$  = 285.1 Hz), 122.7, 120.4, 80.9 (sep,  ${}^{2}J_{CF}$  = 32.2 Hz), 64.3, 18.3, 18.0. <sup>19</sup>F NMR ( $C_6D_6$ ):  $\delta$  -75.87 (t, <sup>2</sup> $J_{FF}$  = 6.96 Hz), -76.07. Anal. Calcd for C<sub>27</sub>H<sub>24</sub>F<sub>12</sub>N<sub>3</sub>NbO<sub>2</sub>: C, 43.62; H, 3.25; N, 5.65. Found: C, 43.55; H, 3.13; N, 5.61.

4.7. Synthesis of Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (4a). Into a toluene solution (30 mL) containing  $Nb(N-2,6-Me_2C_6H_3)[OCH(CF_3)_2]_2[2-(2,6-Me_2C_6H_3) NCH_2(C_5H_4N)$ ] (3a, 533 mg, 0.704 mmol) was added a toluene solution (10 mL) containing MeMgBr (586  $\mu$ L, 1.76 mmol, 3.0 M in diethyl ether) slowly at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred for 1 h. To the solution was added  $CH_2Cl_2$ , and the mixture was placed in a rotary evaporator to remove the volatiles. The resultant residue was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The solution was passed through a celite pad, and the filtercake was washed with CH<sub>2</sub>Cl<sub>2</sub>. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles. The resultant solid was dissolved in a minimum amount of CH<sub>2</sub>Cl<sub>2</sub> and was layered with toluene. The chilled solution placed in the freezer (-30 °C)afforded yellow microcrystals (177 mg, 0.390 mmol). Yield: 55.5%. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.87 (d, 1H, J = 5.25 Hz, Ar-H), 7.97 (t, 1H, J = 7.65 Hz, Ar-H), 7.59 (t, 1H, J = 6.40 Hz, Ar-H), 7.52 (d, 1H, J = 7.95 Hz, Ar-H), 6.88 (d, 2H, J = 7.50 Hz, Ar-H), 6.80–6.74 (m, 3H, Ar-H), 6.61 (t, 1H, J = 7.43 Hz, Ar-H), 4.87 (s, 2H, NCH<sub>2</sub>), 2.30 (s, 6H, Ar-CH<sub>3</sub>), 2.19

(s, 6H, Ar-CH<sub>3</sub>), 0.56 (s, 6H, Nb–CH<sub>3</sub>).  ${}^{13}C{}^{1}H$  NMR (CDCl<sub>3</sub>):  $\delta$  162.2, 155.2, 153.3, 148.0, 137.9, 135.4, 131.9, 128.1, 126.7, 124.2, 123.1, 121.6, 121.3, 64.0, 40.5, 19.2, 18.4. Anal. Calcd for C<sub>24</sub>H<sub>30</sub>N<sub>3</sub>Nb: C, 63.57; H, 6.67; N, 9.27. Found: C, 63.48; H, 6.58; N, 9.15.

4.8. Synthesis of Nb(N-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (4b). Into a toluene solution (30 mL) containing  $Nb(N-2,6-^{i}Pr_{2}C_{6}H_{3})[OCH(CF_{3})_{2}]_{2}[2-(2,6-Me_{2}C_{6}H_{3}) NCH_2(C_5H_4N)$ ] (3b, 400 mg, 0.492 mmol) was added a toluene solution (10 mL) containing MeMgBr (410 µL, 1.23 mmol, 3.0 M in diethyl ether) slowly at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred for 1 h. To the solution was added CH<sub>2</sub>Cl<sub>2</sub>, and the mixture was placed in a rotary evaporator to remove the volatiles. The resultant residue was extracted with CH<sub>2</sub>Cl<sub>2</sub> and the solution was passed through a celite pad, and the filtercake was washed with CH<sub>2</sub>Cl<sub>2</sub>. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles. The resultant solid was dissolved in a minimum amount of CH<sub>2</sub>Cl<sub>2</sub> and was layered with toluene. The chilled solution placed in the freezer (-30 °C)afforded yellow microcrystals (202 mg, 0.396 mmol). Yield: 80.6%. <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.89 (d, 1H, J = 5.15 Hz, Ar-H), 7.97 (t, 1H, J = 7.25 Hz, Ar-H), 7.59 (t, 1H, J = 6.40 Hz, Ar-H), 7.51 (d, 1H, J = 7.95 Hz, Ar-H), 6.90–6.87 (m, 4H, Ar-H), 6.80 (t, 1H, J = 7.58 Hz, Ar-H), 6.71 (t, 1H, J = 7.50 Hz, Ar-H), 4.85 (s, 2H, NCH<sub>2</sub>), 3.82 (sep, 2H, J = 6.80 Hz,  $CH(CH_3)_2$ ), 2.18 (s, 6H, Ar- $CH_3$ ), 1.14 (d, 12H, J = 6.80 Hz,  $CH(CH_3)_2$ , 0.53 (s, 6H, Nb-CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>):  $\delta$  162.1, 154.8, 150.7, 148.1, 145.4, 137.8, 131.8, 128.2, 124.0, 123.1, 122.2, 121.6, 121.3, 64.3, 40.8, 27.8, 24.4, 18.1. Anal. Calcd for C<sub>28</sub>H<sub>38</sub>N<sub>3</sub>Nb: C, 66.00; H, 7.52; N, 8.25. Found: C, 65.72; H, 7.29; N, 8.02.

4.9. Synthesis of Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (4c). Into a toluene solution (25 mL) containing  $Nb(N-2-MeC_6H_4)[OCH(CF_3)_2]_2[2-(2,6-Me_2C_6H_3)NCH_2(C_5H_4N)]$ (3c, 302 mg, 0.406 mmol) was added a toluene solution (6 mL) containing MeMgBr (320 µL, 0.96 mmol, 3.0 M in diethyl ether) slowly at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred for 1 h. To the solution was added CH<sub>2</sub>Cl<sub>2</sub>, and the mixture was placed in a rotary evaporator to remove the volatiles. The resultant residue was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The solution was passed through a celite pad, and the filtercake was washed with CH<sub>2</sub>Cl<sub>2</sub>. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles. The resultant solid was dissolved in a minimum amount of CH2Cl2 and was layered with toluene. The chilled solution placed in the freezer  $(-30 \ ^{\circ}C)$  afforded yellow microcrystals (90 mg, 0.205 mmol). Yield: 50.4%. <sup>1</sup>H NMR  $(CDCl_3): \delta 8.88 (d, 1H, J = 5.20 Hz, Ar-H), 7.97 (t, 1H, J = 7.70 Hz, Ar-H)$ H), 7.59 (t, 1H, J = 6.40 Hz, Ar-H), 7.53 (d, 1H, J = 7.95 Hz, Ar-H), 6.98 (t, 3H, J = 8.73 Hz, Ar-H), 6.86 (t, 1H, J = 7.48 Hz, Ar-H), 6.76 (t, 1H, J = 7.45 Hz, Ar-H), 6.70 (t, 1H, J = 7.33 Hz, Ar-H), 6.06 (d, 1H, J = 7.70 Hz, Ar-H), 4.87 (s, 2H, NCH<sub>2</sub>), 2.42 (s, 3H, Ar-CH<sub>3</sub>), 2.20 (s, 6H, Ar-CH<sub>3</sub>), 0.50 (s, 6H, Nb-CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>): δ 162.4, 155.7, 154.6, 147.9, 137.9, 133.9, 132.1, 129.0, 128.2, 125.6, 125.2, 124.2, 123.1, 121.8, 121.4, 64.0, 38.6, 18.8, 18.4. Anal. Calcd for C<sub>23</sub>H<sub>28</sub>N<sub>3</sub>Nb: C, 62.87; H, 6.42; N, 9.56. Found: C, 61.95; H, 6.12; N, 9.36. Rather low C values would be due to incomplete combustion (formation of NbC) during the analysis run.

4.10. Synthesis of Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>[2-(2,6- $Me_2C_6H_3$ )NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (5a). Into a toluene solution (10 mL) containing Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)[OCH(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (3a, 52 mg, 0.0686 mmol) was added a toluene solution (5 mL) containing Me<sub>3</sub>SiCH<sub>2</sub>MgCl (162  $\mu$ L, 0.164 mmol, 1.0 M in diethyl ether) at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred for 1 h. To the solution was added CH<sub>2</sub>Cl<sub>2</sub>, and the mixture was placed in a rotary evaporator to remove the volatiles (addition of CH2Cl2 into the solution would improve the efficiency of the subsequent extraction). The resultant residue was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The solution was passed through a celite pad, and the filtercake was washed with CH<sub>2</sub>Cl<sub>2</sub>. The combined filtrate and wash were placed in a rotary evaporator to remove the volatiles. The resultant solid was dissolved in a minimum amount of toluene and was layered with *n*-hexane. The chilled solution placed in the freezer  $(-30 \,^{\circ}\text{C})$  afforded yellow crystals of 5a (29 mg,

0.0485 mmol). Yield: 70.6%. <sup>1</sup>H NMR ( $C_6D_6$ ):  $\delta$  8.75 (d, 1H, J = 5.10 Hz, Ar-H), 6.93 (d, 3H, J = 7.50 Hz, Ar-H), 6.89 (t, 2H, J = 7.28 Hz, Ar-H), 6.81 (t, 1H, J = 7.15 Hz, Ar-H), 6.72 (t, 1H, J = 7.55 Hz, Ar-H), 6.65 (t, 1H, J = 6.33 Hz, Ar-H), 6.54 (d, 1H, J = 8.05 Hz, Ar-H), 4.42 (s, 2H, NCH<sub>2</sub>), 2.55 (s, 6H, Ar-CH<sub>3</sub>), 2.21 (s, 6H, Ar-CH<sub>3</sub>), 1.99 (d, 2H, J = 10.8 Hz, CH<sub>2</sub>SiCH<sub>3</sub>), 0.53 (d, 2H, J = 10.8 Hz, CH<sub>2</sub>SiCH<sub>3</sub>), 0.085 (s, 18H, CH<sub>2</sub>SiCH<sub>3</sub>). Anal. Calcd for C<sub>30</sub>H<sub>46</sub>N<sub>3</sub>NbSi<sub>2</sub>: C, 60.28; H, 7.76; N, 7.03. Found: C, 60.18; H, 7.67; N, 6.99.

4.11. Reaction of Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (4a) with Borate (6a). Into a Et<sub>2</sub>O solution (10 mL) containing Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (4a, 20 mg, 0.0441 mmol) was added a  $Et_2O$  solution (4 mL) containing  $[Ph_3C][B(C_6F_5)_4]$  (40 mg, 0.0441 mmol) at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred for 1 h. After the reaction, the solution was placed in a rotary evaporator to remove the solvent. The residue was dissolved in Et<sub>2</sub>O and dropped into *n*-hexane. Removal of the *n*-hexane layer and washing by *n*-hexane afforded the residue (33 mg). <sup>1</sup>H NMR (CDCl<sub>3</sub>): δ 8.67 (d, 1H, J = 4.80 Hz, Ar-H), 8.17 (t, 1H, J = 7.80 Hz, Ar-H), 7.73 (d, 1H, J = 8.05 Hz, Ar-H), 7.67 (t, 1H, J = 6.50 Hz, Ar-H), 6.94 (d, 1H, J = 7.35 Hz, Ar-H), 6.90–6.82 (m, 4H, Ar-H), 6.76 (t, 1H, J = 7.48 Hz, Ar-H), 5.24 (d, 1H, J = 21.11 Hz, NCH<sub>2</sub>), 5.16 (d, 1H, J = 21.10 Hz, NCH<sub>2</sub>), 3.80 (br s, 8H, OCH<sub>2</sub>CH<sub>3</sub>), 2.31 (s, 6H, Ar-CH<sub>3</sub>), 2.22 (s, 3H, Ar-CH<sub>3</sub>), 2.13 (s, 3H, Ar-CH<sub>3</sub>), 1.35 (s, 3H, Nb-CH<sub>3</sub>), 1.32 (t, 12H, J = 6.85 Hz, OCH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>2</sub>):  $\delta$ 161.3, 154.2, 151.6, 148.3 (br d,  ${}^{1}J_{CF}$  = 240.5 Hz), 146.0, 141.5, 138.3 (br d,  ${}^{1}J_{CF} = 245.1$  Hz), 136.3 (br d,  ${}^{1}J_{CF} = 239.7$  Hz), 136.1, 130.6, 129.1, 128.9, 128.7, 127.6, 126.5, 125.7, 125.0, 123.3, 68.2, 65.7, 47.9, 19.1, 18.4, 18.3, 14.9 (signals ascribed to ipso-C<sub>6</sub>F<sub>5</sub> carbon were not observed). <sup>19</sup>F NMR (CDCl<sub>3</sub>):  $\delta$  -132.6, -162.9 (t, <sup>3</sup>J<sub>FF</sub> = 20.5 Hz), -166.8 (t,  ${}^{3}J_{FF} = 18.5$  Hz). These NMR spectra strongly suggest the formation of the cationic methyl complex, [Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me- $\{2-(2,6-Me_2C_6H_3)NCH_2(C_5H_4N)\}^+ [B(C_6F_5)_4]^-(Et_2O)_2$  (6a), and the spectra are shown in the Supporting Information.

4.12. Reaction of Nb(N-2,6-'Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)- $NCH_2(C_5H_4N)$ ] (4b) with Borate (6b). Into a Et<sub>2</sub>O solution (20) mL) containing Nb(N-2,6-<sup>*i*</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)-NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (4b, 20 mg, 0.0392 mmol) was added a Et<sub>2</sub>O solution (8 mL) containing  $[Ph_3C][B(C_6F_5)_4]$  (35 mg, 0.0392 mmol) at -30 °C. The reaction mixture was warmed slowly to room temperature, and the mixture was then stirred for 1 h. After the reaction, the solution was placed in a rotary evaporator to remove the solvent. The residue was dissolved in Et<sub>2</sub>O and dropped into *n*-hexane. Removal of the *n*-hexane layer and washing by *n*-hexane afforded the residue (17 mg). <sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta$  8.50 (d, 1H, J = 5.35 Hz, Ar-H), 8.16 (t, 1H, J = 7.68 Hz, Ar-H), 7.72 (d, 1H, J = 7.95 Hz, Ar-H), 7.66 (t, 1H, J = 6.45 Hz, Ar-H), 6.93 (t, 5H, J = 8.30 Hz, Ar-H), 6.84 (t, 1H, J = 7.50 Hz, Ar-H), 5.22 (d, 1H, J = 21.16 Hz, NCH<sub>2</sub>), 5.15 (d, 1H, J = 21.16 Hz, NCH<sub>2</sub>), 3.63-3.57 (m, 2H, CH(CH<sub>3</sub>)<sub>2</sub>), 3.60 (br s, 8H, OCH<sub>2</sub>CH<sub>3</sub>), 2.24 (s, 3H, Ar-CH<sub>3</sub>), 2.14 (s, 3H, Ar-CH<sub>3</sub>), 2.13 (s, 3H, Ar-CH<sub>3</sub>), 1.33  $(s, 3H, Nb-CH_3), 1.30$  (br s, 12H, OCH<sub>2</sub>CH<sub>3</sub>), 1.16 (dd, 12H, J = 6.98) and 9.65 Hz, CH(CH<sub>3</sub>)<sub>2</sub>). <sup>13</sup>C{<sup>1</sup>H} NMR (CDCl<sub>3</sub>): δ 161.1, 153.8, 148.8, 148.3 (br d,  ${}^{1}J_{CF}$  = 246.0 Hz), 146.7, 146.0, 141.5, 138.3 (br d,  ${}^{1}J_{CF} = 241.5 \text{ Hz}$ , 136.4 (br d,  ${}^{1}J_{CF} = 240.0 \text{ Hz}$ ), 130.5, 129.3, 129.0, 128.9, 126.5, 126.4, 125.1, 123.3, 122.6, 66.1, 47.9, 28.4, 24.6, 24.1, 18.4, 18.0, 14.9 (signals ascribed to ipso-C<sub>6</sub>F<sub>5</sub> carbon were not observed). <sup>19</sup>F NMR (CDCl<sub>3</sub>):  $\delta$  –132.5, –162.8 (t, <sup>3</sup>J<sub>FF</sub> = 20.6 Hz), -166.8 (t,  ${}^{3}J_{FF}$  = 18.2 Hz). These NMR spectra strongly suggest the formation of the cationic methyl complex, [Nb(N-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me{2- $(2,6-Me_2C_6H_3)NCH_2(C_5H_4N)\}^+[B(C_6F_5)_4]^-(Et_2O)_2$  (6b), and the spectra are shown in the Supporting Information.

**4.13. Oligomerization/Polymerization of ethylene.** Ethylene oligomerizations were conducted in a 100 mL scale stainless steel autoclave. The typical reaction procedure is as follows. Toluene (29 mL) and the prescribed amount of MAO solid (prepared from ordinary MMAO-3AH by removing *n*-hexane, Al'Bu<sub>3</sub> and AlMe<sub>3</sub>) were added into the autoclave in the drybox. The reaction apparatus was then filled with ethylene (1 atm), and Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>3</sub>H<sub>4</sub>N)] (4a) (3.0  $\mu$ mol) in toluene (1.0 mL) was then added into the autoclave, the reaction apparatus was then

Table 5. Crystal Data and Collection Parameters of Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)[OCH(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (3a), Nb(N-2,6-<sup>*i*</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)[OCH(CF<sub>3</sub>)<sub>2</sub>]<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (3b), and Nb(N-2,6-<sup>*i*</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (4b), Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (4c), and Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (5a)<sup>*a*</sup>

|                                            | 3a                                | 3b                            | 4b                                                | 4c                            | 5a                            |
|--------------------------------------------|-----------------------------------|-------------------------------|---------------------------------------------------|-------------------------------|-------------------------------|
| formula                                    | $C_{28}H_{26}F_{12}N_3NbO_2$      | $C_{32}H_{34}F_{12}N_3NbO_2$  | C <sub>28</sub> H <sub>38</sub> N <sub>3</sub> Nb | $C_{23}H_{28}N_3Nb$           | C30H46N3NbSi2                 |
| formula weight                             | 757.42                            | 813.53                        | 509.53                                            | 439.39                        | 597.79                        |
| crystal color, habit                       | colorless, plate                  | colorless, plate              | colorless, plate                                  | colorless, prism              | orange, block                 |
| crystal size (mm)                          | $0.130 \times 0.110 \times 0.070$ | $0.100\times0.070\times0.040$ | $0.100\times0.080\times0.040$                     | $0.120\times0.080\times0.030$ | $0.150\times0.150\times0.130$ |
| crystal system                             | monoclinic                        | monoclinic                    | monoclinic                                        | orthorhombic                  | monoclinic                    |
| space group                                | $P2_1/c$ (#14)                    | $P2_1/n$ (#14)                | $P2_1/m$ (#11)                                    | $Pna2_1$ (#33)                | $P2_1/c$ (#14)                |
| a (Å)                                      | 13.395(3)                         | 9.7083(15)                    | 8.7168(17)                                        | 22.844(3)                     | 16.0468(5)                    |
| b (Å)                                      | 13.755(2)                         | 18.057(3)                     | 14.213(2)                                         | 8.4693(12)                    | 11.8148(4)                    |
| c (Å)                                      | 16.964(3)                         | 19.893(3)                     | 10.837(2)                                         | 11.0164(16)                   | 17.5487(6)                    |
| $\alpha$ (deg)                             | 90                                | 90                            | 90                                                | 90                            | 90                            |
| $\beta$ (deg)                              | 98.431(4)                         | 98.516(4)                     | 101.165(5)                                        | 90                            | 103.113(3)                    |
| γ (deg)                                    | 90                                | 90                            | 90                                                | 90                            | 90                            |
| $V(Å^3)$                                   | 3091.8(10)                        | 3448.8(9)                     | 1317.2(4)                                         | 2131.4(5)                     | 3240.30(19)                   |
| Z value                                    | 4                                 | 4                             | 2                                                 | 4                             | 4                             |
| $D_{\rm calcd} \left({\rm g/cm^3}\right)$  | 1.627                             | 1.567                         | 1.285                                             | 1.369                         | 1.225                         |
| F <sub>000</sub>                           | 1520.00                           | 1648.00                       | 536.00                                            | 912.00                        | 1264.00                       |
| temp (K)                                   | 93(2)                             | 93(2)                         | 93(2)                                             | 93(2)                         | 93(2)                         |
| $\mu$ (Mo K $\alpha$ ) (cm <sup>-1</sup> ) | 4.928                             | 4.477                         | 4.760                                             | 5.76                          | 4.669                         |
| no. of reflections measured $(R_{int})$    | total: 24 285                     | total: 27 600                 | total: 10 690                                     | total: 11 684                 | total: 23 086                 |
|                                            | unique: 6463 (0.0323)             | unique: 7420 (0.0448)         | unique: 2832 (0.0225)                             | unique: 3920 (0.0227)         | unique: 6516 (0.0524)         |
| $2\theta_{\max}$ (deg)                     | 54.9                              | 55.1                          | 55.0                                              | 55.0                          | 55.0                          |
| no. of observations $[I > 2.00\sigma(I)]$  | 6463                              | 7420                          | 2832                                              | 3920                          | 6516                          |
| no. of variables                           | 415                               | 451                           | 166                                               | 218                           | 325                           |
| R1 $[I > 2.00\sigma(I)]$                   | 0.0334                            | 0.0325                        | 0.0292                                            | 0.0316                        | 0.0366                        |
| wR2 $[I > 2.00\sigma(I)]$                  | 0.0966                            | 0.0852                        | 0.0776                                            | 0.0874                        | 0.1035                        |
| goodness of fit                            | 1.046                             | 0.951                         | 1.125                                             | 1.108                         | 1.053                         |
| <sup>a</sup> Detailed data are shown in    | n the Supporting Inform           | nation. <sup>16</sup>         |                                                   |                               |                               |

immediately pressurized to 7 atm (total 8 atm), and the mixture was magnetically stirred for prescribed time. After the above procedure, ethylene remained was purged at -30 °C, and 100  $\mu$ L of nonane was added as an internal standard. The solution was then analyzed by GC to determinate the activity and product distribution. In case of reaction in the presence of [Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>], a toluene solution containing [Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] was added after injecting a toluene solution containing catalyst (4a). After the above oligomerization procedure, the remaining mixture in the autoclave was poured into MeOH containing HCl, and the resultant polymer (white precipitate) was collected on a filter paper by filtration and was adequately washed with MeOH. The resultant polymer was then dried in vacuo at 60 °C for 2 h.

**4.14. Analysis of Catalyst Solution by Solution-Phase XAS.** Nb K edge XANES measurements were carried out at the BL01B1 beamline at the SPring-8 facility of the Japan Synchrotron Radiation Research Institute (Nb K edge analysis, 18.98 keV, proposal no. 2018B1335). The measurements were conducted at room temperature. A Si (111) double-crystal monochromator was used for the incident beam. Nb K-edge XAFS spectra of Nb complex samples (prepared as toluene solution, 50  $\mu$ mol/mL) were recorded in the fluorescence mode using an ionization chamber as the  $I_0$  detector and 19 solid-state detectors as the *I* detector. The X-ray energy was calibrated using Nb foil; the XANES data were obtained by removing the background and normalization of them to the edge height.

**4.15. Crystallographic Analysis.** All measurements were made on a Rigaku XtaLAB P200 diffractometer using multilayer mirror monochromated Mo K $\alpha$  radiation. The crystal collection parameters are listed below (Table 5). The data were collected and processed using CrystalClear (Rigaku)<sup>31</sup> or CrysAlisPro (Rigaku Oxford Diffraction),<sup>32</sup> and the structure was solved by direct methods<sup>33</sup> and expanded using Fourier techniques. The nonhydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. All calculations were performed using the CrystalStructure<sup>34</sup> crystallographic software package, except for refinement, which was performed using SHELXL version 2014/7.<sup>35,36</sup> Cif, xyz files are shown in the Supporting Information, and the crystallographic data were deposited to Cambridge Crystallographic Data Centre (CCDC 1887435–1887438, and CCDC 1889600).

#### ASSOCIATED CONTENT

#### **Supporting Information**

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organo-met.9b00017.

Additional results for reaction with ethylene using Nb(NAr)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] [Ar = 2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4a), 2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub> (4b), 2-MeC<sub>6</sub>H<sub>4</sub> (4c)]—cocatalyst systems and selected DSC thermograms and <sup>1</sup>H NMR spectra for PE byproduced; selected NMR spectra for prepared niobium(V) complexes and some reactions; and structural analysis for Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (4c). (PDF)

CIF and xyz files for Nb(NAr) $[OCH(CF_3)_2]_2[2-(2,6-Me_2C_6H_3)NCH_2(C_5H_4N)]$  [Ar = Me (3a, CCDC 1887435), <sup>i</sup>Pr (3b, CCDC 1887436)], Nb(N-2,6-<sup>i</sup>Pr\_2C\_6H\_3)Me\_2[2-(2,6-Me\_2C\_6H\_3)NCH\_2(C\_5H\_4N)] (4b, CCDC 1887437), Nb(N-2,6-Me\_2C\_6H\_3)-(CH\_2SiMe\_3)\_2[2-(2,6-Me\_2C\_6H\_3)NCH\_2(C\_5H\_4N)] (5a,

CCDC 1887438), and Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (4c, CCDC 1889600). The supplemental files contain the computed Cartesian coordinates of all of the molecules reported in this study. The files may be opened as a text file to read the coordinates, or opened directly by a molecular modeling program such as Mercury (version 3.3 or later, http://www.ccdc.cam.ac.uk/pages/Home.aspx) for visualization and analysis (XYZ)

# **Accession Codes**

CCDC 1887435–1887438 and 1889600 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data\_request/ cif, or by emailing data\_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

# AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: ktnomura@tmu.ac.jp. Phone: +81-42-677-2547. Fax: +81-42-677-2547.

#### ORCID 0

Kotohiro Nomura: 0000-0003-3661-6328

# Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENTS

This project was partly supported by Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS, no. 18H01982). Authors express their sincere thanks to Prof. S. Yamazoe (Tokyo Metropolitan University, TMU), Prof. T. Mitsudome (Osaka University), Dr. T. Ina (Japan Synchrotron Radiation Research Institute, JASRI), and I. Izawa, K. Kawamura, H. Hayashibara, H. Aoki (TMU) for XANES analysis at the BL01B1 beam line at the SPring-8 facility of JASRI (proposal no. 2018B1335). Authors also express their thanks to Dr. Ken Tsutsumi and Prof. A. Inagaki (TMU) for assistance in the crystallographic analysis and fruitful discussion and Prof. S. Komiya for discussion.

# REFERENCES

(1) (a) Peuckert, M.; Keim, W. A new nickel complex for the oligomerization of ethylene. *Organometallics* **1983**, *2*, 594–597. (b) Peuckert, M.; Keim, W.; Storp, S.; Weber, R. S. ESCA and K-EDGE x-ray absorption spectroscopy applied to nickel one-component catalysts: A correlation between spectral data and the kinetics of linear olefin oligomerization. *J. Mol. Catal.* **1983**, *20*, 115–127. (c) Keim, W. Nickel: An element with wide application in industrial homogeneous catalysis. *Angew. Chem., Int. Ed. Engl.* **1990**, *29*, 235–244. (d) Keim, W. Oligomerization of Ethylene to  $\alpha$ -Olefins: Discovery and Development of the Shell Higher Olefin Process (SHOP). *Angew. Chem., Int. Ed.* **2013**, *52*, 12492–12496.

(2) Selected reviews for metal catalyzed dimerization/oligomerization of ethylene, propylene, see: (a) Pillai, S. M.; Ravindranathan, M.; Sivaram, S. Dimerization of ethylene and propylene catalyzed by transition-metal complexes. *Chem. Rev.* **1986**, *86*, 353–399. (b) Skupinska, J. Oligomerization of  $\alpha$ -olefins to higher oligomers. *Chem. Rev.* **1991**, *91*, 613–648. (c) Speiser, F.; Braunstein, P.; Saussine, L. Catalytic Ethylene Dimerization and Oligomerization: Recent Developments with Nickel Complexes Containing P,N-Chelating Ligands. *Acc. Chem. Res.* **2005**, *38*, 784–793. (d) McGuinness, D. S. Olefin oligomerization via metallacycles: Dimerization, trimerization, tetramerization, and beyond. *Chem. Rev.* **2011**, *111*, 2321–2341. (e) Agapie, T. Selective ethylene oligomerization: Recent advances in chromium catalysis and mechanistic investigations. Coord. Chem. Rev. 2011, 255, 861-880. (f) van Leeuwen, P. W. N. M.; Clément, N. D.; Tschan, M. J.-L. New processes for the selective production of 1-octene. Coord. Chem. Rev. 2011, 255, 1499-1517. (g) Zhang, W.; Sun, W.-H.; Redshaw, C. Tailoring iron complexes for ethylene oligomerization and/or polymerization. Dalton Trans. 2013, 42, 8988-8997. (h) Wang, S.; Sun, W.-H.; Redshaw, C. Recent progress on nickel-based systems for ethylene oligo-/polymerization catalysis. J. Organomet. Chem. 2014, 751, 717-741. (i) Boudier, A.; Breuil, P.-A. R.; Magna, L.; Olivier-Bourbigou, H.; Braunstein, P. Ethylene oligomerization using iron complexes: beyond the discovery of bis(imino)pyridine ligands. Chem. Commun. 2014, 50, 1398-1407. (j) Small, B. L. Discovery and development of pyridine-bis(imine) and related catalysts for olefin polymerization and oligomerization. Acc. Chem. Res. 2015, 48, 2599-2611. (k) Wang, Z.; Solan, G. A.; Zhang, W.; Sun, W.-H. Carbocyclicfused N,N,N-pincer ligands as ring-strain adjustable supports for iron and cobalt catalysts in ethylene oligo-/polymerization. Coord. Chem. Rev. 2018, 363, 92-108. (1) Bryliakov, K. P.; Antonov, A. A. Recent progress of transition metal based catalysts for the selective dimerization of ethylene. J. Organomet. Chem. 2018, 867, 55-61.

(3) For selected examples (oligomerization): (a) Reagan, W. K. (Phillips Petroleum Company) Process for Olefin Polymerization. EP 0417477 A2, 1991. (b) Killian, C. M.; Johnson, L. K.; Brookhart, M. Preparation of Linear  $\alpha$ -Olefins Using Cationic Nickel(II)  $\alpha$ -Diimine Catalysts. Organometallics 1997, 16, 2005-2007. (c) Svejda, S. A.; Brookhart, M. Ethylene Oligomerization and Propylene Dimerization Using Cationic ( $\alpha$ -Diimine)nickel(II) Catalysts. Organometallics 1999, 18, 65-74. (d) Komon, Z. J. A.; Bu, X.; Bazan, G. C. Synthesis, characterization, and ethylene oligomerization action of  $[(C_6H_5)_2PC_6H_4C(O-B(C_6F_5)_3)O-\kappa^2P_2O]Ni(\eta^3-CH_2C_6H_5).$  J. Am. Chem. Soc. 2000, 122, 12379-12380. (e) Small, B. L.; Brookhart, M. Iron-Based Catalysts with Exceptionally High Activities and Selectivities for Oligomerization of Ethylene to Linear  $\alpha$ -Olefins. J. Am. Chem. Soc. 1998, 120, 7143-7144. (f) Britovsek, G. J. P.; Mastroianni, S.; Solan, G. A.; Baugh, S. P. D.; Redshaw, C.; Gibson, V. C.; White, A. J. P.; Williams, D. J.; Elsegood, M. R. J. Oligomerisation of ethylene by bis(imino)pyridyliron and -cobalt complexes. Chem.-Eur. J. 2000, 6, 2221-2231.

(4) Selected examples for Ti, Zr complex catalysts, see: (a) Wielstra, Y.; Gambarotta, S.; Chiang, M. Y. [1,2-Bis(dimethylphosphino)ethane](cyclopentadienyl)methylzirconium(II) [CpZrMe(DMPE)<sub>2</sub>]: A catalyst precursor for the selective dimerization of ethylene to 1butene. Organometallics 1988, 7, 1866-1867. (b) Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Switching a catalyst system from ethene polymerization to ethene trimerization with a hemilabile ancillary ligand. Angew. Chem., Int. Ed. 2001, 40, 2516-2519. (c) Deckers, P. J. W.; Hessen, B.; Teuben, J. H. Catalytic Trimerization of Ethene with Highly Active Cyclopentadienyl-Arene Titanium Catalysts. Organometallics 2002, 21, 5122-5135. (d) You, Y.; Girolami, G. S. Mono(cyclopentadienyl)titanium(II) complexes with hydride, alkyl, and tetrahydroborate ligands: Synthesis, crystal structures, and ethylene dimerization and trimerization catalysis. Organometallics 2008, 27, 3172-3180. (e) Otten, E.; Batinas, A. A.; Meetsma, A.; Hessen, B. Versatile coordination of cyclopentadienyl-arene ligands and its role in titanium-catalyzed ethylene trimerization. J. Am. Chem. Soc. 2009, 131, 5298-5312. (f) Suzuki, Y.; Kinoshita, S.; Shibahara, A.; Ishii, S.; Kawamura, K.; Inoue, Y.; Fujita, T. Trimerization of Ethylene to 1-Hexene with Titanium Complexes Bearing Phenoxy-Imine Ligands with Pendant Donors Combined with MAO. Organometallics 2010, 29, 2394-2396. (g) Kinoshita, S.; Kawamura, K.; Fujita, T. Earlytransition-metal catalysts with phenoxy-imine-type ligands for the oligomerization of ethylene. Chem.-Asian J. 2011, 6, 284-290.

(5) V complex catalysts, see: (a) Brussee, E. A. C.; Meetsma, A.; Hessen, B.; Teuben, J. H. The N,N'-bis(trimethylsilyl)pentafluorobenzamidinate ligand: enhanced ethene oligomerisation with a neutral V(iii) bis(benzamidinate) alkyl catalyst. *Chem. Commun.* **2000**, 497–498. (b) Schmidt, R.; Welch, M. B.; Knudsen, R. D.; Gottfried, S.; Alt, H. G. N,N,N-Tridentate iron(II) and vanadium(III) complexes Part II: Catalytic behavior for the oligomerization and polymerization of ethene and characterization of the resulting products. *J. Mol. Catal. A: Chem.* **2004**, 222, 17–25. Vanadium complexes containing chelate bis(imino)pyridine ligands yielded polymers/ oligomers with Schultz–Flory distribution .

(6) (a) Zhang, S.; Nomura, K. Highly efficient dimerization of ethylene by (imido)vanadium complexes containing (2anilidomethyl)pyridine ligands: Notable ligand effect toward activity and selectivity. J. Am. Chem. Soc. 2010, 132, 4960-4965. (b) Igarashi, A.; Zhang, S.; Nomura, K. Ethylene dimerization/polymerization catalyzed by (adamantylimido)vanadium(V) complexes containing (2anilidomethyl)pyridine ligands: Factors affecting the ethylene reactivity. Organometallics 2012, 31, 3575-3581. (c) Nomura, K.; Igarashi, A.; Katao, S.; Zhang, W.; Sun, W.-H. Synthesis and structural analysis of (imido)vanadium(V) complexes containing chelate (anilido)methylimine ligands: Ligand effect in ethylene dimerization. Inorg. Chem. 2013, 52, 2607-2614. (d) Tang, X.-Y.; Igarashi, A.; Sun, W.-H.; Inagaki, A.; Liu, J.; Zhang, W.; Li, Y.-S.; Nomura, K. Synthesis of (imido)vanadium(V) complexes containing 8-(2,6-dimethylanilide)-5,6,7-trihydroquinoline ligands: Highly active catalyst precursors for ethylene dimerization. Organometallics 2014, 33, 1053-1060. (e) Nomura, K.; Mitsudome, T.; Igarashi, A.; Nagai, G.; Tsutsumi, K.; Ina, T.; Omiya, T.; Takaya, H.; Yamazoe, S. Synthesis of (adamantylimido)vanadium(V) dimethyl complex containing (2anilidomethyl)pyridine ligand and selected reactions: Exploring the oxidation state of the catalytically active species in ethylene dimerization. Organometallics 2017, 36, 530-542.

(7) Selected examples, for ethylene oligomerization by niobium complex catalysts, (a) Schrock, R. R. Cyclooctatetraene Complexes of Niobium and Tantalum. U.S. Patent 3932477, du Pont de Nemours, E. I., and Co., USA, 1976. (b) Schrock, R. R.; Guggenberger, L. J.; English, A. D. Cyclooctatetraene complexes of niobium and tantalum and the structure of Nb( $\eta^4$ -C<sub>8</sub>H<sub>8</sub>)[ $\eta^5$ -C<sub>8</sub>H<sub>8</sub>(C<sub>6</sub>H<sub>5</sub>)][(CH<sub>3</sub>)<sub>2</sub>AsC<sub>6</sub>H<sub>4</sub>As-(CH<sub>3</sub>)<sub>2</sub>]. J. Am. Chem. Soc. **1976**, 98, 903–913. (c) McLain, S. J.; Wood, C. D.; Schrock, R. R. Multiple metal-carbon bonds. 6. The reaction of niobium and tantalum neopentylidene complexes with simple olefins: a route to metallocyclopentanes. J. Am. Chem. Soc. **1977**, 99, 3519–3520. (d) Chang, B.-H.; Lau, C.-P.; Grubbs, R. H.; Brubaker, C. H., Jr. Synthesis of polymer-attached niobium and tantalum complexes and their applications to the catalysis of olefin hydrogenation, isomerization and ethylene dimerization. J. Organomet. Chem. **1985**, 281, 213–220.

(8) Ethylene oligomerization by tantalum catalysts,<sup>7a</sup> see: (a) Fellmann, J. D.; Rupprecht, G. A.; Schrock, R. R. Rapid selective dimerization of ethylene to 1-butene by a tantalum catalyst and a new mechanism for ethylene oligomerization. *J. Am. Chem. Soc.* **1979**, *101*, 5099–5101. (b) Andes, C.; Harkins, S. B.; Murtuza, S.; Oyler, K.; Sen, A. New tantalum-based catalyst system for the selective trimerization of ethene to 1-hexene. *J. Am. Chem. Soc.* **2001**, *123*, 7423–7424. (c) Arteaga-Müller, R.; Tsurugi, H.; Saito, T.; Yanagawa, M.; Oda, S.; Mashima, K. New tantalum ligand-free catalyst system for highly selective trimerization of ethylene affording 1-hexene: New evidence of a metallacycle mechanism. *J. Am. Chem. Soc.* **2009**, *131*, 5370–5371. Ligand-free TaCl<sub>5</sub>–cocatalyst systems were used in the ref<sup>6b,c</sup>.

(9) For selected reviews, see: (a) Schrock, R. R. High Oxidation State Multiple Metal–Carbon Bonds. *Chem. Rev.* **2002**, *102*, 145–180. (b) Bolton, P. D.; Mountford, P. Transition metal imido compounds as Ziegler-Natta olefin polymerisation catalysts. *Adv. Synth. Catal.* **2005**, *347*, 355–366. (c) Schrock, R. R. Recent advances in high oxidation state Mo and W imido alkylidene chemistry. *Chem. Rev.* **2009**, *109*, 3211–3226. (d) Nomura, K.; Zhang, W. (Imido)vanadium(v)-alkyl, -alkylidene complexes exhibiting unique reactivity towards olefins and alcohols. *Chem. Sci.* **2010**, *1*, 161–173. (e) Schrock, R. R. Synthesis of stereoregular polymers through ring-opening metathesis polymerization. *Acc. Chem. Res.* **2014**, *47*, 2457–2466. (f) Nomura, K.; Hou, X. Synthesis of vanadium-alkylidene complexes and their use as catalysts for ring opening metathesis polymerization. *Dalton Trans.* **2017**, *46*, 12–24.

(10) Synthesis and some reaction chemistry of half-sandwich niobium complexes containing arylimido ligands, see: (a) Williams, D. N.; Mitchell, J. P.; Poole, A. D.; Siemeling, U.; Clegg, W.; Hockless, D. C. R.; O'Neil, P. A.; Gibson, V. C. Half-sandwich imido complexes of niobium and tantalum. J. Chem. Soc., Dalton Trans. 1992, 739-751. (b) Cockcroft, J. K.; Gibson, V. C.; Howard, J. A. K.; Poole, A. D.; Siemeling, U.; Wilson, C.  $\eta$ 2-Benzyne and  $\eta$ 1-benzylidene complexes of niobium with ancillary imido ligands. J. Chem. Soc., Chem. Commun. 1992, 1668-1670. (c) Gibson, V. C. Ligands as "compass needles": How orientations of alkene, alkyne, and alkylidene ligands reveal  $\pi$ bonding features in tetrahedral transition metal complexes. Angew. Chem., Int. Ed. 1994, 33, 1565-1572. (d) Chan, M. C. W.; Cole, J. M.; Gibson, V. C.; Howard, J. A. K.; Lehmann, C.; Poole, A. D.; Siemeling, U. Half-sandwich imido complexes of niobium bearing alkyne, benzyne and benzylidene ligands: relatives of the zirconocene family. J. Chem. Soc., Dalton Trans. 1998, 103-112. (e) Djakovitch, L.; Herrmann, W. A. Half-sandwich and ansa-niobiocenes: synthesis and reactivity. J. Organomet. Chem. 1998, 562, 71-78. (f) Humphries, M. J.; Green, M. L. H.; Leech, M. A.; Gibson, V. C.; Jolly, M.; Williams, D. N.; Elsegood, M. R. J.; Clegg, W. Niobium  $\eta$ -cyclopentadienyl compounds with imido and amido ligands derived from tert-butylamine. J. Chem. Soc., Dalton Trans. 2000, 4044-4051. (g) Humphries, M. J.; Green, M. L. H.; Douthwaite, R. E.; Rees, L. H. Niobium-η-cyclopentadienyl compounds with imido and amido ligands derived from 2,6-dimethylaniline. J. Chem. Soc., Dalton Trans. 2000, 4555-4562. (h) Antiñolo, A.; Dorado, I.; Fajardo, M.; Garcés, A.; López-Solera, I.; López-Mardomingo, C.; Kubicki, M. M.; Otero, A.; Prashar, S. Synthesis, structural characterisation and reactivity of new dinuclear monocyclopentadienyl imidoniobium and -tantalum complexes - X-ray crystal structures of  $[{Nb(\eta^5-C_5H_4SiMe_3)Cl_2}_2(\mu-1,4-NC_6H_4N)],$  $[{Ta(\eta^5-C_5Me_5)Cl_2}_2(\mu-1,4-NC_6H_4N)]$  and  $[{Ta(\eta^5-C_5Me_5)}_2(\mu-1,4-NC_6H_4N)]$ (CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub>(µ-1,4-NC<sub>6</sub>H<sub>4</sub>N)]. Eur. J. Inorg. Chem. 2004, 1299-1310. (i) Nikonov, G. I.; Mountford, P.; Dubberley, S. R. Tantalizing chemistry of the half-sandwich silylhydride complexes of niobium: Identification of likely intermediates on the way to agostic complexes. Inorg. Chem. 2003, 42, 258-260.

(11) Synthesis of the other (arylimido)niobium complexes, see: (a) Williams, D. S.; Thompson, D. W.; Korolev, A. V. The significant electronic effect of the imido alkyl substituent in d<sup>0</sup> group 5 imido compounds observed by luminescence in fluid solution at room temperature. J. Am. Chem. Soc. 1996, 118, 6526-6527. (b) Korolev, A. V.; Rheingold, A. L.; Williams, D. S. A general route to labile niobium and tantalum d<sup>0</sup> monoimides. Discussion of metal-nitrogen vibrational modes. Inorg. Chem. 1997, 36, 2647. (c) Herrmann, W. A.; Baratta, W.; Herdtweck, E. Multiple bonds between main-group elements and transition metals: Part 157 Neutral and cationic ansa-metallocenes of niobium(V) and tantalum(V): Synthesis, structures and stereochemical non-rigidity. J. Organomet. Chem. 1997, 541, 445-460. (d) Dorado, I.; Garcés, A.; López-Mardomingo, C.; Fajardo, M.; Rodríguez, A.; Antiñolo, A.; Otero, A. Synthesis and structural characterization of new organo-diimido and organo-imido niobium and titanium complexes. J. Chem. Soc., Dalton Trans. 2000, 2375-2382. (e) Antiñolo, A.; Dorado, I.; Garcés, A.; López-Mardomingo, C.; Fajardo, M.; Kubicki, M.; Antiñolo, A.; Otero, A. Synthesis and structural characterisation of new organo-diimido tantalum and niobium complexes. Dalton Trans. 2003, 910-917. (f) Elorriaga, D.; Carrillo-Hermosilla, F.; Antiñolo, A.; López-Solera, I.; Fernández-Galán, R.; Serrano, A.; Villaseñor, E. Synthesis, characterization and reactivity of new dinuclear guanidinate diimidoniobium complexes. Eur. J. Inorg. Chem. 2013, 2940-2946. (g) Elorriaga, D.; Carrillo-Hermosilla, F.; Antiñolo, A.; López-Solera, I.; Fernández-Galán, R.; Villaseñor, E. Unexpected mild C-N bond cleavage mediated by guanidine coordination to a niobium iminocarbamoyl complex. Chem. Commun. 2013, 49, 8701-8703. (h) Elorriaga, D.; Carrillo-Hermosilla, F.; Antiñolo, A.; López-Solera, I.; Fernández-Galán, R.; Villaseñor, E. Mixed amido-/imido-/ guanidinato niobium complexes: synthesis and the effect of ligands on insertion reactions. Dalton Trans. 2014, 43, 17434-17444. (i) Wised, K.; Nomura, K. Synthesis of (imido)niobium(V)-alkylidene complexes that exhibit high catalytic activities for metathesis polymerization of cyclic olefins and internal alkynes. *Organometallics* **2016**, *35*, 2773–2777. (j) Srisupap, N.; Wised, K.; Tsutsumi, K.; Nomura, K. Synthesis of (Arylmido)niobium(V) Complexes Containing Ketimide, Phenoxide Ligands, and Some Reactions with Phenols and Alcohols. *ACS Omega* **2018**, *3*, 6166–6181.

(12) These data were partly presented at The 19th IUPAC International Symposia on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS19), Jeju, Korea, June, 2017. International Symposium on Catalysis and Fine Chemicals 2018 (C&FC2018), Bangkok, Thailand, December, 2018.

(13) Unpublished results in the reactions of Nb(NAr)Cl<sub>3</sub>(dme) or Nb(NAr)(OTf)<sub>3</sub>(dme) (dme = 1,2-dimethoxyethane, Tf = CF<sub>3</sub>SO<sub>3</sub>) with 2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)N(H)CH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N) by Srisupap, N. Related results, reactions of Nb(NAr)Cl<sub>3</sub>(dme) with lithium phenoxide, are also shown in ref 11j.

(14) Selected NMR spectra for the prepared complexes (2a,b, 3a,b, 4a,b, 5a and 6a,b), and some reactions are shown in the Supporting Information.

(15) For examples (Zr and Hf complexes), see: (a) Liang, L.-C.; Schrock, R. R.; Davis, W. M. Synthesis of titanium, zirconium, and hafnium complexes that contain the  $[(mesitylN-o-C_6H_4)_2O]^{2-}$  ligand. *Organometallics* **2000**, *19*, 2526–2531. (b) Evans, L. T. J.; Coles, M. P.; Geoffrey, F.; Cloke, N.; Hitchcock, P. B. Deactivation pathways of ethylene polymerization catalysts derived from titanium and zirconium 1,3-bis(furyl)-1,1,3,3-tetramethyldisilazide complexes. *Dalton Trans.* **2007**, 2707–2717.

(16) Cif, xyz files for structural analysis of Nb(NAr)[OCH(CF<sub>3</sub>)<sub>2</sub>] 2[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] [Ar = Me (**3a**), <sup>i</sup>Pr (**3b**)], Nb(N-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (**4b**), Nb(N-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (**5a**) are shown in the Supporting Information. Structure of Nb(N-2-MeC<sub>6</sub>H<sub>4</sub>)Me<sub>2</sub>[2-(2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)NCH<sub>2</sub>(C<sub>5</sub>H<sub>4</sub>N)] (**4c**) was also confirmed by X-ray crystallographic analysis (with additional note), and the ORTEP drawing and the basic analysis data (with notes) are shown in the Supporting Information.

(17) For examples, (a) Crans, D. C.; Tarlton, M. L.; McLauchlan, C. C. Trigonal bipyramidal or square pyramidal coordination geometry? Investigating the most potent geometry for vanadium phosphatase inhibitors. *Eur. J. Inorg. Chem.* **2014**, 4450–4468. (b) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(II) perchlorate. *Dalton Trans.* **1984**, 1349–1356.

(18) Zhang, S.; Katao, S.; Sun, W.-H.; Nomura, K. Synthesis of (Arylimido)vanadium(V) Complexes Containing (2-Anilidomethyl)pyridine Ligands and Their Use as the Catalyst Precursors for Olefin Polymerization. *Organometallics* **2009**, *28*, 5925–5933.

(19) Additional results for reaction with ethylene using Nb(NAr)  $Me_2[2-(2,6-Me_2C_6H_3)NCH_2(C_5H_4N)]$  [Ar = 2,6-Me\_2C\_6H\_3) (4a), 2,6-<sup>i</sup>Pr\_2C\_6H\_3) (4b), 2-MeC\_6H\_{4c} (4c)]-cocatalyst systems, DSC thermograms and <sup>1</sup>H NMR spectrum in the resultant polyethylene by-produced are shown in the Supporting Information.

(20) For examples (significant decrease in the catalytic activities in toluene), see: (a) Scollard, J. D.; McConville, D. H.; Payne, N. C.; Vittal, J. J. Polymerization of  $\alpha$ -Olefins by Chelating Diamide Complexes of Titanium. *Macromolecules* **1996**, *29*, 5241–5243. (b) Wang, W.; Fujiki, M.; Nomura, K. Ethylene polymerization catalyzed by titanium(IV) complexes with triaryloxoamine ligand of type, TiX[(OArCH<sub>2</sub>)<sub>3</sub>N. *Macromol. Rapid Commun.* **2004**, *25*, 504–507. (c) Omiya, T.; Natta, S.; Wised, K.; Tsutsumi, K.; Nomura, K. Synthesis and structural analysis of niobium(V) complexes containing amine triphenolate ligands of the type, [NbCl(X)(O-2,4-R<sub>2</sub>C<sub>6</sub>H<sub>2</sub>-6-CH<sub>2</sub>)<sub>3</sub>N] (R = Me, 'Bu; X = Cl, CF<sub>3</sub>SO<sub>3</sub>), and their use in catalysis for ethylene polymerization. *Polyhedron* **2017**, *125*, 9–17.

(21) Motolko, K. S. A.; Price, J. S.; Emslie, D. J. H.; Jenkins, H. A.; Britten, J. F. Zirconium complexes of a rigid, dianionic pincer ligand: Alkyl cations, arene coordination, and ethylene polymerization. *Organometallics* **2017**, *36*, 3084–3093.

(22) Dixon, R. E.; Streitwieser, A. The kinetic acidity of 1,1,1-triphenylethane. J. Org. Chem. 1992, 57, 6125-6128.

(23) For example, see: (a) Li, J.; Yang, X.; Stern, C. L.; Marks, T. J. Cationic metallocene polymerization catalysts based on tetrakis-(pentafluorophenyl)borate and its derivatives. probing the limits of anion "noncoordination" via a synthetic, solution dynamic, structural, and catalytic olefin polymerization study. Organometallics 1997, 16, 842-857. (b) Keaton, R. J.; Jayaratne, K. C.; Fettinger, J. C.; Sita, L. R. Structural Characterization of Zirconium Cations Derived from a Living Ziegler-Natta Polymerization System: New Insights Regarding Propagation and Termination Pathways for Homogeneous Catalysts. J. Am. Chem. Soc. 2000, 122, 12909-12910. (c) Nomura, K.; Fudo, A. A study concerning the effect of organoboron compounds in 1-hexene polymerization catalyzed by Cp\*TiMe<sub>2</sub>(O-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>). Structural analysis for Cp\*TiMe<sub>2</sub>(O-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>) and Cp\*TiMe(CF<sub>3</sub>SO<sub>3</sub>)(O-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>). Inorg. Chim. Acta 2003, 345, 37-43. (d) Lee, H.; Jordan, R. F. Unusual reactivity of tris(pyrazolyl)borate zirconium benzyl complexes. J. Am. Chem. Soc. 2005, 127, 9384-9385. (e) Lee, H.; Nienkemper, K.; Jordan, R. F. Synthesis and reactivity of a sterically crowded tris(pyrazolyl)borate hafnium benzyl complex. Organometallics 2008, 27, 5075-5081. (f) Nienkemper, K.; Lee, H.; Jordan, R. F.; Ariafard, A.; Dang, L.; Lin, Z. Synthesis of double-end-capped polyethylene by a cationic tris(pyrazolyl)borate zirconium benzyl complex. Organometallics 2008, 27, 5867-5875. (g) Itagaki, K.; Kakinuki, K.; Katao, S.; Khamnaen, T.; Fujiki, M.; Nomura, K.; Hasumi, S. Tris(pyrazolyl)borate Ti(IV) complexes containing phenoxy ligands: Effective catalyst precursors for ethylene polymerization that proceeds via cationic Ti(IV) species. Organometallics 2009, 28, 1942-1949. (h) Hasumi, S.; Itagaki, K.; Zhang, S.; Nomura, K. Ethylene polymerization by phenoxy substituted tris(pyrazolyl)borate Ti(IV) methyl complexes. Macromolecules 2011, 44, 773-777.

(24) Example of role of Al(n-C<sub>8</sub>H<sub>17</sub>)<sub>3</sub> as a scavenger, see: (a) Nomura, K.; Fudo, A. Efficient living polymerization of 1-hexene by Cp\*TiMe<sub>2</sub>(O-2,6-<sup>i</sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)-borate catalyst systems at low temperature. *J. Mol. Catal. A: Chem.* **2004**, 209, 9–17. (b) Nomura, K.; Suzuki, N.; Kim, D.-H.; Kim, H. J. Effect of Cocatalyst in Ethylene/Styrene Copolymerization by Aryloxo-Modified Half-Titanocene-Cocatalyst Systems for Exclusive Synthesis of Copolymers at High Styrene Concentrations. *Macromol. React. Eng.* **2012**, *6*, 351–356.

(25) It seems that percentage of PE by-produced was rather high, probably due to partial decomposition of the catalytically-active species in the solution (without stabilization by MAO), as observed in ref 23h. (26) As described in ref.<sup>23e,g,h</sup> Al $(n-C_8H_{17})_3$  or MAD [MeAl $(O-C_8H_{17})_3$  $2,6^{-t}Bu-4-MeC_6H_2$  are known to be employed as scavenger (removal) of impurities in solution), and  $Al(n-C_8H_{17})_3$  was employed for cleavage of the coordinated solvent (THF).<sup>23g,h</sup> The Al alkyl would also play a role to stabilize the catalytically active species for the subsequent decomposition by reacting with borate. Reported examples<sup>23c,g,h</sup> for polymerization of  $\alpha$ -olefin or styrene with dialkyl complexes in the presence of borate and  $Al(n-C_8H_{17})_3$ , see: (a) Hagihara, H.; Shiono, T.; Ikeda, T. Living polymerization of propene and 1-hexene with the [t-BuNSiMe<sub>2</sub>Flu]TiMe<sub>2</sub>/B( $C_6F_5$ )<sub>3</sub> catalyst. Macromolecules 1998, 31, 3184–3188. They proposed that  $Al(n-C_8H_{17})_3$  interacts with the counteranion of the cationic active Ti species to improve coordinative unsaturation of the Ti species . (b) Fukui, Y.; Murata, M.; Soga, K. Living polymerization of propylene and 1-hexene using bis-Cp type metallocene catalysts. Macromol. Rapid Commun. 1999, 20, 637. (c) Beckerle, K.; Manivannan, R.; Spaniol, T. P.; Okuda, J. Living isospecific styrene polymerization by chiral benzyl titanium complexes that contain a tetradentate [OSSO]-type bis(phenolato) ligand. Organometallics 2006, 25, 3019-3026.

(27) For example, XAFS Techniques for Catalysts, Nanomaterials, and Surfaces; Iwasawa, Y., Asakura, K., Tada, M., Eds.; Springer: Switzerland, 2017.

(28) Related examples for analysis of catalytically active species by solution-phase V K-edge XAS analysis.<sup>6e</sup> (a) Nagai, G.; Mitsudome, T.; Tsutsumi, K.; Sueki, S.; Ina, T.; Tamm, M.; Nomura, K. Effect of Al

cocatalyst in ethylene and ethylene/norbornene (Co)polymerization by (imido)vanadium dichloride complexes containing anionic *N*heterocyclic carbenes having weakly coordinating borate moiety. *J. Jpn. Pet. Inst.* **2017**, *60*, 256–262. (b) Nomura, K.; Oshima, M.; Mitsudome, T.; Harakawa, H.; Hao, P.; Tsutsumi, K.; Nagai, G.; Ina, T.; Takaya, H.; Sun, W.-H.; Yamazoe, S. Synthesis and Structural Analysis of (Imido) vanadium Dichloride Complexes Containing 2-(2'-Benz-imidazolyl)pyridine Ligands: Effect of Al Cocatalyst for Efficient Ethylene (Co)polymerization. *ACS Omega* **2017**, *2*, 8660–8673. (c) Nomura, K.; Tsutsumi, K.; Nagai, G.; Omiya, T.; Ina, T.; Yamazoe, S.; Mitsudome, T. Solution XAS analysis of various (imido)vanadium(V) dichloride complexes containing monodentate anionic ancillary donor ligands: Effect of aluminium cocatalyst in ethylene/norbornene (co)polymerization. *J. Jpn. Pet. Inst.* **2018**, *61*, 282–287.

(29) For example (account), Yamamoto, T. Assignment of pre-edge peaks in K-edge x-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole? *X-Ray Spectrom.* **2008**, *37*, 572–584. The transition of a 1s electron to 3d orbital gives weak pre-edge peaks due to the electric quadrupole transition for any symmetries. An intense pre-edge peak is assigned to an electric dipole transition to p-character in the d-p hybridized orbital, and the mixing of a metal 4p orbital with the 3d orbital strongly depends on the coordination symmetry .

(30) (a) Srivastava, U. C.; Nigam, H. L. X-ray absorption edge spectrometry (xaes) as applied to coordination chemistry. *Coord. Chem. Rev.* **1973**, *9*, 275–310. References cited therein . (b) Asakura, H.; Shishido, T.; Yamazoe, S.; Teramura, K.; Tanaka, T. Structural analysis of group V, VI, and VII metal compounds by XAFS. *J. Phys. Chem. C* **2011**, *115*, 23653–23663. (c) Nomura, K.; Mitsudome, T.; Tsutsumi, K.; Yamazoe, S. Solution XAS analysis for exploring the active species in homogeneous vanadium complex catalysis. *J. Phys. Soc. Jpn.* **2018**, *87*, 061014.

(31) CrystalClear: Data Collection and Processing Software; Rigaku Corporation (1998–2015): Tokyo 196-8666, Japan, 2015.

(32) CrysAlisPro: Data Collection and Processing Software; Rigaku Corporation (2015): Tokyo 196-8666, Japan, 2015.

(33) Sheldrick, G. SHELXT: Integrating space group determination and structure solution. *Acta Crystallogr., Sect. A: Found. Adv.* 2014, 70, C1437.

(34) CrystalStructure 4.2: Crystal Structure Analysis Package; Rigaku Corporation (2000–2015): Tokyo 196-8666, Japan; 2000–2015.

(35) SHELXL Version 2014/7: Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.

(36) Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Crystallogr., Sect. C: Struct. Chem.* **2015**, *71*, 3–8.