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Abstract: A series of new, chiral Lewis bases containing imida-
zole-N-oxide moiety were tested for purposes of asymmetric catal-
ysis. Bisimidazole-N-oxides derived from (1R,2R)- and (1S,2S)-
trans-1,2-diaminocyclohexane were used as catalysts in the allyla-
tion reaction of aromatic aldehydes with allyltrichlorosilane, which
yielded homoallyl alcohols in good yields and with enantioselectiv-
ity up to 80% ee. Screening of catalysts revealed that the type of
substituents and their location in imidazole ring has a crucial influ-
ence on enantioselectivity of the addition process.

Key words: allylation, asymmetric catalysis, chiral imidazole-N-
oxides, nucleophilic addition, organocatalysis

One of the most important tasks of the modern asymmet-
ric synthesis is the quest for novel catalysts useful for
preparation of chiral compounds in high enantiomeric pu-
rity. In recent years, we observe rapidly growing interest
in the development of asymmetric organocatalytic reac-
tions,1 including catalysis with organic Lewis bases.2

Amine N-oxides and azaheterocyclic N-oxides are recog-
nized as a group of very promising catalysts of this type,
well documented by growing number of original papers3,4

and review articles.5 Diverse N-oxides were reported as
more or less efficient catalysts for such reactions as asym-
metric allylation of aldehydes, cyanosilylation of carbon-
yl and imine compounds, aldol-type reactions, and
desymmetryzation of meso-epoxides.5 To the best of our
knowledge, chiral N-oxides derived from pyridine (and
related heterocycles, e.g., quinoline)3,5 or from tertiary
amines (e.g., N-alkyl proline)4,5 are only representatives
reported, which found application in asymmetric catalysis
until the present time. Herein, we report for the first time
application of a new type of chiral catalysts based on the
novel, 2-unsubstituted bisimidazole-N-oxides derived
from trans-1,2-diaminocyclohexane.

Recently, we described a simple and efficient method for
the preparation of diverse chiral imidazole N-oxides6,7 in-
cluding bisimidazole-N-oxides of type 17 (Figure 1).
Enantiomerically pure trans-1,10-(cyclohexane-1,2-
diyl)bis(imidazole-N-oxides) 1a–d were prepared via

condensation of (1R,2R)- or (1S,2S)-trans-cyclohexane-
1,2-bis(methylidenamine) (2a) with a-hydroxy-iminoke-
tones 3a–d in boiling EtOH or in glacial acetic acid at
room temperature (Scheme 1).8 In solution, the monomer-
ic form 2a exists in an equilibrium with the dimer identi-
fied as the eicosan derivative 2b.9 In average, yields of the
isolated products were good or very good (62–85%) and
could be reproduced with no problem. The optically ac-
tive substrate 2 was easily obtained from the correspond-
ing, enantiomerically pure trans-1,2-diaminocyclohexane
and paraformalehyde.7,8

Figure 1 Chiral bisimidazole-N-oxides 1a–d

The allylation of aromatic aldehydes 4 with allyltrichlo-
rosilane was selected as a test reaction for the screening of
catalysts of type 1.10 It is well known that highly nucleo-
philic amine N-oxides can act as efficient activators of or-
ganosilicon reagents.5,11

In the model reaction of benzaldehyde (4a) with allyl-
trichlorosilane (Scheme 2), the activities of four N-oxides
1a–d, bearing Me and/or Ph substituents at C(4) and C(5)
in imidazole ring, were compared. It turned out that the
type of substituents and their positions in the imidazole
ring have a crucial influence on enantioselectivities and
the sense of asymmetric induction (Table 1). The pres-
ence of catalytic amount of 1a with two Me groups at C(4)
and C(5) resulted in the formation of product 5a in mod-
erate chemical yield and low enantioselectivity (entry 1).
On the other hand, replacement of one Me group at C(4)
with Ph substituent (catalyst 1b) led to improvement of
the yield of 5a and better enantioselectivity (entry 2). The
reaction carried out in the presence of the catalyst 1c with
reversed arrangement of Me and Ph substituents led to
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(1R,2R)-trans-1a–d

1a   R1 = R2 = Me
1b   R1 = Me, R2 = Ph
1c   R1 = Ph, R2 = Me
1d   R1 = R2 = Ph++
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formation of 5a via opposite sense of induction and with
clear drop of efficiency (entry 3). Finally, the best enanti-
oselectivity (53% ee) was achieved using the catalytic
amount of 1d bearing two phenyl groups at C(4) at C(5),
respectively (entries 4 and 5). The comparison of the re-
sults summarized in Table 1 leads to the conclusion, that
the best results in terms of both, yield and enantioselectiv-
ity, were achieved using (1R,2R)-1b and (1R,2R)-1d as
the catalysts. Interestingly to note, that the sense of asym-
metric induction was in these two entries just the opposite.

The optimization study was performed using the most
promising catalyst 1d. The influence of the type of sol-
vents, catalyst loading, and temperature were also investi-
gated. Among typical solvents used in the study (THF,
MeCN, DMF, toluene, CH2Cl2), dichloromethane turned
out to be the best in terms of enantioselectivity and chem-
ical yields. Experiments showed that the mode of loading
of the catalyst 1d has also a significant influence on asym-
metric induction (Table 2, entries 1–3). Moreover, lower
temperature of the reaction mixture led to substantial in-
crease of enantioselectivity up to 72%. However, in these
cases the yield remarkably dropped. The reaction condi-
tions with 10 mol% concentration of 1d and temperature
kept at 0 °C during the addition of allyltrichlorosilane
seem to be optimal in terms of the yield of 5a and enanti-
omeric excess (entry 3).12

Finally, in order to estimate the scope of aldehyde sub-
strates, which can be applied in the enantioselective allyl-
ation reactions catalyzed by 1d, differently substituted
aromatic aldehydes were examined as substrates
(Table 3).12

The reaction occurred efficiently with different aromatic
aldehydes 4, and the enantiomeric excesses were deter-
mined, ranging from 39–80% (Table 3). Application of
the catalyst (1R,2R)-1d led to the formation of S-config-
ured homoallyl alcohols 5. The best enantioselectivities
(76–80%) were observed in the case of furan-2-carbalde-
hyde (4k) and thiophen-2-carbaldehyde (4l). On the other
hand, lower enantioselectivities were determined for
products obtained in reactions with para-substituted benz-
aldehydes 4b, 4d, and 4f (57–72% ee). The presence of
electron-withdrawing substituents, such as Cl attached to
aromatic ring (in 4f–h), seems to contribute to the drop of
enantioselectivity (57–39% ee). Finally, ortho-substituted
analogues gave substantially lower ee (below 51%). All
these observations lead to the conclusion that the substitu-
tion pattern in the molecule of aldehydes 4 strongly influ-
ences the enantioselectivity of formation of the
corresponding alcohols 5.

In summary, preliminary results presented in the paper
showed, that the novel, easy in handling, and readily

Scheme 1 Short synthesis of chiral bisimidazole-N-oxides
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Table 1 Screening of Catalyst in the Reaction of Benzaldehyde and 
Allyltrichlorosilanea

Entry Catalyst R1 R2 Yield of 5a 
(%)b

ee (%)c Config.d

1 (1R,2R)-1a Me Me 55 18 R

2 (1R,2R)-1b Me Ph 85 43 R

3 (1R,2R)-1c Ph Me 54 5 S

4 (1R,2R)-1d Ph Ph 86 53 S

5 (1S,2S)-1d Ph Ph 84 52 R

a Reactions were performed using 5 mol% of catalyst 1a–d, 0.5 mmol 
of benzaldehyde, 1.5 mmol of DIPEA, and 0.6 mmol of allyltrichlo-
rosilane in 1.0 mL of CH2Cl2 initially at 0 °C (ca. 10 min) and then at 
20 °C (20 h).
b Yields of isolated product by column chromatography on silica gel.
c The ee were determined by HPLC on chiral stationary phases (OD-
H).
d Absolute configuration assigned by measurement of optical rotation 
and comparison with the literature data.

Table 2 Optimization of the Model Reaction with the Catalyst 1da

Entry Catalyst 1d 
(mol%)

Temp (°C) Yield of 5a 
(%)

ee (%)

1 2 0 to 20 70 35

2 5 0 to 20 86 53

3 10 0 90 64

4 10 –10 65 68

5 5 –78 to –25 34 72

a Reactions were performed using 2–10 mol% of catalyst 1d, 0.5 
mmol of 4a, 1.5 mmol of DIPEA, and 0.6 mmol of allyltrichlorosilane 
in 1.0 mL of CH2Cl2, 20 h.
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available chiral bisimidazole-N-oxides of type 1, derived
from trans-1,2-diaminocyclohexane, can be considered as
promising organocatalysts for enantioselective allylation
of aromatic aldehydes 4 and, very likely, also for other
stereocontrolled reactions. The chiral bisimidazole N-ox-
ide 1d turned out to be the most efficient catalyst; the ex-
pected alcohols 5 were obtained in good chemical yields
and in fair enantioselectivities up to 80% ee. The obvious
advantage of the catalysis with imidazole-N-oxides of
type 1 is their straightforward synthesis and possible mod-
ification of the substitution pattern within the imidazole
ring. However, further studies are needed to determine the
scope and limitation for the possible exploration of imida-
zole-N-oxides of type 1 as catalysts for purposes of enan-
tio- and diastereoselective synthesis.
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