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 Nickel-Catalyzed Decarboxylative Alkylation of Aryl Iodides 
with Anhydrides
Hui Chen, Lu Hu, Wenzhi Ji, Licheng Yao, and Xuebin Liao* 

School of Pharmaceutical Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 
Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, 
Beijing 100084, China.
ABSTRACT: We present the anhydride-based decarboxylative alkylation of aryl iodides catalyzed by nickel. This method of 
decarboxylative coupling works with a broad scope of aliphatic carboxylic anhydrides and tolerates synthetically useful aromatic 
substituents. Assisted by a redox system of pyridine N-oxide and zinc additives, the current reaction occurs under mild conditions 
and without the assistance of photocatalyst. Notably, this 
method features high chemoselectivity towards alkyl 
migration with mixed aliphatic/aromatic anhydrides. Thus, 
it provides a powerful synthetic tool to modify high-valued 
aliphatic carboxylic acids by converting them into mixed 
anhydrides using readily available aryl carboxylic acids 
such as p-toluic acid. We propose a catalytic cycle that 
involves the key steps of free radical-based decarboxylation 
and subsequent alkyl transfer to nickel that precedes an 
oxidatively induced C-C reductive elimination from Ni(III).  

 KEYWORDS: decarboxylation, nickel catalysis, aliphatic 
acid anhydrides, cross-coupling, alkylation

In the past decades, the formation of C-C bonds catalyzed 
by transition metals has achieved great success in both 
academia and industry. 1 However, construction of the C(sp2)-
C(sp3) bond remains underexplored. One of the main hurdles 
is that common alkyl coupling partners are less available 
compared to aryl coupling reagents. Alkyl halides as the major 
building blocks in this area were restricted due to their limited 
availability, toxicity and instability. Notably, aliphatic 
carboxylic acids are inexpensive, stable and non-toxic 
substances, and they are widely present in nature. This makes 
them appealingly as potential coupling partners for C(sp2)-
C(sp3) bond formation. Herein, we aim to take another 
approach to decarboxylative C(sp2)-C(sp3) coupling by 
exploring aliphatic carboxylic anhydrides as the alkyl sources. 
In contrast to specialized esters as active substrates for 
decarboxylation (Scheme 1a), organic anhydrides are common 
building blocks that are either commercially available or 
readily prepared from the corresponding carboxylic acids. 
Catalytic application of carboxylic anhydrides in cross-
coupling has been mainly focused on decarbonylative biaryl 
synthesis by Goossen2-7 and other groups.8-15 In 2003, Rovis 
and coworkers have reported an example of decarbonylative 
C(sp2)-C(sp3) bond formation 16 with cyclic anhydrides using a 
stoichiometric amount of nickel catalyst (Scheme 1b). We 
hypothesized that a corresponding catalytic decarboxylative 
coupling via free-radical processes could be promoted by 

using a suitable oxidizing reagent that both donates oxygen 
atoms and facilitate single-electron transfer (SET) redox 
chemistry (Scheme 1d).

More recently, decarboxylative cross-coupling has emerged 
as a powerful tool to form new C-C bonds.  17-45 MacMillan, 
Doyle, and other groups17-19 (Scheme 1c) made major 
breakthroughs in this area and reported the couplings of aryl 
halides with secondary alkyl carboxylic acids by nickel 
catalysts with light assistance. Subsequently, asymmetric 
decarboxylative cross-coupling of α-amino acids was realized 
by Fu and MacMillan.19 Pioneering work on decarboxylative 
coupling using the N-hydroxy-phthalimide esters (NHP esters) 
were reported by the Okada group and later by the Overman 
group (Scheme 1a). 20,21 In their studies, they used 
photocatalyst to convert the NHP esters into alkyl radicals that 
could be further used in numerous transformations. In 2016, 
the Baran and Weix groups (Scheme 1a) almost concurrently 
reported another elegant strategy on decarboxylative coupling, 
24-29 which involved nickel-catalyzed C(sp2)-C(sp3) bond 
formation without assistance of light.  In contrast to 
MacMillan’s work, the aliphatic carboxylic acids in the Baran 
and Weix studies were required to be converted into the 
corresponding NHP 20,21 or other “redox-active” esters. 24-29

Alternatively, we herein report a nickel-catalyzed 
decarboxylative coupling between aliphatic carboxylic 
anhydrides and aryl iodides using pyridine N-oxide as oxidant 
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(Scheme 1d). Furthermore, our approach requires no 
photocatalyst or preparation of NHP esters in advance. The 
catalytic method of C(sp2)-C(sp3) bond formation works well 
with a broad scope of symmetrical anhydrides derived from 1°, 
2° and 3° alkyl carboxylic acids. Moreover, high 
chemoselectivity of alkyl- over aryl-migration was observed 
with unsymmetrical alkyl/aryl anhydrides. Thus, this method 
provides an attractive strategy to chemically modify high-
valued aliphatic carboxylic acids by converting them into 
mixed anhydrides with low-priced benzenecarboxylic acids 
such as 4-toluic acid.
Scheme 1. Recent Development of Decarboxylative 
Couplings and Our Approach
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Figure 1. Ni-Catalyzed Cross-Coupling of Alkyl Acid 
Anhydrides with Aryl Iodides
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NiCl2(10 mol%), L1(15 mol%)
pyridine N-oxide (1.5 equiv)

LiCl (4.0 equiv), KF (1.5 equiv)

Zn (3.0 equiv), DMAc
0 °C to 25 °C

MeO
9+

2a (1.5 equiv)1a (1.0 equiv) 3a (80% isolated yield)"standard" conditions

Entry Deviation from above Yield (%) Entry Deviation from above Yield (%)

1 L2 48
2 L3 55
3 L4 65
4 L5 45
5 L6 47
6 L7 33
7 Ni(COD)2 66

8 Ni(PPh3)4 72
9 NiBr2 57

10 NiI2 66
11 No nickel or ligand 0
12 No pyridine N-oxide trace
13 1.2 equiv 2a 73
14 NMP instead of DMAc 61

NN

R R

NN
NN

R R

R=H, L1
R=tBu, L2

R=H, L5
R=Phenyl, L6

L7R=OMe, L3
R=Me, L4

Reactions were run on 0.2 mmol scale at 0 oC, 25 oC for 24h, respectively. 
Yields were determined by NMR using 1,3,5-trimethoxybenzene as the 
internal standard.

Table 1. Scope of Ni-Catalyzed Coupling of Aliphatic Acid 
Anhydrides with Aryl Iodides

I
Alkyl O

O

Alkyl

O

NiCl2(10 mol%), L1(15 mol%)
pyridine N-oxide (1.5 equiv)

LiCl (4.0 equiv), KF (1.5 equiv)

Zn (3.0 equiv), DMAc
0 °C to 25 °C

Alkyl
+

2 (1.5 equiv)1 (1.0 equiv) 3

R R

R
9

3a, R=OMe, 80%a

3b, R=tBu, 91%a, 89%c

3c, R=Ph, 92%a

3d, R=H, 89%a

3e, R=CN, 52%a

3f, R=F, 77%a N
Ph

9

3j, 67%a

9

3g, R=COCH3, 71%a

3h, R=COOEt, 90%a

9

3l, 87%a

9
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9

O

O
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N
9
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N
9
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O
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tBu
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tBu
4
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tBu
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tBu
3v, 72%b

tBu

O

3w, 42%b

R
3r-1, R=tBu, 85%b

3r-2, R=Ph, 82%b

tBu
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3s-1,76%b
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9
S
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3x-1, 44%d

tBu
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Cbz

3x-2, 64%d

3n-2, 37%a

Reaction conditions: Reactions were run on 0.5 mmol scale with NiCl2 as 
a catalyst in DMAc (5 mL) at 0 oC, 25 oC for 24h, respectively. Yields 
were isolated yields. (See Supporting Information (SI)). aAlkyl acid 
anhydrides were commercially available. bAlkyl acid anhydrides were 
prepared after simple filtration. cReaction was run in the dark. d Using 
prepared mixed anhydrides of alkyl acids with p-toluic acids

In our initial studies, the alkyl acid anhydrides were 
generated in situ, filtrated by sieves and directly used for the 
coupling reaction (Scheme 1d). 46 Different ligands, including 
bipyridines (Figure 1, entries 1-4), phenanthrolines (entries 5, 
6), and phosphines (see Supporting Information (SI)) were 
first attempted. 2, 2’-bipyridine was the most efficient. Then, a 
variety of nickel catalysts were examined (entries 7-10) and 
NiCl2 performed the best. Control reactions demonstrated that 
both nickel catalyst and ligand (entry 11) were essential for the 
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reactions. Only a trace amount of desired product (entry 12) 
was detected without adding pyridine N-oxide. It is 
noteworthy that pyridine N-oxide was also nicely used as an 
additive for light assisted trifluoromethylation by Stephenson. 
22,23 Reactions with an excess of anhydride (entry 13) resulted 
in a higher yield. A further optimization of the solvents (entry 
14) revealed that DMAc (see Supporting Information (SI)) 
was optimal. In addition, zinc dusts and LiCl (see Supporting 
Information (SI)) were both indispensable in the catalytic 
reaction. Furthermore, addition of KF slightly increased the 
yield (see Supporting Information (SI)).

With the optimized conditions in hand, we first explored the 
scope of aryl iodides (Table 1, 3a-3n). Electron-rich, -
deficient and -neutral substituents were well tolerated (3a-3m). 
Different functional groups, including ester (3h), ketone (3g), 
cyano (3e), and protected nitrogen (3i, 3j), were all compatible 
with the standard conditions. Substituents at the ortho- and 
meta-position did not have much impact on the yields (3k-3m).  
Remarkably, heterocyclic iodide (4-iodopyridine, 3n-1) could 
be coupled, providing the corresponding product in a modest 
yield.

Next, a variety of carboxylic acid anhydrides, either 
commercially available or generated from the corresponding 
acids, were coupled with aryl iodides (Table 1, 3o-3z). As 
anticipated, reaction using primary and secondary carboxylic 
acid anhydrides proceeded smoothly (3o-3x). Among them, 
cyclic alkyl acid anhydrides (3r, 3s, 3u) were coupled with 
iodoarenes resulting in good yields. Large ring sized acid 
anhydrides, such as cycloheptanecarboxylic anhydride (3v), 
also generated the corresponding arylated product in a good 
yield. Substrate (3w-3x-2) containing heteroatom also worked 
smoothly under the optimized conditions. In addition, 
reactions with the tertiary carboxylic acid anhydride (3y), 
considered as a challenging coupling partner, also gave the 
desired product, albeit in a lower yield.

Notably, methylation and ethylation (3z-1, 2) of arenes 
(Figure 2), 47-50 which traditionally involved the use of difficult 
to manipulate organometallic reagents 47 or toxic methyl,48,49 
or ethyl iodides in medical chemistry,49 were achieved in 
comparable yields using commercially available alkyl acid 
anhydrides.
Figure 2. Methylation or Ethylation of Arenes
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Reaction conditions: Reactions were run on 0.5 mmol scale with NiCl2 as 
a catalyst in DMAc (5 mL) at 0 oC, 25 oC for 24h, respectively. Yields 
were isolated yields. (See Supporting Information (SI)).

Gratifyingly, this method proceeded smoothly when in situ 
generated anhydrides were directly used without filtration 
(Figure 3). The yields were only slightly lower than those with 
preformed alkyl acid anhydrides. For example, we got the 
decarboxylative coupling product (3s-1) in 76% yield when 
isolated alkyl acid anhydride was used. Only 2% decreased in 
the yield if we operated the reaction without any purification 
of anhydrides.

Figure 3. Ni-Catalyzed Coupling of Alkyl Acid Anhydrides 
(Generated in situ) with Aryl Iodides

tBu
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tBu
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I
Alkyl O
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Alkyl

O

Alkyl+

2 (1.5 equiv)1 (1.0 equiv) 3

R
Rstandard conditions

Reaction conditions: Reactions were run on 0.5 mmol scale with NiCl2 as 
a catalyst in DMAc at 0 oC, 25 oC for 24h, respectively. Yields were 
isolated yields. (See Supporting Information (SI)). [Isolated] = alkyl 
anhydrides were prepared after simple filtration of related impurities. [In 
situ] = alkyl anhydrides were prepared without any purification and 
reaction was taken in one flask. Preparation of symmetric anhydrides (See 
Supporting Information (SI)).

Furthermore, the reaction was performed at a large scale to 
showcase the utility of our protocol, and the decarboxylative 
product was obtained in satisfactory yield (Figure 4a). It was 
noteworthy that this method featured high chemoselectivity 
towards alkyl migration with mixed aliphatic/aromatic 
anhydrides (Figure 4b, c). Thus, it provided a powerful 
synthetic tool to modify high-valued aliphatic carboxylic acids 
by converting them into mixed anhydrides using readily 
available 
Figure 4. Gram Scale of Reaction and Chemical Selectivity 
of Reaction
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Standard conditions: Reactions were run on 0.5 mmol with NiCl2 as the 
catalyst in DMAc at 0 oC, 25 oC for 24h, respectively. Aryl iodide (1b) was 
1 equiv, anhydrides 2a is 1.2 equiv, 6 and 8 was 1.5 equiv. Yields were 
recorded after isolation and purification. (See Supporting Information 
(SI)).

aryl carboxylic acids such as p-toluic acid (Figure 4c). More 
intriguingly, by testing electronically different benzoates as 
part of mixed anhydrides, it was reasonable to assume that the 
carboxylate anion may affect catalyst reactivity in some way 
(see Supporting Information (SI), part 6, S12). This implied 
that we could potentially tune the reactions by employing 
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different aryl carboxylate anion as auxiliary ligands in the 
catalysis.
Figure 5. Mechanistic Studies
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no reaction (c)

 

tBu

I

tBu
+
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Standard conditions: Reactions were run on 0.5 mmol with NiCl2 as the 
catalyst in DMAc at 0 oC, 25 oC for 24h, respectively. 1h and aryl iodide 
were 1 equiv, and the anhydrides were 1.5 equiv. Yields were recorded 
after isolation and purification. (See Supporting Information (SI)). 
Equation (a): If no pyridine N-oxides were added, no products were 
detected.

Finally, to elucidate the mechanism, we performed a 
stoichiometric reaction of an organonickel complex (1h) with 
acid anhydride (2a). The desired product (3h) was obtained in 
43% yield (Figure 5a).51-55In addition, when 1h was used as 
catalyst, the decarboxylative coupling product was obtained in 
83% yield (Figure 5b). Both results suggested that 1h was a 
key intermediate in the catalytic cycle. The other 
stoichiometric reaction indicated that pyridine N-oxide was 
essential in the catalytic process (Figure 5a).56,57 Presumably, 
pyridine N-oxide was used as an additive for the formation of 
reducible anhydride adducts (Figure 6, VII). Although we 
could not isolate the combined intermediate, Stephenson 22,23 
and others 56,57 have done a number of studies to confirm the 
existence of such types of reducible compounds. Thus, it was 
reasonable to propose that the anhydride adduct was reduced 
by Ni-complex to form alkyl radical, pyridine, and CO2 
(Figure 6). In line with this hypothesis, we also detected the 
formation of pyridine and gas in the reactions. Additionally, 
the coupling proceeded well in the dark (Table 1, 3bc) and the 
effect of light was ruled out (Table 1, 3b) and the formation of 
organozinc regent from aryl iodides were excluded (see 
Supporting Information (SI), part6, S13). Moreover, the 
reaction without addition of zinc powder or LiCl only 
provided a trace amount of the desired product (See 
Supporting Information (SI)), which indicated that two 
additives were necessary in the catalytic cycle. Finally, the 
reaction was completely suppressed in the presence of 
TEMPO (Figure 5c), and the ring-opening product (5) (Figure 
5d) further strongly supported the hypothesis of SET process.

Based on these studies (Figure 5) and pioneering works by 
other groups, one possible catalytic cycle is proposed in Figure 
6. Pre-catalyst NiCl2 was reduced by zinc to generate 
bipyridine-ligated nickel (0) I. 51-53 Then, Ni (0) underwent 
oxidative addition with aryl iodide to form arylnickel (II) 

species II. This species was then reduced to arylnickel (I) 
complex III. 51-53 Next, complex III delivered an electron into 
aliphatic carboxylic anhydride adduct VII, thus producing the 
radical of adduct VIII with concomitant formation of Ni (II) 
complex IV. 24-29 The desired alkyl radical was produced with 
the fragmentation of VIII by release of CO2 and generation of 
pyridine. Later, complex IV was combined with a alkyl radical 
to provide Ni (III) intermediate V, which then underwent 
reductive elimination to afford the desired product and Ni (I) 
species VI. At this point, complex VI (I) was reduced to 
regenerate Ni (0) complex I using zinc powder.
Figure 6. Proposed Mechanism
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In conclusion, we develop the nickel-catalyzed 

decarboxylative alkylation of aryl iodides with alkyl acid 
anhydrides. This reaction exhibits broad substrate scopes, 
good functional group tolerance and chemical selectivity. In 
particular, this method provided a powerful tool to modify 
high-valued aliphatic carboxylic acids by simply converting 
them into mixed acid anhydrides with the cheap p-toluic acid. 
The decarboxylative cross-coupling of alkyl acid anhydride is 
believed to involve a SET process. Initial mechanistic studies 
on both the stoichiometric reactions and the catalytic reaction 
of the isolated (bpy)Ni(4-benzoate)I with alky acid anhydride 
support the arylnickel(II) complex as a key intermediate 
involved in the catalytic cycle. Additional mechanistic studies 
to further elucidate the detailed reaction mechanism are 
underway. 
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