

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: {Nb288O768(OH)48(CO3)12}: A Macromolecular Polyoxometalate with Niobium Atoms Close to 300

Authors: Yan-Lan Wu, Xin-Xiong Li, Yan-Jie Qi, Hao Yu, Lu Jin, and Shou-Tian Zheng

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201804088 Angew. Chem. 10.1002/ange.201804088

Link to VoR: http://dx.doi.org/10.1002/anie.201804088 http://dx.doi.org/10.1002/ange.201804088

WILEY-VCH

WILEY-VCH

{Nb₂₈₈O₇₆₈(OH)₄₈(CO₃)₁₂}: A Macromolecular Polyoxometalate with Niobium Atoms Close to 300

Yan-Lan Wu, Xin-Xiong Li, Yan-Jie Qi, Hao Yu, Lu Jin, and Shou-Tian Zheng*

Dedicated to Professor Xintao Wu on the occasion of his 80th birthday

Abstract: A protein-sized (ca. $4.2 \times 4.2 \times 3.6 \text{ nm}^3$) non-biologically derived molecule {Nb₂₈₈O₇₆₈(OH)₄₈(CO₃)₁₂} (**Nb₂₈₈**) containing up to 288 niobium atoms has been obtained, which is by far the largest and the highest nuclearity polyoxoniobate (PONb). Particularly, in terms of metal nuclearity number, **Nb₂₈₈** is the second largest cluster so far reported in classic polyoxometalate chemistry (V, Mo, W, Nb, and Ta). **Nb₂₈₈** can be described as a giant windmill-like cluster aggregate of six brand-new, nanoscale high-nuclearity PONb units {Nb₄₇O₁₂₈(OH)₆(CO₃)₂} (**Nb₄₇**) joined together by six additional Nb ions. Interestingly, the *in situ* generated 47-nuclearity **Nb₄₇** units can be isolated and bridged by copper complexes to form an inorganic-organic hybrid three-dimensional PONb framework, which exhibits effective catalytic activity for hydrolyzing nerve agent simulant of dimethyl methylphosphonate. The unique **Nb₄₇** cluster also provides a new type of topology to very limited family of Nb-O clusters.

The most common macromolecules in nature are biomolecules composed of thousands of atoms or more, such as proteins, DNA, and nucleic acids. Compared with biomacromolecules, the majority of known inorganic molecules are much smaller in size, nuclearity number, and molecular mass. The creation of giant inorganic molecules at biomacromolecule size has continuously been one of the most interesting subjects in synthetic chemistry as it is challenging to achieve on the one hand.^[1,11] Especially, how large an inorganic molecule that can be synthesized artificially is a scientific interest. And on the other hand, giant inorganic molecules have appealing structural features (e.g., nanometer dimensions, multiple configurations, and high-nuclearity metal centers) associated with unusual physical properties that do not occur for smaller molecules.^[1-11]

Giant polyoxometalates (POMs) are of special attention, as they represent the largest inorganic molecules ever made combined with fascinating structures and manifold applications in catalysis, medicine, and material sciences.^[3-8] Typically, Müller's group has achieved great success in creating giant polyoxomolybdates (POMos) during the past two decades, establishing a series of incredibly large POMos with hundreds of Mo centers, such as {Mo₁₃₂},^[4a] {Mo₁₅₄},^[4b] {Mo₁₇₆},^[4c] {Mo₂₄₈},^[4d] and {Mo₃₆₈}.^[4e] Especially, {Mo₃₆₈} with more than 360 Mo atoms still is the largest POM to date despite many new huge POMos reported in recent years.^[5] In POM chemistry, another significant progress on the synthesis of giant clusters has been made in the

 Y.L. Wu, Dr. X.X. Li, L. Jin, Y.J. Qi, H. Yu, Prof. Dr. S.T. Zheng State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou, Fujian 350108, China E-mail: stzheng@fzu.edu.cn

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author

Polyoxoniobates (PONbs), as an important subclass of POMs, often have unique stoichiometry and structure with promising applications in the domains of photocatalysis, nuclear-waste treatment, and base-catalyzed reactions.^[9-11] However, due to synthetic challenges caused by the narrow working pH region, the slight solubility, and the low reaction activity of niobate species, the development of PONb chemistry falls far behind that of POMo or POT chemistry. Especially, even after decades of research, almost all reported PONbs are in the small-to-medium nuclearity range (< 100). The development of much larger PONb materials parallel to the POMos and POTs has long been an attractive but challenging target in POM chemistry. Recently, the first PONb {Nb₁₁₄} with more than 100 Nb atoms has been identified by us,^[11d] however it is still considerably smaller than many reported giant POMo and POT species.

Here, we report an unprecedented inorganic macromolecular PONb $[Nb_{288}O_{768}(OH)_{48}(CO_3)_{12}]^{180-}$ (Nb₂₈₈) with more than 1000 non-hydrogen atoms per molecular cluster, which was isolated as alkali salt H7Li24Na50K87[Nb288]·132H2O (1). With 288 niobium metal ceners, Nb₂₈₈ is by far the largest PONb and contains the largest number of niobium centers so far reported in a POM. In particular, in terms of metal nuclearity number, Nb₂₈₈ already surpasses any known giant POTs and represents the second largest molecular POM to date (second only to {Mo₃₆₈}). Another fascinating feature of Nb₂₈₈ is the existance of fundamentally new, high-nuclearity PONb building unit {Nb₄₇O₁₂₈(OH)₆(CO₃)₂} (Nb₄₇). What's more, the novel building unit Nb₄₇ can be isolated by introduction of copper complexes, giving an inorganic-roganic hybrid 3D PONb framework H2Li5Na5K5[Cu(en)2]7[Nb47]·20H2O (2) (en = ethylenediamine). Both Nb₂₈₈ and Nb₄₇ enrich the very limited structural types of Nb-O cluster family. Additionally, 2 shows effective catalytic activity in the hydrolyzation of nerve agent simulant of dimethyl methylphosphonate (DMMP) under mild conditions.

Macromolecular **Nb**₂₈₈ crystallizes in trigonal space group *R*-3 with a very large unit cell (ca. 116000 Å³), which consists of six nanosized PONb building units **Nb**₄₇ and six additional Nb atoms. As shown in Figure 1, the building unit **Nb**₄₇ has a unique W-shaped configuration formed by three kinds of unusual PONb fragments {Nb₁₇(OH)₂O₅₃} (Nb₁₇), {Nb₁₀(OH)₂O₃₁} (Nb₁₀), and {Nb₃O₁₄} (Nb₃). Protonated oxgen atoms are identified by bond valence sum calculations (Figure S1).^[12] The *C*_s-symmetric Nb₁₇ fragment can be described as a new-type superlacunary POM. In 2010, Cronin's group reported a 27-nuclearity PONb [HNb₂₇O₇₆]¹⁶⁻ that can be seen as a combination of a *α*-Keggin {Nb₁₂O₄₀} unit with a bowl-like {Nb₁₅O₅₁} unit.^[10a] The Nb₁₇ fragment can be derived from [HNb₂₇O₇₆]¹⁶⁻ by the removel of its

WILEY-VCH

three Nb atoms from the α -Keggin unit and seven Nb atoms from the bowl-like unit (Figure S2). Note that Nb_{47} has two inequivalent Nb₁₇ fragments as one of them bonds to two additional bidentate CO₃²⁻ ligands. The coordination of CO₃²⁻ ion to PONb has been observed before in [H₁₀Nb₃₁O₉₃(CO₃)]^{23-[10a]}

Figure 1. Structure of Nb₄₇. Polyhedra key: Nb₁₇, red; Nb₁₀, green; Nb₃, yellow.

Different from the Nb₁₇, the Nb₁₀ fragment is derived from Lindqvist PONb [Nb₆O₁₉]⁸. As shown in Figure 1, Nb₁₀ exhibits a special dimeric entity composed of two distinct monolacunary Lindqvist units {Nb₅O₁₈} and {Nb₅O₁₉} condensed together via four corner-sharing O atoms in an eclipsed face-to-face fashion, forming a C_{2v} -symmetric structure with a cavity in the center. The {Nb₅O₁₈} is a typical monolacunary Lindqvist-type structure constructed from five edge-sharing NbO₆ octahedra. Comparing {Nb₅O₁₉} with {Nb₅O₁₈}, the difference is that the Nb atom located at the cap site in {Nb₅O₁₉} doesn't bond to a terminal O atom as usual but two additonal bridging O atoms from two Nb₁₇ fragments (Figure S3), resulting in a 7-coordinate center and capped trigonal-prismatic coordination geometry. As thus, the overall configuration of Nb₁₀ is unique thought it is similar to known decatungstate ion [W₁₀O₃₂]⁴⁻ formed by two equivalent {W₅O₁₈} units.^[13] The third fragment Nb₃ is a rare Nb-O trimer comprising two NbO5 square pyramids corner-sharingly bridged by a NbO₆ octahedron.

The combination of one Nb₃, one Nb₁₀, and two Nb₁₇ fragments produces a particular W-like building unit **Nb₄₇** wth 47 Nb centers. Specifically, two co-planar Nb₁₇ fragments represent a horn-like arrangement with C_{2v} symmetry and lie at an angle of ca. 81° with respect to each other (Figure 1, S3). Further, the Nb₁₀ stands between these two Nb₁₇ fragments and acts as a linker via corner- and edge-sharing O atoms with eight Nb atoms from Nb₁₇ fragments, forming a W-shaped aggregation {W₄₄} bearing two bilaterally symmetrical V-type holes. Interestingly, the symmetrical holes encapsulate different components. One hole traps a Nb₃ via two corner-sharing and three edge-sharing O atoms from the middle Nb₁₀ and four corner-sharing O atoms from one side Nb₁₇ (Figure 1). While, another hole captures two $CO_3^{2^-}$ ligands coordinating to the lacunary sites on the other side Nb₁₇. As a result, a total of 47 Nb atoms are involved to form a nanoscale W-shaped high-nuclearity PONb building unit **Nb₄₇** with dimensions of 2.3 × 1.4 × 1.3 nm³.

Figure 2. a) Side view of Nb_{288} , showing the six additional Nb linkers (blue) are in the same plane and form a C_6 -symmetry hexagonal array. b) Top view of Nb_{288} , showing a windmill-like structure. Polyhedra key: Nb_{17} , red; Nb_{10} , green; Nb_3 , yellow; Nb, blue.

Besides the six Nb₄₇ units, Nb₂₈₈ also contains six additional Nb atoms. The six Nb atoms lie in the same plane forming a C_{6^-} symmetry hexagonal array with adjacent Nb...Nb distances of 6.6 Å and Nb-Nb-Nb angles of 120 °C (Figure 2a, S4a). The six Nb₄₇ are evenly distributed on either side of the ring plane defined by the six additional Nb atoms, and entire 6-Nb47 arrangement has S_6 symmetry with the principal axis coinciding with the sixfold axis of the middle hexagonal ring (Figure S4b). Alternatively, the 6-Nb₄₇ arrangement can be viewed as a triangular antiprism geometry with a Nb47 at each of its six vertexes (Figure S4c). In Nb₂₈₈, all of the six addtional Nb atoms are 6-coordinate and act as bridges between Nb₄₇ units. Specifically, each additonal Nb atom links two Nb47 units via four corner-sharing Nb-O-Nb bonds (Nb-O bond lengths: 1.829(12)-2.164(14) Å) whilst each Nb47 unit bonds to two additonal Nb atoms. The two remaining coordinate sites of each addtional Nb atom are occupied by two terminal OH groups (Nb-O bond lengths: 1.802(2)-1.906(13) Å) confirmed by BVS calculations (Figure S1). Thus, the assembly of six Nb₄₇ units and six bridging Nb atoms generates a fascinating windmill-like PONb macromolecule Nb₂₈₈ with a diameter of ca. 4.3 nm and a side length of ca. 3.6 nm and with a molecular mass over 45000 (Figure 2b), displaying one of the largest non-biologically derived molecules so far synthesized.

Despite classic POM chemistry has a long history of almost two centuries, known giant macromolecular POMs have generally been restricted to POMos and POTs. Molecular cluster Nb_{288} shows a significant breakthrough in the nuclearity number and also the size of PONbs. This is the first PONb with size and nuclearity number comparable to known the largest POMos and POTs since PONb has been known for over one and a half centuries.^[14]

Figure 3. View of coordination mode of cluster Nb_{47} in 2.

The structure of **Nb**₂₈₈ indicates its likely formation mechanism by initial formation of the cluster **Nb**₄₇ in solution. It is known that cationic metal complexes are easily coordinated with anionic POMs, which may hinder further aggregation of *in situ* generated POM intermediates. So, to check if **Nb**₄₇ is actually present in solution, we investigated the introduction of copper complex [Cu(en)₂]²⁺ for the stabilization and isolation of novel cluster **Nb**₄₇. The approach resulted in successful formation of a targeted compound **2** built from **Nb**₄₇ clusters and [Cu(en)₂]²⁺ complexes. In **2**, each **Nb**₄₇ acts as a 9-dentate ligand bonding to nine [Cu(en)₂]²⁺ cations via its three terminal O and six μ_2 -O atoms with Cu-O bond lengths of 2.275(18) - 2.618(2) Å. Specifically, each **Nb**₄₇ is decorated by four $[Cu(en)_2]^{2+}$ cations that are not further connected to other **Nb**₄₇ clusters, forming a tetra-Cu-supported polyoxoanion (Figure S5). Then, every tetra-Cu-supported polyoxoanion is further bridged to five adjacent ones by remaining five $[Cu(en)_2]^{2+}$ complexes (Figure 3), forming a 3D inorganic-organic hybrid, anionic PONb framework charge-balanced by alkali metal ions and isolated Cu-complexes (Figure S6). Notably, it is important to develop POMs beyond the Mo-, W-, and V-based building units.^[10a] Cluster **Nb**₄₇ represents a remarkably different structure from all of known POMs.

The formulas of **1** and **2** were determined by single-crystal Xray diffractions and ICP analyses, and their phase purity was confirmed by PXRD patterns (Figure S7,8). To balance the charges of polyoxoanions, seven and two protons should be added to **1** and **2**, respectively. These protons can not be located and are assumed to be delocalized on the overall structures, which is common in POMs.^[15] Due to high negative charges and basic surface oxygens, PONbs have been shown as promising candidates for hydrolyzing chemical warfare agents in the past a few years.^[16] Dimethyl methylphosphonate (DMMP), as a quite inert nerve agent simulant, was nominated by the U.S. Army as an ideal model chemical for toxicology and carcinogenesis studies.^[17] The brand-new PONbs **1** and **2** triggered us to check if they could display excellent catalytic performances in the hydrolysis of DMMP.

To examine the water stability, both 1 and 2 were dissolved in water and then recrystallized from water. IR spectra of 2 before and after recrystallization proved to be identical, that is, 2 kept stable and no other PONbs were formed (Figure S9). While, the IR spectra of 1 are different (Figure S10), indicating Nb₂₈₈ just can exist in solid. Note that IR spectrum of 1 after recrystallization is somewhat similar to that of 2, indicating Nb₂₈₈ probably partial degrade into Nb₄₇. Unfortunately, the structure of the recrystallized phase of 1 could not be determined due to powder crystallinity. Thus, only 2 was employed for catalytic test.

Figure 4. a) DMMP decomposition using **2**. b) Three consecutive runs of DMMP decomposition using **2**. c) and d) IR and PXRD spectra of **2** before and after 3-run catalytic reactions, respectively. Conditions: [DMMP] = 15.5 mm, 50 mg **2**, 0.6 mL D₂O and 1.0 mL H₂O at room temperature.

10.1002/anie.201804088

WILEY-VCH

Experiment was performed in a homogeneous system by dissolving 15.5 mM DMMP and 50 mg **2** (5.8 umol) in a solution of 1 ml H₂O and 0.6 ml D₂O at room temperature and 1 atm. The results showed that **2** can convert about 46% of quite inert DMMP to nontoxic methyl phosphonic acid (MP) over a time course of 263 h without using additional chemicals (Figure 4a). Compared with a blank experiment without **2** under the same conditions, no obvious conversion detected, revealing that **2** is an efficient DMMP hydrolysis catalyst. Notably, **2** is more active than many MOFs towards DMMP and comparable with the effective PONb K₁₂[Ti₂O₂][GeNb₁₂O₄₀]·19H₂O reported recently by Hill's group (56 % conversion under the same reaction conditions).^[16a] The extent of conversion was calculated as the ratio of the integrated ³¹P NMR peak for MP (the only hydrolysis product) to that of DMMP (Figure S11).

In order to check the stability of **2** during the catalytic process, some experiments were performed by us. On the one hand, the recyclability of **2** was investigated by directly adding additional substrate DMMP (15.5 mM) into the reaction mixture when the previous run was completed. The results show **2** has very good recyclability with almost the same DMMP conversions for three-run duplicate operations (Figure 4b). On the other hand, IR and PXRD measurements were conducted for powder crystallinity obtained by volatilizing the solution after three-run successive catalytic reactions at room temperature. Both IR spectrum and PXRD of **2** were well consistent with those of the powder crystallinity obtained from the solution after catalytic reactions (Figure 4c,d), confirming that **2** could maintain its structural integrity after catalytic reaction.

In summary, for the first time, a PONb Nb_{288} with hundreds of niobium centers and over 4 nm in diameter has been artificially synthesized. It is the largest molecular niobium aggregate and the second highest nuclearity POM to date. Further, in Nb_{288} , the W-shapled high-nuclearity PONb building unit Nb_{47} with three types of new fragments Nb₁₇, Nb₁₀, and Nb₃ has a brand-new topology to POM chemistry, providing a new member of very limited Nb-O clluster family. Especially, the novel Nb_{47} formed *in situ* can be stabilized and isolated by copper complexes to form an extended framework, which is effective hydrolysis catalyst for nerve agent simulant of DMMP. The results represent a major step forward in the development of PONb system and open up new perspectives for the development of diverse and larger PONb materials parallel to the POMo and POT systems.

Acknowledgements

We gratefully acknowledge the financial support from the NSFs of China (No. 21773029), National 1000 Youth Talents Plan, and 111 project.

Keywords: polyoxometalate • polyoxoniobate • macromolecule • high-nuclearity

a) A. Müller, F. Peters, M. T. Pope, D. Gatteschi, *Chem. Rev.* **1998**, *98*, 239-271;
 b) P. Feng, X. Bu, N. Zheng, *Acc. Chem. Res.* **2005**, *38*, 293-303;
 c) X. J. Kong, Y. P. Ren, W. X. Chen, L. S. Long, Z. Zheng, R. B. Huang, L. S. Zheng, *Angew. Chem.* **2008**, *120*, 2432-2435;

Angew. Chem. Int. Ed. 2008, 47, 2398-2401; d) T. Wu, L. Wang, X. Bu, V. Chau, P. Feng, J. Am. Chem. Soc. 2010, 132, 10823-10831.

- [2] a) T. Wu, Q. Zhang, Y. Hou, L. Wang, C. Mao, S. T. Zheng, X. Bu, P. Feng, J. Am. Chem. Soc. 2013, 135, 10250-10253; b) J. B. Peng, X. J. Kong, Q. C. Zhang, M. Orendáč, J. Prokleška, Y. P. Ren, L. S. Long, Z. Zheng, L. S. Zheng, J. Am. Chem. Soc. 2014, 136, 17938–17941; c) G. Zhang, C. Liu, D. L. Long, L. Cronin, C. H. Tung, Y. Wang, J. Am. Chem. Soc. 2016, 138, 11097–11100; d) O. Renier, C. Falaise, H. Neal, K. Kozma, M. Nyman, Angew. Chem. 2016, 128, 13678-13682; Angew. Chem. Int. Ed. 2016, 55, 13480-13484.
- [3] a) U. Kortz, A. Müller, J. van Slageren, J. Schnack, N. S. Dalal, M. Dressel, *Coord. Chem. Rev.* 2009, *253*, 2315-2327; b) D. L. Long, R. Tsunashima, L. Cronin, *Angew. Chem.* 2010, *122*, 1780-1803; *Angew. Chem. Int. Ed.* 2010, *49*, 1736-1758; c) May Nyman, P. C. Burns, *Chem. Soc. Rev*, 2012, *41*, 7354-7367; d) E. Cadot, M. N. Sokolov, V. P. Fedin, C. Simonnet-Jégat, S. Floquet, F. Sécheresse, *Chem. Soc. Rev.* 2012, *41*, 7335-7353; e) Y. F. Song, R. Tsunashim, *Chem. Soc. Rev.* 2012, *41*, 7384-7402.
- [4] a) A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, F. Peters, Angew. Chem. 1998, 110, 3567-3571; Angew. Chem. Int. Ed. 1998, 37, 3360-3363; b) A. Müller, E. Krickemeyer, J. Meyer, H. Bögge, F. Peters, W. Plass, E. Diemann, S. Dillinger, F. Nonnenbruch, M. Randerath, C. Menke, Angew. Chem. 1995, 107, 2293-2295; Angew. Chem. Int. Ed. 1995, 34, 2122-2124; c) A. Müller, E. Krickemeyer, H. Bögge, M. Schmidtmann, C. Beugholt, P. Kögerler, C. Lu, Angew. Chem. 1998, 110, 1278-1281; Angew. Chem. Int. Ed. 1998, 37, 1220-1223; d) A. Müller, S. Q. N. Shah, H. Bögge, M. Schmidtmann, Nature. 1999, 397,48-50; e) A. Müller, E. Beckmann, H. Bögge, M. Schmidtmann, A. Dress, Angew. Chem. 2002, 114, 1210-1215; Angew. Chem. Int. Ed. 2002, 41, 1162-1167; f) S. Garai, M. Rubčić, H. Bçgge, E. T. K. Haupt, P. Gouzerh, A. Müller, Angew. Chem. 2015, 127, 5977-5980; Angew. Chem. Int. Ed. 2015, 54, 5879-5882.
- a) H. Y. Zang, H. N. Miras, D. L. Long, B. Rausch, L. Cronin, Angew. [5] Chem. 2013, 125, 7041-7044; Angew. Chem. Int. Ed. 2013, 52, 6903-6906; b) X Fang, L. Hansen, F. Haso, P. Yin, A. Pandey, L. Engelhardt, I. Slowing, T. Li, T. Liu, M. Luban, D. C. Johnston, Angew. Chem. 2013, 125, 10694-10698; Angew. Chem. Int. Ed. 2013, 52, 10500-10504; c) P. Yin, B. Wu, T. Li, P. V. Bonnesen, K. Hong, S. Seifert, L. Porcar, C. Do, J. K. Keum, J. Am. Chem. Soc. 2016, 138, 10623-10629; d) V. Duros, J. Grizou, W. Xuan, Z. Hosni, D. L. Long, H. N. Miras, L. Cronin, Angew. Chem. 2017, 129, 10955-10960; Angew. Chem. Int. Ed. 2017, 56, 10815-10820; e) W. Xuan, R. Pow, D. L. Long, L. Cronin, Angew. Chem. 2017, 129, 9859-9863; Angew. Chem. Int. Ed. 2017, 56, 9727-9731; f) M. A. Moussawi, M. Haouas, S. Floquet, W. E. Shepard, P. A. Abramov, M. N. Sokolov, V. P. Fedin, S. Cordier, A. Ponchel, E. Monflier, J. Marrot, E. Cadot, J. Am. Chem. Soc. 2017, 139, 14376-14379
- [6] a) B. Godin, Y. G. Chen, J. Vaissermann, L. Ruhlmann, M. Verdaguer, P. Gouzerh, Angew. Chem. 2005, 117, 3132-3135; Angew. Chem. Int. Ed. 2005, 44, 3072-3075; b) S. S. Mal, U. Kortz, Angew. Chem. 2005, 117, 3843-3846; Angew. Chem. Int. Ed. 2005, 44, 3777-3780; c) B. S. Bassil, M. Ibrahim, R. Al-Oweini, M. Asano, Z. Wang, J. van Tol, N. S. Dalal, K. Y. Choi, R. N. Biboum, B. Keita, L. Nadjo, U. Kortz, Angew. Chem. 2011, 123, 6083-6087; Angew. Chem. Int. Ed. 2011, 50, 5961-5964; d) S. Li, S. Liu, S. Liu, Y. Liu, Q. Tang, Z. Shi, S. Ouyang, J. Ye, J. Am. Chem. Soc. 2012, 134, 19716–19721.
- [7] a) C. Zhan, J. M. Cameron, J. Gao, J. W. Purcell, D. L. Long, L. Cronin, Angew. Chem. 2014, 126, 10530-10534; Angew. Chem. Int. Ed. 2014, 53, 10362-10366; b) L. Huang, S. S. Wang, J. W. Zhao, L. Cheng, G. Y. Yang, J. Am. Chem. Soc. 2014, 136, 7637-7642; c) C. H. Zhan, R. S. Winter, Q. Zheng, J. Yan, J. M. Cameron, D. L. Long, L. Cronin, Angew. Chem. 2015, 127, 14516-14520; Angew. Chem. Int. Ed. 2015, 54, 14308-14312; d) T. Minato, K. Suzuki, K. Yamaguchi, N. Mizuno, Angew. Chem. 2016, 128, 9758-9761; Angew. Chem. Int. Ed. 2016, 55, 9630-9633.

- a) K. Wassermann, M. H. Dickman, M. T. Pope Angew. Chem. 1997, [8] 109, 1513-1516; Angew. Chem. Int. Ed. 1997, 36, 1445-1448; b) U. Kortz, F. Hussain, M. Reicke, Angew. Chem. 2005, 117, 3839-3843; Angew. Chem. Int. Ed. 2005. 44. 3773-3777; c) B. S. Bassil, M. H. Dickman, I. Römer, B. v. d. Kammer, U. Kortz, Angew. Chem. 2007, 119, 6305-6308; Angew. Chem. Int. Ed. 2007, 46, 6192-6195; d) X. Fang, P. Kögerler, Angew. Chem. 2008, 118, 8243-8246; Angew. Chem. Int. Ed. 2008, 47, 8123-8126; e) F. Hussain, F. Conrad, G. R. Patzke, Angew, Chem. 2009, 121, 9252-9255; Angew, Chem. Int. Ed. 2009, 48, 9088-9091; f) S. Reinoso, M. Giménez-Marqués, J. R. Galán-Mascarós, P. Vitoria, J. M. Gutiérrez-Zorrilla, Angew. Chem. 2010, 122, 8562-8566; Angew. Chem. Int. Ed. 2010, 49, 8384-8388; g) X. Fang, P. Kögerler, Y. Furukawa, M. Speldrich, M. Luban, Angew. Chem. 2011, 123, 5318-5322; Angew. Chem. Int. Ed. 2011, 50, 5212-5216; h) A. R. de. la. Oliva, V. Sans, H. N. Miras, J. Yan, H. Zang, C. J. Richmond, D. L. Long, L. Cronin: Angew. Chem. 2012, 124, 12931-12934; Angew. Chem. Int. Ed. 2012, 51, 12759-12762; i) M. Ibrahim, V. Mereacre, N. Leblanc, W. Wernsdorfer, C. E. Anson, A. K. Powell, Angew. Chem. 2015, 127, 15795-15799; Angew. Chem. Int. Ed. 2015, 54, 15574-15578
- [9] a) M. Nyman, F. Bonhomme, T. M. Alam, M. A. Rodriguez, B. R. Cherry, J. L. Krumhansl, T. M. Nenoff, A. M. Sattler, *Science*, 2002, 297, 996-998; b) R. P. Bontchev, M. Nyman, *Angew. Chem.* 2006, 118, 6822-6824; *Angew. Chem. Int. Ed.* 2006, 45, 6670-6672; c) Y. Hou, L. N. Zakharov, M. Nyman, *J. Am. Chem. Soc.* 2013, 135, 16651-16657; d) J. Niu, F. Li, J. Zhao, P. Ma, D. Zhang, B. Bassil, U. Kortz, J. Wang, *Chem. Eur. J.* 2014, 20, 9852-9857; e) L. Li, K. Dong, P. Ma, C. Zhang, J. Niu, J. Wang, *Chem. Eur. J.* 2017, 23, 16957-16960.
- [10] a) R. Tsunashima, D. L. Long, H. N. Miras, D. Gabb, C. P. Pradeep, L. Cronin, *Angew. Chem.* 2010, *122*, 117-120; *Angew. Chem. Int. Ed.* 2010, *49*, 113-116; b) G. Guo, Y. Xu, J. Cao, C. Hu, *Chem. Eur. J.* 2012, *18*, 3493-3497; c) P. Huang, C. Qin, Z. M. Su, Y. Xing, X. L. Wang, K. Z. Shao, Y. Q. Lan, E. B. Wang, *J. Am. Chem. Soc.* 2012, *134*, 14004-14010; d) P. A. Abramov, C. Vicent, N. B. Kompankov, A. L. Gushchin, M. N. Sokolov, *Chem. Commun.* 2015, *51*, 4021-4023; e)
- [11] a) C. A. Ohlin, E. M. Villa, J. C. Fettinger, W. H. Casey, Angew. Chem. 2008, 120, 5716-5718; Angew. Chem. Int. Ed, 2008, 47, 5634-5636; b)
 R. L. Johnson, E. M. Villa, C. A. Ohlin, J. R. Rustad, W. H. Casey, Chem. Eur. J. 2011, 17, 9359-9367; c) J. H. Son, J. Wang, F. E. Osterloh, P. Yu, W. H. Casey, Chem. Commun. 2014, 50, 836-838; d) L. Jin, X. X. Li, Y. J. Qi, P. P. Niu, S. T. Zheng, Angew. Chem. 2016, 128, 13997-14001; Angew. Chem. Int. Ed, 2016, 55, 13793-13797; e) L. Jin, Z. K. Zhu, Y. L. Wu, Y. J. Qi, X. X. Li, S. T. Zheng, Angew. Chem. 2017, 129, 16506-16510; Angew. Chem. Int. Ed. 2017, 56, 16288-16292.
- [12] I. D. Brown, D. Altermatt, Acta Crystallogr. Sect. B 1985, 41, 244.
- [13] J. Fuchs, H. Hartl, W. Schiller, U. Gerlach, Acta Crystallogr. B. 1976, 32, 740-749.
- [14] C. Marignac, Ann. Chim. Phys. 1866, 8, 5-75.
- [15] a) X. Fang, P. Kögerler, Y. Furukawa, M. Speldrich, M. Luban, Angew. Chem. 2011, 123, 5318-5322; Angew. Chem. Int. Ed. 2011, 50, 5212-5216; b) A. R. d. I. Oliva, V. Sans, H. N. Miras, J. Yan, H. Zang, C. J. Richmond, D. L. Long, L. Cronin, Angew. Chem. 2012, 124, 12931-12934; Angew. Chem. Int. Ed. 2012, 51, 12759-12762; c) M. Ibrahim, V. Mereacre, N. Leblanc, W. Wernsdorfer, C. E. Anson, A. K. Powell, Angew. Chem. 2015, 127, 15795-15799; Angew. Chem. Int. Ed. 2015, 54, 15574-15578.
- [16] a) W. Guo, H. Lv, K. P. Sullivan, W. O. Gordon, A. Balboa, G. W. Wagner, D. G. Musaev, J. Bacsa, C. L. Hill, *Angew. Chem.* 2016, 128, 7529-7533; *Angew. Chem. Int. Ed.* 2016, 55, 7403-7407; b) J. Dong, J. Hu, Y. Chi, Z. Lin, B. Zou, S. Yang, C. L. Hill, C. Hu, *Angew. Chem.* 2017, 129, 4544-4548; *Angew. Chem. Int. Ed.* 2017, 56, 4473-4477.
- [17] Toxicology and Carcinogenesis Studies of Dimethyl Methylphosphonate (CAS No. 756-779-6) in F344/N Rats and B6C3F1 Mice (Gavage Studies), National toxicology program, U.S. Department of Health and Human Services, 1987, Technical Report Series 323.

10.1002/anie.201804088

WILEY-VCH

10.1002/anie.201804088

Table of Contents

Giant Polyoxoniobate An

unprecedentedly huge polyoxoniobate (PONb) with as many as 288 Nb centers has been made. This is by far the largest PONb and the second highest nuclearity polyoxometalate reported to date. It incorporates a unique 47-nuclearity PONb building unit formed in situ, which can be stabilized by metal complexes to form an extended PONb framework with the capability of hydrolyzing dimethyl methylphosphonate.

Yan-Lan Wu, Xin-Xiong Li, Yan-Jie Qi, Hao Yu, Lu Jin, and Shou-Tian Zheng*

Page No. – Page No.

{Nb₂₈₈O₇₆₈(OH)₄₈(CO₃)₁₂}: A Macromolecular Polyoxometalate with Niobium Atoms Close to 300