556 Communications SYNTHESIS

A Novel Route to Methyl 3-(3,4-Disubstituted 5-alkylthio/amino-2-thienyl) propenoates¹

A. Datta, H. Ila,* H. Junjappa*

Department of Chemistry, North-Eastern Hill University, Shillong 793003, Meghalaya, India

The 3-oxodithioesters 1 and 3-oxothioamides 6 are shown to undergo base catalyzed S-alkylation with methyl 4-bromocrotonate followed by intramolecular condensation to give the corresponding methyl 3-(3,4-disubstituted 5-alkylthio/amino-2-thienyl) propenoates 5 and 7 in good yields.

We have recently reported that the aroyl- and acyl(allyl/2-methyl-2-propenyl)ketene dithioacetals undergo facile transformation to the corresponding α -benzylidene and alkylidene- γ -butyrolactones through the intermediacy of α,β -unsaturated esters. The aroyl- and acyl(allyl)ketene dithioacetals were conveniently prepared in a one-pot reaction by C-allylation of 3-oxodithioesters via spontaneous 3,3-sigmatropic rearrangement of the intermediate aroyl- and acylketene S-allyl dithioacetal to give the 2-allyl-3-oxodithioester followed by its S-methylation. Shape of the state of the

1-5 a	R ¹	R ²	R ³	
	4-ClC ₆ H ₄	Н	CH ₃	
b	4-CH ₃ OC ₆ H ₄	H	CH ₃	
c	2-naphthyl	Н	CH_3	
d	2-thienyl	Н	CH ₃	
e	2-furyl	H	CH_3	
f	$4-C1C_6H_4$	Н	C_2H_5	
g	CH ₃	Н	CH_3	
ĥ	$C_6 H_5$	CH_3	CH_3	

Scheme A

In continuation of these studies, 3-oxodithioesters 1 were reacted with methyl 4-bromocrotonate with a view to synthesize ultimately aroyl- and acyl(1-methoxycarbonyl-2-propenyl) ketene dithioacetals through the intermediate 3-oxodithioesters 4 (Scheme A). However, the expected 3,3-sigmatropic rearrangement was not observed, and the products isolated were characterized as methyl 3-(3,4-disubstituted 5-alkylthio-2-thienyl)propenoates 5, apparently formed by intramolecular aldol condens-

ation of the intermediate mixed dithioacetals 3. The results of these studies along with the extension to a similar transformation of 3-oxothioamides 6 to give the corresponding methyl 3-(3,4-substituted 5-amino-2-thienyl) propenoates 7 are reported in this communication.

A mixture of 1a, methyl 4-bromocrotonate in acetone and anhydrous potassium carbonate was refluxed for 5-6 hours. The bright yellow solid obtained after work up was characterized as methyl 3-[3-(4-chlorophenyl)-5-methylthio-2-thienyl] propenoate (5a) (88% yield) on the basis of spectral and analytical data. The reaction was found to be general, and the corresponding methyl 3-(3,4-substituted-5-alkylthio-2-thienyl)propenoates 5b-h were obtained in 73-84% overall yields (Scheme A). The reaction was further extended to 3-oxothio-amides 6a-h, which, under similar reaction conditions, afforded the corresponding methyl 3-(3,4-substituted 5-amino-2-thienyl)propenoates 7a-h in 65-88% overall yields (Scheme B).

R³ N S 2/K₂CO₃/acetone,
$$\triangle$$
 R³ N S S 2 3 CO₂CH₃

6 7

6, 7	\mathbb{R}^1	\mathbb{R}^2	R ³	R 4
a	C ₆ H ₅	Н	-(C	H ₂) ₄ –
b	4-ClC ₆ H ₄	Н		$H_2^-)_4 -$
c	4-ClC ₆ H ₄	H	-(CH ₂)	$_2O(CH_2)_2 -$
d	$C_6 H_5$	H	C_6H_5	CH ₃
e	C_6H_5	CH_3	~(CH ₂)	$_2O(CH_2)_2$ -
•	CH_3	Н	-(C	$H_2)_4 -$
g	2-furyl	Н	-(C	$H_2)_4 -$
h		J	-(C	H ₂) ₅ –

Scheme B

The overall transformation is similar to general thiophene synthesis involving S-alkylation of dithiotic acids (or their salts) derived from active methylene ketones, nitriles or esters with α-halocompounds (XCH₂Y; Y=CN, COR, CO₂R) followed by intramolecular cyclization.^{4,5} However, the present reaction provides a direct one-step entry to a variety of hitherto unknown substituted 3-(2-thienyl)propenoic esters by intramolecular condensation reaction. The known unsubstituted 3-(2-thienyl)propenoic ester is prepared⁶ from thiophene 2-carboxaldehyde by classical condensation or Wittig reaction.

The starting 3-oxodithioesters 1 and 3-oxothioamides $\bf 6$ were prepared according to the earlier reported procedures. $^{7.8}$

Methyl 3-[3,4-D] is ubstituted 5-a kylthio-2-t hienyl] propenoates 5a-h and Methyl 3-[3,4-D] is ubstituted 5-a hienyl] propenoates 7a-h; General Procedure:

A suspension of 1 or 6 (5 mmol) and anhydrous K_2CO_3 (5.0 g) in dry acetone (30 mL) is refluxed with stirring for 2 h. The mixture is then cooled and methyl 4-bromocrotonate (2: 0.90 g, 5 mmol) is added

Table. Compounds 5 and 7 Prepared

Prod- uct	Yield (%)	mp ^a (°C)	Molecular Formula ^b	IR (KBr) ^c v (cm ⁻¹)	1 H-NMR (CDCl $_{3}$ /TMS) $^{ ext{d}}$ $\delta, J(ext{Hz})$	MS (70 eV) ^e m/z M + (%)
5a	88	99-100	C ₁₅ H ₁₃ ClO ₂ S ₂ (324.9)	1696, 1609	2.58 (s, 3 H, SCH ₃); 3.71 (s, 3 H, OCH ₃); 6.13 (d, 1 H, $J = 15$, H-2); 6.92 (s, 1 H, H-4'); 7.21–7.48 (m, 4 H _{arom}); 7.67 (d, 1 H, $J = 15$, H-3)	326 (45). 324 (89)
5b	80	94	$C_{16}H_{16}O_3S_2$ (320.4)	1711, 1607	2.55 (s, 3H, SCH ₃); 3.73 (s, 3H, OCH ₃); 3.82 (s, 3H, OCH ₃); 6.12 (d, 1H, $J = 15$, H-2); 6.93 (s, 1H, H-4'); 6.40–7.35 (m, 4H _{arom}); 7.73 (d, 1H, $J = 15$, H-3)	320 (98)
5e	78	82	$C_{19}H_{16}O_2S_2$ (340.4)	1703, 1610	2.52 (s, 3H, SCH ₃); 3.66 (s, 3H, OCH ₃); 6.09 (d, 1H, $J = 15$, H-2); 7.01 (s, 1H, H-4'); 7.30–7.92 (m, $8H_{arom}$, H-3)	340 (45)
5d	81	98	C ₁₃ H ₁₂ O ₂ S ₃ (296.4)	1709, 1610	2.57 (s, 3 H, SCH ₃); 3.75 (s, 3 H, OCH ₃); 6.13 (d, 1 H, $J = 15$, H-2); 7.01 (s, 1 H, H-4'); 7.09–7.45 (m, 3 H _{thienyl}); 7.97 (d, 1 H, $J = 15$, H-3)	296 (51)
5e	79	81	$C_{13}H_{12}O_3S_2$ (280.3)	1709, 1600	2.55 (s, 3 H, SCH ₃); 3.79 (s, 3 H, OCH ₃); 6.11 (d, 1 H, $J = 15$, H-2); 6.41–6.60 (m, 2 H _{furyl}); 7.09 (s, 1 H, H-4'); 7.53 (m, 1 H _{furyl}); 8.29 (d, 1 H, $J = 15$, H-3)	280 (100)
5f	84	70	C ₁₆ H ₁₅ ClO ₂ S ₂ (338.9)	1712, 1615	1.32 (t, 3 H, $J = 7$, CH_3CH_2S); 2.88 (q, 2 H, $J = 7$, CH_3CH_2S); 3.66 (s, 3 H, OCH_3); 6.05 (d, 1 H, $J = 15$, H-2); 6.95 (s, 1 H, H-	340 (41), 338 (95)
5g	76	69	$C_{10}H_{12}O_2S_2$ (228.3)	1710, 1613	4'); 7.15–7.42 (m, $4H_{arom}$); 7.55 (d, $1H$, $J = 15$, H-3) 2.22 (s, $3H$, CH ₃); 2.40 (s, $3H$, SCH ₃); 3.64 (s, $3H$, OCH ₃); 5.85 (d, $1H$, $J = 15$, H-2); 6.66 (s, $1H$, H-4'); 7.60 (d, $1H$, $J = 15$, H-2);	228 (100)
5h	73	68	$C_{16}H_{16}O_2S_2$ (304.4)	1710, 1611	3) 2.05 (s, 3 H, CH ₃); 2.49 (s, 3 H, SCH ₃); 3.61 (s, 3 H, OCH ₃); 5.92 (d, 1 H, <i>J</i> = 15, H-2); 6.96–7.45 (m, 6 H _{arom} , H-3)	304 (100)
7a	65	99	C ₁₈ H ₁₉ NO ₂ S (313.4)	1707, 1606	1.90-2.10 (m, 4H, CH ₂); 3.08-3.43 (m, 4H, NCH ₂); 3.68 (s, 3H, OCH ₃); 5.72 (s, 1H, H-4'); 5.75 (d, 1H, <i>J</i> = 15, H-2); 7.33	_
7b	69	127	C ₁₈ H ₁₈ ClNO ₂ S (347.9)	1690, 1599, 1524	(br s, $5H_{arom}$); 7.64 (d, 1 H, $J = 15$, H-3) 1.98-2.15 (m, 4 H, CH ₂); 3.07-3.50 (m, 4 H, NCH ₂); 3.60 (s, 3 H, OCH ₃); 5.58 (s, 1 H, H-4'); 5.65 (d, 1 H, $J = 7$, H-2); 7.29	-
7e	70	152	C ₁₈ H ₁₈ CINO ₃ S (363.9)	1688, 1600, 1521	(br s, $4H_{arom}$); 7.52 (d, 1H, $J = 15$, H-3) 3.13-3.34 (m, 4H, NCH ₂); 3.70 (s, 3H, OCH ₃); 3.65-3.90 (m, 4H, OCH ₂); 5.63 (d, 1H, $J = 15$, H-2); 6.03 (s, 1H, H-4'); 7.20-	363 (48), 365 (85)
7 d	82	168	C ₂₁ H ₁₉ NO ₂ S (349.4)	1689, 1596	7.51 (dd, $4H_{arom}$); 7.66 (d, $1H$, $J = 15$, H-3) 3.40 (s, $3H$, NCH ₃); 3.66 (s, $3H$, OCH ₃); 5.82 (d, $1H$, $J = 15$, H-2); 6.13 (s, $1H$, H-4'); 7.05–7.43 (m, $10H_{arom}$); 7.73 (d, $1H$, J	349 (100)
7e	68	132	C ₁₉ H ₂₁ NO ₃ S (343.4)	1703, 1610	= 15, H-3) 1.90 (s, 3H, CH ₃); 2.85-3.05 (m, 4H, NCH ₂); 3.64 (s, 3H, OCH ₃); 3.58-3.85 (m, 4H, OCH ₂); 5.97 (d, 1H, <i>J</i> = 15, H-2);	343 (30)
7 f	70	89	$C_{13}H_{17}NO_2S$ (251.3)	1704, 1605	7.08-7.45 (m, 15H _{arom}); 7.46 (d, 1H, <i>J</i> = 15, H-3) 1.90-2.12 (m, 4H, CH ₂); 2.22 (s, 3H, CH ₃); 3.12-3.42 (m, 4H, CH ₂); 3.62 (s, 3H, OCH ₃); 5.42 (s, 1H, H-4'); 5.71 (d, 1H, <i>J</i>	251 (94)
7g	77	67	C ₁₆ H ₁₇ NO ₃ S (303.3)	1689, 1596	= 15, H-2); 7.60 (d, 1 H, J = 15, H-3) 1.87–2.15 (m, 4 H, CH ₂); 3.12–3.42 (m, 4 H, NCH ₂); 3.69 (s, 3 H, OCH ₃); 5.69 (d, 1 H, J = 15, H-2); 5.79 (s, 1 H, H-4'); 6.32–6.53 (m, 2 H _{furyl}); 7.40–7.50 (m, 1 H _{furyl}); 8.09 (d, 1 H, J = 15, H-3)	-
7 h	65	134	C ₂₁ H ₂₃ NO ₂ S (353.40)	1699, 1598	1.45–1.86 (m, 6H, piperidine CH_2); 2.48–2.85 (m, 4H, ring CH_2); 2.90–3.10 (m, 4H, NCH_2); 3.78 (s, 3H, OCH_3); 6.10 (d, 1H, $J = 15$, H-2); 7.13–7.40 (m, $3H_{arom}$); 7.50–7.67 (m, $1H_{arom}$); 8.12 (d, 1H, $J = 15$, H-3)	353 (100)

Recorded on Thomas Hoover capillary melting point apparatus.

dropwise followed by further refluxing with stirring for 6 h. It is then filtered, the residue washed with acetone (25 mL), and the solvent evaporated from the combined filtrate. The crude products thus obtained are purified by column chromatography [silica gel (for 5a-h) or neutral alumina (for 7a-h) column using hexane/EtOAc as eluent (20:1)] and recrystallization from CHCl₃/hexane (Table).

A.D. thanks CSIR New Delhi for a Senior Research Fellowship. Financial assistance from UGC, New Delhi under the COSSIST program is also acknowledged.

- (1) Part 74 of the series on Polarized Ketene S,S- and S,N-Acetals; Part 73: Chakrasali, R.T., Ila, H., Junjappa, H. Synthesis, in press.
- (2) Datta, A., Il, H., Junjappa, H. Tetrahedron 1987, 43, 5367.
- (3) Apparao, S., Bhattacharji, S.S., Ila, H., Junjappa, H. J. Chem. Soc. Perkin Trans. 1 1985, 641.
- (4) Gronowitz, S., in: Thiophene and its Derivatives, Part I, Gronowitz, S. (ed.), John Wiley & Sons, New York, 1985, p. 66-67, and references cited therein.
- Dieter, R.K. Tetrahedron 1986, 42, 3074, and references cited therein.
- (6) King, W.J., Nord, F.F. J. Org. Chem. 1949, 14, 405.
 Miller, R.E., Nord, F.F. J. Org. Chem. 1950, 15, 89.
 Schuetz, R.D., Houff, W.H. J. Am. Chem. Soc. 1955, 77, 1836.
- (7) Singh, G., Bhattacharji, S.S., Ila, H., Junjappa, H. Synthesis 1982, 693.
- (8) Vishwakarma, J. N., Apparao, S., Ila, H., Junjappa, H. Indian J. Chem. Sect. B 1985, 24, 466.

^b Satisfactory microanalyses obtained: $C \pm 0.29$, $H \pm 0.31$, $N \pm 0.28$.

Recorded on Perkin-Elmer 983 spectrophotometer.

^d Recorded on Varian EM 390 Spectrometer.

Recorded on Jeol JMS-D 300 Spectrometer.