Tetrahedron Letters 54 (2013) 2817-2820

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of tris(4-amino-2,6-dimethylphenyl)borane and facile extension of its π -conjugated system by utilizing the reactivity of the amino groups

Junro Yoshino*, Yuri Nakamura, Shizuka Kunitomo, Naoto Hayashi, Hiroyuki Higuchi*

Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, Toyama 930-8555, Japan

ARTICLE INFO

Article history: Received 12 February 2013 Revised 14 March 2013 Accepted 18 March 2013 Available online 25 March 2013

Keywords: Triarylborane Extended π-conjugated system Ullmann condensation Dehydration UV-vis spectrum Theoretical calculation

ABSTRACT

Tris(4-amino-2,6-dimethylphenyl)borane (**1**), a triarylborane bearing an unsubstituted amino group on all of its aryl substituents, and related triarylboranes were synthesized via Ullmann condensation. The facile dehydration reactions of **1** with benzaldehyde and nitrosobenzene gave tris[4-(benzylidenamino)-2,6-dimethylphenyl]borane and tris[2,6-dimethyl-4-(phenylazo)phenyl]borane, respectively. These triarylboranes bear an extended π -conjugated system bridged by a nitrogen-containing π -linker on each of their aryl groups. UV-vis absorption spectra and theoretical calculations revealed that the π -conjugated system of the triarylborane was effectively extended by utilizing the reactivity of the amino groups. © 2013 Elsevier Ltd. All rights reserved.

Organoboron compounds are known as Lewis base sensors, a function rendered by the Lewis acidity of the boron atom. In particular, triarylboranes are highly proficient Lewis-base sensors because they have strong Lewis acidity, and their extended π -conjugated systems, connected by the vacant p orbital of the boron atom, confer dramatic changes in their physical properties upon complexation with a Lewis base. Such strong responses result from structural changes to the π -conjugated system.¹ Reported examples include fluoride- and cyanide-sensing compounds, which can recognize fluoride and/or cyanide ions, they are toxic, and authenticate their existence by converting recognition interactions into physical phenomena, such as color and fluorescence changes.^{1,2}

The structure of the π -conjugated system on the aryl groups of triarylboranes is a key factor regulating their physical properties and output behavior as chemosensors, such as color and/or fluorescence changes. Although many triarylboranes bearing various extended π -conjugated systems have been synthesized to tune their properties, the extension of the π -conjugated systems of triarylboranes is not easily accomplished. Utilizing the simple and reliable reactivity of an amino group to afford a nitrogencontaining double bond is one possible approach to readily extend the π -conjugated systems of triarylboranes. Using this approach, a few examples of triarylboranes bearing extended π -conjugated

systems with CH=N³ or N=N⁴ π -linking moieties have been prepared to date. However, all of them have only one aryl group connected to a nitrogen-containing π -linker per boron atom, and no triarylboranes bearing nitrogen-containing double bonds at all of their aryl groups have been reported. Trigonally expanded π -conjugated systems are very appealing owing to their potential as near-infrared dyes,⁵ two-photon absorption materials,⁶ and nonlinear optical materials.^{7,8} Therefore, the extension of the π -conjugated system of a triarylborane at all three of its aryl groups using nitrogen-containing double bonds is expected to be a facile method for accessing sophisticated triarylborane-based chemosensors bearing trigonal π -conjugated systems and for tuning their properties. Here we report the synthesis of tris(4-amino-2,6-dimethylphenyl)borane (1), a triarylborane bearing an unsubstituted

Scheme 1. Compound 1 and extension of its π -conjugated system.

^{*} Corresponding authors. Tel.: +81 76 445 6618; fax: +81 76 445 6549 (J.Y.); tel.: +81 76 445 6616; fax: +81 76 445 6549 (H.H.).

E-mail addresses: yoshino@sci.u-toyama.ac.jp (J. Yoshino), higuchi@sci.u-toyama.ac.jp (H. Higuchi).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.03.080

Scheme 2. Synthesis of amine-substituted triarylboranes 1 and 3-6.

amino group on all of its aryl substituents, and the facile extension of its π -conjugated system by utilizing the reactivity of the amino groups (Scheme 1).

BocNH-substituted triarylboranes **3–5** were synthesized by Ullmann condensation between bromo-substituted triarylborane **2**⁹ and *tert*-butyl carbamate (Scheme 2). The number of BocNH groups introduced can be controlled by changing the coupling conditions. Deprotection of the Boc-protecting groups of **3** and **5** gave NH₂substituted triarylboranes **1** and **6**, respectively, in good yields (Scheme 2). Simple dehydrative condensation of compound **1** with benzaldehyde and nitrosobenzene afforded compounds **7** and **8**, respectively (Scheme 3). Structures of compounds **1** and **3–8** were confirmed by ¹H, ¹¹B, and ¹³C NMR and high-resolution MS.

In their ¹H NMR spectra, symmetrically substituted triaryboranes 1, 3, 7, and 8 showed one singlet which was assigned to the methyl group, indicating their structures have D_3 symmetry at the tris(dimethylphenyl)borane core in CDCl₃. In contrast, methyl group signals in unsymmetrically substituted triarylboranes 4-6 showed one sharp and two broad singlets with the integral ratio of 6:6:6. These spectral behaviors are consistent with structures having C_2 symmetry with the suppression of rotation about the B-C bonds. To determine the rotation barrier about the B-C bonds, VT-¹H NMR spectra of compound **6** were acquired (Fig. 1). The Gibbs energy of activation of rotation about the B-C bonds of compound **6** was estimated to be $68 \pm 1 \text{ kJ/mol}$ on the basis of the temperature of coalescence of the methyl signals (45 °C). The rotations about the B–C bonds in compounds 1, 3–5, 7, and 8 are considered to be suppressed to a similar degree as that in compound 6.

The UV-vis spectra of trigonally substituted triarylboranes **1–3**, **7**, and **8** showed absorption maxima at 334–372 nm in chloroform, which were assigned to the π – π * transition (Fig. 2 and Table 1). Compound **8** has an additional absorption maximum at 442 nm, which was assigned to the n– π * transition.¹⁰ In compounds **7** and **8**, by connecting the π -conjugated moieties to the aryl groups using the N-containing π -linkers, a red shift of their π – π * absorption maxima in comparison with those of compounds **1–3**, bearing the smaller π -conjugated systems, is observed. These spectral behaviors suggest that the π -conjugated systems of compounds **7** and **8** are effectively extended by introducing the N-containing π -linkers. The longer π – π * absorption maxima of compound **8**, in comparison with that of **7**, is considered to result from the planarity of the azo group-connecting π -conjugated systems.

Figure 1. VT-¹H NMR spectra of compound 6.

Figure 2. UV-vis absorption spectra of compounds 1-3, 7, and 8 in chloroform.

Table 1

Absorption wavelengths (λ_{abs}) in chloroform, and calculated energy levels (*E*) of the HOMO and LUMO of triarylboranes **1–3** and **7–9**

-6.17

-1.70

^a Not calculated.

Н

^b Not measured.

9

Figure 3. Molecular orbital diagrams of compounds 7 and 8. (a and b) HOMO of 7 (degenerated), (c) LUMO of 7, (d and e) HOMO of 8 (degenerated), and (f) LUMO of 8.

Figure 4. Energy levels of the frontier molecular orbitals of compounds **1**, **3**, and **7–9**. The upper and lower lines denote the energy levels of the LUMO and HOMO, respectively.

To evaluate the effectiveness of the N-containing π -linkers on the extension of the π -conjugated system of the triarylborane, molecular orbitals of 1, 3, 7, and 8 were calculated by a DFT method at the B3LYP/6-31G(d) level of theory. Those of tris(2,6-dimethylphenyl)borane (9) were also calculated. In the calculations, C_3 symmetry was imposed on the structures of the triarylboranes. In 7 and 8, their HOMOs and LUMOs are delocalized over the entire molecule, indicating that the π -conjugated system of the triarylborane is effectively extended by incorporating N-containing π -linkers at each aryl group (Fig. 3). The calculation of the HOMO/LUMO energy levels for the triarylboranes shows that the energy levels of the LUMO of compounds 7 (-1.96 eV) and 8 (-2.58 eV) are lowered more than those of compounds 1, 3, and 9 (-1.09, -1.48,and -1.70 eV) by the extension of the π -conjugated system, which results in the red shift of the π - π ^{*} absorption maxima in the UV-vis spectra for **7** and **8** (Fig. 4 and Table 1). The more planar π -linker moiety in compound **8** (dihedral angle (Ph)N=N-C-C in the optimized structure: 1.8°), compared with that of compound 7 (dihedral angle (Ph)C(H)=N-C-C in the optimized structure: 39.3°), results in a greater reduction of the LUMO of **8**, thereby resulting in the longer wavelength of the π - π * absorption maximum.

As a preliminary experiment, complexation of triarylborane **8** with fluoride ion was investigated. Addition of tetrabutylammonium fluoride to a THF- d_8 solution of compound **8** gave the solution color change from orange to yellow as a result of formation of fluoroborate, which was confirmed by ¹H and ¹¹B NMR. This fluoroborate gave back compound **8** upon hydrolysis.

In conclusion, triarylborane **1** bearing an unsubstituted amino group on all of its aryl substituents was synthesized via Ullmann condensation. Additional π -conjugated moieties were connected to each of the aryl groups of **1** by facile dehydration reactions to provide triarylboranes **7** and **8**, bearing N-containing π -linkers. UV-vis absorption spectra and theoretical calculations revealed that the π -conjugated system of the triarylborane was effectively extended by utilizing the reactivity of the amino groups. The method developed in this study to readily expand π -conjugated systems of triarylboranes in a trigonal manner may provide new sophisticated Lewis base sensors. The further extension of π -conjugated systems of triarylboranes based on this study and evaluation of the chemosensing ability of the triarylboranes bearing N-containing π -linkers are currently underway.

Acknowledgments

We gratefully acknowledge the financial support provided by Tamura Science and Technology Foundation and the Hokuriku Bank, Ltd.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013. 03.080.

References and notes

 (a) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2000, 122, 6335; (b) Yamaguchi, S.; Shirasaka, T.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc. 2002, 124, 8816.

- Recent examples: (a) Song, K. C.; Kim, H.; Lee, K. M.; Lee, Y. S.; Do, Y.; Lee, M. H. Dalton Trans. 2013, 42, 2351; (b) Steeger, M.; Lambert, C. Chem. Eur. J. 2012, 18, 11937; (c) Sung, W. Y.; Park, M. H.; Park, J. H.; Eo, M.; Yu, M.-S.; Do, Y.; Lee, M. H. Polymer 2011, 53, 1857; (d) Fu, G.-L.; Pan, H.; Zhao, Y.-H.; Zhao, C.-H. Org. Biomol. Chem. 2011, 9, 8141; (e) Siewert, I.; Fitzpatrick, P.; Broomsgrove, A. E. J.; Kelly, M.; Vidovic, D.; Aldridge, S. Dalton Trans. 2011, 40, 10345; (f) Schwedler, S.; Eickhoff, D.; Brockhinke, R.; Cherian, D.; Weber, L.; Brockhinke, A. Phys. Chem. Chem. Phys. 2011, 13, 9301.
- (a) Neue, B.; Fröhlich, R.; Wibbeling, B.; Fukazawa, A.; Wakamiya, A.; Yamaguchi, S.; Würthwein, E.-U. J. Org. Chem. 2012, 77, 2176; (b) Yoshino, J.; Kano, N.; Kawashima, T. Bull. Chem. Soc. Jpn. 2010, 83, 1185; (c) Garcia-Hernandez, Z.; Gabbai, F. P. Z. Naturforsch. B 2009, 64, 1381; (d) Yoshino, J.; Kano, N.; Kawashima, T. J. Org. Chem. 2009, 74, 7496.
- (a) Kano, N.; Furuta, A.; Kambe, T.; Yoshino, J.; Shibata, Y.; Kawashima, T.; Mizorogi, N.; Nagase, S. *Eur. J. Inorg. Chem.* **2012**, 1584; (b) Itoi, H.; Kambe, T.; Kano, N.; Kawashima, T. *Inorg. Chim. Acta* **2012**, 381, 117; (c) Yoshino, J.; Furuta, A.; Kambe, T.; Itoi, H.; Kano, N.; Kawashima, T.; Ito, Y.; Asashima, M. *Chem. Eur. J.* **2010**, 16, 5026; (d) Branger, C.; Lequan, M.; Lequan, R. M.; Large, M.; Kajzar, F. *Chem. Phys. Lett.* **1997**, 272, 265; (e) Lequan, M.; Lequan, R. M.; Ching, K. C. *J. Mater. Chem.* **1991**, 1, 997; (f) Glogowski, M. E.; Williams, J. L. R. *J. Organomet. Chem.* **1981**, 16, 1.
- (a) Thorley, K. J.; Hales, J. M.; Anderson, H. L.; Perry, J. W. Angew. Chem., Int. Ed. 2008, 47, 7095; (b) Villalonga-Barber, C.; Steele, B. R.; Kovač, V.; Micha-Screttas, M.; Screttas, C. G. J. Organomet. Chem. 2006, 691, 2785; (c) Sengupta, S.; Sadhukhan, S. K. Bull. Chem. Soc. Jpn. 2003, 76, 1223; (d) Sengupta, S. Tetrahedron Lett. 2003, 44, 307; (e) Meier, H.; Kim, S. Eur. J. Org. Chem. 2001, 1163; (f) Sengupta, S.; Sadhukhan, S. K. J. Chem. Soc., Perkin Trans. 1 2000, 4332.
- (a) Hrobárik, P.; Hrobáriková, V.; Sigmundová, I.; Zahradnik, P.; Fakis, M.; Polyzos, I.; Persephonis, P. J. Org. Chem. 2011, 76, 8726; (b) Porrès, L.; Mongin, O.; Katan; Claudine; Charlot, M.; Pons, T.; Mertz, J.; Blanchard-Desce, M. Org. Lett. 2004, 6, 47.
- (a) Ramos-Ortiz, G.; Maldonado, J. L.; Meneses-Nava, M. A.; Barbosa-García, M.; Olmos, M.; Cha, M. Opt. Mater. 2007, 29, 636; (b) Hennrich, G.; Omenat, A.; Asselberghs, I.; Foerier, S. F.; Clays, K.; Verbiest, T.; Serrano, J. L. Angew. Chem., Int. Ed. 2006, 45, 4203; (c) Claessens, C. G.; González-Rodriguez, D.; Torres, T.; Martin, G.; Agulló-López, F.; Ledoux, I.; Zyss, J.; Ferro, V. R.; García de la Vega, J. M. J. Phys. Chem. B 2005, 109, 3800.
- 8. Maury, O.; Le Bozec, H. Acc. Chem. Res. 2005, 38, 691.
- Li, J.; Zhang, G.; Zhang, D.; Zheng, R.; Shi, Q.; Zhu, D. J. Org. Chem. 2010, 75, 5330.
 The TD-DFT calculations (at the B3LYP/6-31G(d) level of theory) supported this assignment.