Accepted Manuscript

Synthesis and characterization of heterobimetallic complexes with pyridyl selenolato ligands. Crystal structure of [$Pt(C_5H_4N)(SeC_5H_4N)(dppp)$]ZnCl₂]

Rohit Singh Chauhan, Neelam Shivran, Alexandra M.Z. Slawin, J. Derek Woollins

PII: S0022-328X(16)30565-4

DOI: 10.1016/j.jorganchem.2016.12.013

Reference: JOM 19736

To appear in: Journal of Organometallic Chemistry

Received Date: 7 August 2016

Revised Date: 21 November 2016

Accepted Date: 13 December 2016

Please cite this article as: R.S. Chauhan, N. Shivran, A.M.Z. Slawin, J. Derek Woollins, Synthesis and characterization of heterobimetallic complexes with pyridyl selenolato ligands. Crystal structure of [{Pt(C5H4N)(SeC5H4N)(dppp)}ZnCl₂], *Journal of Organometallic Chemistry* (2017), doi: 10.1016/ j.jorganchem.2016.12.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphic Abstract

$Synthesis \ and \ characterization \ of \ heterobimetallic \ complexes \ with \ pyridyl \ selenolato \ ligands. \ Crystal \ structure \ of \ [\{Pt(C_5H_4N)(SeC_5H_4N)(dppp)\}ZnCl_2]$

Rohit Singh Chauhan*^a, Neelam Shivran^b, Alexandra M. Z. Slawin^c and J. Derek Woollins^c

Synthesis and characterization of heterobimetallic complexes with pyridyl selenolato ligands. Crystal structure of [{Pt(C₅H₄N)(SeC₅H₄N)(dppp)}ZnCl₂]

Rohit Singh Chauhan*^a, Neelam Shivran^b, Alexandra M. Z. Slawin^c and J. Derek Woollins^c

^{*a*} Department of Chemistry, K. J. Somaiya College of Science and Commerce, Mumbai- 400 078 (India), Email: <u>rohit.chuhan@somaiya.edu</u>

^b Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008 (India),

^cEastCHEM School of Chemistry University of St Andrews St Andrews Fife KY16 9ST Email: <u>amzs@st-andrews.ac.uk</u>

Abstract

Reactions of $[Pt(SeC_{5}H_{4}N)_{2}(P\cap P)]$ with $M(OAc)_{2}.2H_{2}O/MX_{2}$ ($P\cap P = dppm$, dppp; M = Zn, Cd, Hg, Cu; X = Cl) resulted various products depend upon the nature of the phosphine. In case of dppm, reaction between $[Pt(SeC_{5}H_{4}N)_{2}(dppm)]$ and $M(OAc)_{2}.2H_{2}O/MX_{2}$ (M = Zn, Cd, Hg) afforded an exchange product of composition $[PtCl_{2}(dppm)]$. Similarly, the reaction with 'dppp' analog yielded an adduct $[\{Pt(SeC_{5}H_{4}N)_{2}(dppp)\}MX_{2}]$ (M = Cd, Hg, Cu; X = Cl, OAc). Whereas, reaction with Zn(OAc)_{2}, on extraction with dichloromethane resulted the product with the loss of one selenium atom of composition $[\{Pt(C_{5}H_{4}N)(SeC_{5}H_{4}N)(dppp)\}ZnCl_{2}]$. These complexes were characterized by elemental analyses and NMR (^{1}H , ^{31}P , ^{77}Se , ^{195}Pt) spectroscopy. The molecular structure of $[\{Pt(C_{5}H_{4}N)(SeC_{5}H_{4}N)(dppp)\}ZnCl_{2}]$ was established by single crystal X-ray diffraction analyses.

Keywords: Platinum, Selenolate, NMR, X-ray, Phosphines.

1. Introduction

The nature of metallophilic bonding (i.e. attractive interaction between closed shell transition metals) has been drawn considerable interest for quite some time. Due to rich coordination reactivity and structural diversity [1-5], it finds proven application in the field of material science [6-8] and design of luminescent compounds [9, 10]. There is the range of strategies applied for the development of various metallophilic ligands, part of the attention has been focused towards d⁸ metal complexes that have a variable chalcogen and metal atom in their inner core. The easiest type of system consists of two chalcogen and two metal centers (M₂S₂).

In 1971, Ugo et. al. reported a powerful metallophilic binuclear complex [Pt₂(μ -S)₂(PPh₃)₄] [11]. These metalloligands, [Pt₂(μ -S)₂(P-P)₂] [P-P = 2PPh₃, 2dppy, dppp, dppf, 2PMe₂Ph, dppe] show powerful Lewis basicity towards d-and f- block elements[12-15]. Renewed interest in the development of metallophilic bonds through the metal chalcogen core, has been shown by V. W.–W.Yam et. al. They have performed a reaction between [Pt₂(μ -E)₂(dppy)₄] (dppy = 2 diphenylphosphineopyridne) (E= S, Se) and [M₂(dppm)], which yielded polynuclear complexes [Pt₂ (dppy)₄(μ ₃-E)₂M₂(dppm)]²⁺ (M = Cu, Ag, Au) [15]. They have also performed the same reaction with [M(CH₃CN)₄]⁺ (M = Cu, Ag) and isolated a tetranuclear d¹⁰ copper(I) and silver(I) clusters containing a μ ₄-sulfido moiety which all exhibits rich photochemical and physical properties [16-18]. Thus, the Lewis basic core {Pt₂(μ -E)₂} (E= S, Se) can be combined with Lewis acidic metal complexes to give mixed-metal materials as well as multinuclear homo-platinum complexes [15]. Despite growing interest in the Pt₂S₂ core as a metallophilic ligand still the heavier analog like Pt₂Se₂, PtSe₂ remain uncharted, even those which have proven better nuclophilic behavior [19, 20] and luminescence property [21, 22].

Thus fully characterized heterometallic complexes bridged with heavier chalcogen ligands for example selenolato and tellurolato ligands are comparatively very few in number. Therefore, in this work, we have described the synthesis and characterization of some new heterometallic complexes derived from $[Pt(SeC_5H_4N)_2(P\cap P)]$ (P $\cap P$ = dppm, dppp) (from substitution reaction between $[PtCl_2(P\cap P)]$ with two mole of sodium salt of pyridyl selenolate) and M(OAc)_2.2H_2O (M = Zn, Cd, Hg, Cu). The result of the work is reported as here in.

2. Experimental

2.1 Materials and methods

The compounds $[PtCl_2(P\cap P)] [P\cap P = dppm (bis(diphenylphosphino)methane), dppe dppp (1,3-bis(diphenylphosphino)propane)] [23] <math>[Pt(SeC_5H_4N)_2((P\cap P)] (P\cap P = dppm, dppp)$ [24] and the ligands $(SeC_5H_4N)_2$, [25] were prepared by literature methods. The metal precursors MCl₂ (M = Zn, Cd); $[M(OAc)_2].2H_2O$ (M = Zn, Cd, Hg, Cu) were procured from stern chemical. All reactions were carried out under a nitrogen atmosphere in dry and distilled analytical grade solvents at room temperature. The ¹H, ³¹P{¹H},⁷⁷Se{¹H} and ¹⁹⁵Pt{¹H}NMR spectra were recorded on a Bruker Avance-II spectrometer operating at 300, 121.49, 57.23 and 64.52 MHz, respectively. Chemical shifts are relative to internal chloroform (δ 7.26) for ¹H, external 85% H₃PO₄ for ³¹P, and external Me₂Se for ⁷⁷Se{¹H} and Na₂PtCl₆ in D₂O for ¹⁹⁵Pt NMR. Elemental analyses were carried out on a Thermo Fischer Flash EA1112 CHNS analyzer.

Intensity data for [{Pt(C₅H₄N)(SeC₅H₄N)(dppp)}ZnCl₂] was measured on Bruker Apex-II, CCD diffractometer with MoK_{α} radiation, and Mercury CCD were used. The structures were solved by direct methods or charge flipping [26] and refinement [27] was on F^2 using data that had been corrected for absorption effects with an empirical procedure. Non-hydrogen atoms were modeled with anisotropic displacement parameters, hydrogen atoms in their calculated

positions. Molecular structures were drawn using ORTEP [28]. Crystallographic and structural determination data are listed in Table 1.

2.2 Synthesis of complexes

2.2.1. $[Pt(SeC_5H_4N)_2(dppm)](1)$

To a dichloromethane suspension (10 cm³) of [PtCl₂(dppm)] (531 mg, 0.81 mmole) was added a methanol-benzene solution (15 cm³) of NaSeC₅H₄N [prepared from (SeC₅H₄N)₂ (255 mg, 0.81 mmol) in benzene and NaBH₄ (70 mg, 1.89 mmol) in methanol]. The mixture was stirred for 6 h, after which a clear yellow solution was obtained. The latter was dried under reduced pressure and thoroughly washed with diethyl ether followed by hexane. The residue was extracted with dichloromethane through Florisil. Yellow crystalline powder was obtained. (Yield 569 mg, 78%). Anal. calcd. for C₃₅H₃₀N₂P₂PtSe₂: C, 47.04; H, 3.38, N; 3.13%. Found: C, 46.93; H, 3.34; N; 3.09%. ³¹P{¹H} NMR (CDCl₃) δ : -50.41 [(¹J (Pt-P) = 2704 Hz)]. The characerization data are consitent with literature value [24].

2.2.2. [*PtCl*₂(*dppm*)] (1*a*)

(i) To a benzene solution (10 cm^3) of $[Pt(SeC_5H_4N)_2(dppm)]$ (150 mg, 0.17 mmol), a methanolic solution (30 cm^3) of $Zn(OAc)_2.2H_2O$ (38 mg, 0.17 mmol) was added with stirring which continued for 4 h at room temperature. The solvent was evaporated under vacuum and the residue was extracted with dichloromethane and passed through cellite. The extractant on slow evaporation afforded pale white powder of $[PtCl_2(dppm)]$ (yield 52 mg, 48% m.p. 330°C (dec.)). Anal. calcd. for $C_{25}H_{22}Cl_2P_2Pt$: C, 46.17; H, 3.41%. Found: C, 45.98; H, 3.36%. ¹H NMR (CDCl₃) δ : 4.35 (br, P-CH₂), 7.32-7.68 (m, Ph); ³¹P{¹H} NMR (CDCl₃) δ : -64.2 [¹J(Pt-P) = 3081

Hz]. Similarly the reaction between [Pt(SeC₅H₄N)₂(dppm)] (100 mg, 0.11 mmol) and ZnCl₂ (17 mg, 0.12 mmol) in dichloromethane solution afforded white powder of **1** (yield 40 mg, 55%). Anal. calcd. for C₂₅H₂₂Cl₂P₂Pt: C, 46.17; H, 3.41%. Found: C, 46.14; H, 3.46%. ¹H NMR (CDCl₃) δ : 3.93 (m, P-CH₂), 7.54–7.71 (m, Ph); ³¹P{¹H} NMR (CDCl₃) δ : -64.4 [¹J(Pt-P) = 3087 Hz].

(ii) Prepared similar to **1a** (method i) by using Cd(OAc)₂.2H₂O (46 mg, 0.17 mmol) and [Pt(SeC₅H₄N)₂(dppm)] (150 mg, 0.17 mmol), after processing and recrystallization in dichloromethane and hexane mixture, white powder of compound **1a** (yield 60 mg, 55%) was obtained. ¹H NMR (CDCl₃) δ : 4.31 (m, P-CH₂), 7.43-7.67 (m, Ph); ³¹P{¹H} NMR (CDCl₃) δ : – 64.4 [¹J(Pt–P) = 3087 Hz]. Even the reaction between [Pt(SeC₅H₄N)₂(dppm)] (85 mg, 0.10 mmol) and CdCl₂ (19 mg, 0.10 mmol) also resulted the product **1a** (yield 40 mg, 65%) as mentioned above. The ¹H NMR and ³¹P{¹H} spectra were consistent with the sample prepared as in (i).

(iii) Similarly to method (i) product **1a** obtained by the reaction between Hg(OAc)₂.2H₂O (60 mg, 0.17 mmol) and [Pt(SeC₅H₄N)₂(dppm)] (46 mg, 0.17 mmol) on recrystallization in dichloromethane-hexane mixture. NMR spectra (¹H and ³¹P) were consistent with compound **1a** (yield 64 mg, 59%).

2.2.3. $[Pt(SeC_5H_4N)_2(dppp)]$ (2)

Prepared similar way to **1** by using the $[PtCl_2(dppp)]$ (485 mg, 0.71 mmole) and NaSeC₅H₄N [prepared from (SeC₅H₄N)₂ (224 mg, 0.71 mmol) in benzene and NaBH₄ (56 mg,

1.45 mmol) in methanol] and recrystallized with dichloromethane-hexane to give a yellow powder (yield 533 mg, 81%). Anal. calcd. for $C_{37}H_{34}N_2P_2PtSe_2$: C, 48.22; H, 3.72, N; 3.04%. Found: C, 48.25; H, 3.76; N; 3.04%. ¹H NMR (CDCl₃) δ : 2.83 (br); 3.14–3.23 (m, CH₂); 6.61–7.83 (m, Ph + C₅H₄N) 8.13 (d, 4.8 Hz, 2-H, C₅H₄N).³¹P{¹H} NMR (CDCl₃) δ : –10.1 [(¹J(Pt–P) = 2760 Hz)].

2.2.4. $[{Pt(C_5H_4N)(SeC_5H_4N)(dppp)}ZnCl_2]$ (2a)

To a benzene solution (12 cm³) of [Pt(SeC₅H₄N)₂(dppp)] (90 mg, 0.10 mmol) was added a methanol- solution (10 cm³) of Zn(OAc)₂.2H₂O (22 mg, 0.10 mmol). The reactants were stirred for 5 h at room temperature to give a yellow solution. The solvents were removed under vacuum and the residue was washed with diethyl ether and dried under reduced pressure. The product was extracted with dichloromethane, filtered and passed through a Florisil column. The resulting solution was concentrated (5 cm³) under vacuum which on refrigeration at -4° C gave pale yellow crystals (yield 49 mg, 52%). Anal. calcd. for C₃₇H₃₄Cl₂N₂P₂PtSe₂Zn: C, 45.39; H, 3.50, N; 2.86%. Found: C, 45.85; H, 3.46; N; 2.69%. ¹H NMR (CDCl₃) δ : 2.84 (br, -PCH₂), 3.1 (br, PCH₂-CH₂-), 6.80 (br, C₅H₄N) 7.32 (br, Ph), 7.61 (br, Ph), 7.78-7.80 (m, Ph + C₅H₄N), 8.26 (6.2 Hz, 2-H, C₅H₄N); ³¹P{¹H} NMR (CDCl₃) δ : -8.06 [(¹J Pt-P) = 2846 Hz)], -10.34 (satellites were merged with the former one so it is diffucult to resolve.) ⁷⁷Se{¹H} NMR (CDCl₃) δ : 156.1 [¹J(Pt-Se) = 614 Hz].

2.2.5. $[{Pt(SeC_5H_4N)_2(dppp)}CdCl(OAc)]$ (2b)

To a benzene solution (15 cm³) of $[Pt(SeC_5H_4N)_2(dppp)]$ (150 mg, 0.16 mmol) was added a methanol- solution (15 cm³) of Cd(OAc)_2.2H_2O (44 mg, 0.16 mmol). The reactants were

stirred for 5 h at room temperature to give a turbid yellow solution. The resulting solution is passed through G-3 assembly, clear yellow solution was collected. The solvents were removed under vacuum and the residue was washed with diethyl ether and dried under reduced pressure. The product was extracted with dichloromethane, filtered and passed through a Florisil column. The resulting solution was concentrated (3 cm³) under vacuum which on slow evaporation at room temperature gave yellow crystals (yield 101 mg, 55%). Anal. calcd. for $C_{39}H_{37}ClN_2O_2P_2CdPtSe_2$: C, 41.51; H, 3.30, N; 2.48%. Found: C, 42.01; H, 3.32; N; 2.49%. ¹H NMR (CDCl₃) δ : 2.11(s, -PCH₂), 2.94 (br, -PCH₂CH₂), 3.73(s, CH₃), 6.92 (d, 6.3 Hz, C₅H₄N); 7.44 (br, Ph), 7.62 (br, Ph), 7.75-7.81 (m, Ph + C₅H₄N), 8.48 (d, 4.5 Hz, 2-H, C₅H₄N); ³¹P{¹H} NMR (CDCl₃) δ : -7.53 [(¹J(Pt–P) = 2880 Hz)], -11.29 [(¹J(Pt–P) = 3139 Hz)]; ⁷⁷Se{¹H} NMR (CDCl₃) δ : 83.0 [¹J(Pt–Se) = 832 Hz], 196.7 [¹J(Pt–Se) = 660 Hz].

2.2.6. $[{Pt(SeC_5H_4N)_2(dppp)}HgCl(OAc)](2c)$

Prepared in a similar fashion to **2b** by using $[Pt(SeC_5H_4N)_2(dppp)]$ (140 mg, 0.15 mmol) and Hg(OAc)₂.2H₂O (48 mg, 0.15 mmol) and recrystallized from dichloromethane as yellow powder in yield 49% (91 mg). Anal. calcd. for C₃₉H₃₇ClN₂O₂P₂HgPtSe₂: C, 38.49; H, 3.06, N; 2.30%. Found: C, 38.91; H, 3.08; N; 2.62%.¹H NMR (CDCl₃) δ : 2.83(s, -PCH₂), 2.99 (br, -PCH₂CH₂), 3.72 (s, CH₃), 6.92 (br, C₅H₄N), 7.35-7.45 (m, Ph + C₅H₄N), 7.66-7.72 (m, Ph + C₅H₄N), 8.12 (d, 5.4 Hz, 2-H, C₅H₄N); ³¹P{¹H} NMR (CDCl₃) δ : -7.43 [(¹J(Pt–P) = 2876 Hz)], – 11.58 [(¹J(Pt–P) = 3195 Hz)]. On keeping the compound for crystallization in CH₂Cl₂ results decomposition of product with settlement of balck pasty mass.

2.2.7. $[{Pt(SeC_5H_4N)_2(dppp)}Cu(OAc)_2]$ (2d)

Prepared similar way to **2b** by using $[Pt(SeC_5H_4N)_2(dppp)]$ (125 mg, 0.14 mmol) and $Cu(OAc)_2.2H_2O$ (27 mg, 0.14 mmol) in yield 61% (91 mg). Anal. calcd. for $C_{41}H_{40}N_2O_4P_2CuPtSe_2$: C, 44.63; H, 3.65, N; 2.54%. Found: C, 44.69; H, 3.68; N; 2.56%.¹H NMR (CDCl₃) δ : phosphine protons could not be resolved, 3.56(s, CH₃), 6.95-7.03 (m, Ph + C₅H₄N), 7.45 (br, Ph), 7.59 (br, Ph), 7.62-7.94 (m, Ph + C₅H₄N), 8.19 (d, 6.4 Hz, 2-H, C₅H₄N); ³¹P{¹H} NMR (CDCl₃) δ : – 7.53 [(¹J(Pt–P) = 2848 Hz)], –11.41 [(¹J(Pt–P) = 3158 Hz)], 32.65 (phosphine oxide); ⁷⁷Se{¹H} NMR (CDCl₃) δ : – 4411, – 4455 (dd, [¹J(Pt–P) = 2869 Hz], [(¹J(Pt–Se) = 620 Hz]; ¹⁹⁵Pt{¹H} NMR (CDCl₃) δ : – 4411, – 4455 (dd, [¹J(Pt–P) = 2869 Hz], [(¹J(Pt–P) = 3158 Hz)]). One more resoance appears on longer acquisition. ¹⁹⁵Pt{¹H} NMR: – 4700 (t, [¹J(Pt–P) = 2718Hz]) (presumbaly belongs to [{Pt(SeC₅H₄N)₂(dppp)}Cu(OAc)₂]).

3. Results and Discussion

When one mole of $[PtCl_2(P\cap P)]$ (P \cap P = dppm, dppp) was treated with two equivalents of NaSeC₅H₄N, (prepared by reductive cleavage of the Se-Se bond in di-2-pyridyl diselenide with NaBH₄), afforded mononuclear pyridylselenolate complexes of type $[Pt(SeC_5H_4N)_2(P\cap P)]$ (P \cap P = dppm, dppp). The ³¹P{¹H} NMR spectrum exhibited single resonance at ~ -50.4 and -10.1 ppm with ¹⁹⁵Pt-³¹P coupling of 2704 and 2755 Hz for dppm, dppp analogue respectively. The negative value of chemical shift considered as chelating behaviour of phosphine. The magnitude of ¹J(Pt-P) for compound **1** and **2** showed presence of selenolate group *trans* to the phosphine ligand [24].

The reaction of $[Pt(SeC_5H_4N)_2(dppm)]$ with one equivalent of ZnX_2 (X = OAc, Cl) gave an off white powder which on extraction with dichloromethane resulted a product of composition $[PtCl_2(dppm)]$. Alternatively, compound **1a** was formed when a in dichloromethane solution of platinum precursor, [Pt(SeC₅H₄N)₂(dppm)], was treated with MX₂ (M = Cd, Hg; X = OAc, Cl) in same solvent. The ³¹P NMR spectra of **1a** displayed a single resonance at $\delta \sim -64$ ppm with ¹⁹⁵Pt-³¹P coupling of ~ 2600 Hz indicative a strong trans influence of chloro group [23]. The complexes **1a** appear to be formed due to nucleophilic attack at coordinated selenolate ligand by chlorinated solvent like CDCl₃ or CH₂Cl₂. Nucleophilic attack of chlorinated solvent at coordinated selenolate ligand is well known [29].

However, reactions of $[Pt(SeC_5H_4N)_2(dppp)]$ with $Zn(OAc)_2.2H_2O_4$ at room temperature yielded plae yellow product of $[{Pt(C_5H_4N)(SeC_5H_4N)(dppp)}ZnCl_2]$ (2a). The ³¹P{¹H} NMR spectrum of complex 2a displayed two resonances at -8.06 and -10.34 ppm which were flanked by their ¹⁹⁵Pt satellites. The magnitude of ¹J(Pt–P) indicates that the phosphine ligand is *trans* to selenolate ligand [30]. However coupling trans to carbon centre was not resolvable. The ⁷⁷Se{¹H} NMR spectrum of [{Pt(C₅H₄N)(SeC₅H₄N)(dppp)}ZnCl₂] (**2a**) displayed a triplet at 156 ppm with platinum satellites (1 J(Pt–Se) = 614 Hz). The observed triplet in fact is due to coupling with platinum nuclei. In the complex 2a, the unexpected loss of chalcogen atom is well documented in literature [14, 30-32]. For instance, reaction of Zinc metal precursor with [Pt₂(P- $P_{2}(\mu-S)_{2}$] (P-P = PPh₃, PMe₂Ph, dppp, dppy) did not afford the expected product, instead product $[Pt_2Cl(P-P)_2(\mu-S_2CH_2)]PF_6$ (P-P = PPh₃, PMe₂Ph, dppp, dppy) formed by the decomposition of $[(P-P)_2Pt_2(\mu_3-S)_2Zn][PF_6]_2$ in CH₂Cl₂ [30, 32]. Similarly, the bridging thio complex $[Pt_2(dppf)_2(\mu-S)_2]$ in dichloromethane solution yields mononuclear compound [Pt(SCH₂Cl)₂(dppf)] which indicates the formation of terminal bis thiolato complexes from the bridging one [31]. In the present study, the removal of selenium atom and acetate group appears to be brought out by strong nucleophilicity of CH₂Cl₂.

Similarly, an addition product $[{Pt(SeC_5H_4N)_2(dppp)}MX_2]$ (M = Cd, Hg, Cu; X = OAc, Cl) could also be obtained by the reaction of $[Pt(SeC_5H_4N)_2(dppp)]$ with MOAc₂. 2H₂O (M = Cd, Hg, Cu). Unlike the $[M{Pt_2(P-P)_2(\mu_3-S)_2}X_2]$ $(M = Zn, Cd and Hg, P-P = PPh_3, dppe)$ in the reported case the metal center like Zn, Cd, Hg has only attached with one selenium atom which was corroborated by NMR and crystal structure of complex 2b. The ³¹P NMR spectrum of complex 2b, 2c, 2d exhibited two ³¹P resonance at $\delta \sim -7$ ppm and -11 ppm with different ¹J(Pt-P) coupling constants. The former resonance is deshielded compared to latter one, with ¹⁹⁵Pt-³¹P coupling of ~ 2850 Hz indicative of selenolate ligand trans to the phosphine ligand [33-35]. While latter resonance ~ -11 ppm with the coupling constant ~ 3150 Hz is phenomenal agreement with reported heterometallic complexes $[M{Pt_2(dppe)_2(\mu_3-S)_2}X_2]$ (M = Zn, Cd and Hg) [29, 36]. Hence, this resonance belongs to selenolate ligand which is attached to platinum as well as with Cd, Hg, Cu also. Due to bonding with latter metal centres, electron density around selenium atom gets reduced. As a result it showed shielded resonance compares to other one [36]. The ⁷⁷Se{¹H} NMR spectrum of complex **2b** displayed two different resonance at 83 ppm and 196 ppm with their platinum satellite. Two dissimilar resonances correspond to un-equivalent type of selenium. It seems that in complex [{ $Pt(SeC_5H_4N)_2(dppp)$ } MX_2] (M = Cd, Hg, Cu), chlorinated solvent (CH₂Cl₂, CDCl₃) partially substituted the acetate group from metal acetate due to their strong nuclophilicity [14, 29].

The presence of two different selenolate ligand in above discussed compound is further corroborated by ¹⁹⁵Pt NMR spectrum of [{Pt(SeC₅H₄N)₂(dppp)}CuCl(OAc)] which showed a doublet of doublet centerd at – 4411ppm [¹J(Pt–P) = 2869 Hz], – 4455 ppm [(¹J (Pt–P) = 3158 Hz)] [37-38]. Apparently, during the longer acquisition ¹⁹⁵Pt NMR spectrum of **2d** also displayed a triplet at $\delta = -4700$ ppm [¹J(Pt–P) = 2718 Hz] as well, indicating coordination of two

equivalent phosphorus nuclei [39]. The appearence of new resoance suggests the slowly disintigration of compound in CDCl₃ solution to give an unknown moiety. This decomposition is probably facilitated by nucleophilic attack of chlorinated solvent [29].

Crystal structures

Molecular structures of $[{Pt(C_5H_4N)(SeC_5H_4N)(dppp)}ZnCl_2]$ was established by single crystal X-ray diffraction analyses. ORTEP drawings with atomic numbering scheme are depicted in Figures 1 while selected inter-atomic parameters are given in Tables 2.

The platinum atom in the complex [{Pt(C₅H₄N)(SeC₅H₄N)(dppp)}ZnCl₂] (**2a**) adopts a distorted square planar geometry defined by *trans* "P₂SeC" coordination environment while the zinc atom acquires distorted tetrahedral shape. The Pt....Zn (3.1526(13) Å) bond is in close proximity but not lie in metal - metal bonding range [36]. The Pt–Se (2.4821(11) Å), distance is slightly longer than the normal metal chalcogen reported for the known heterometallic complex, [Zn{Pt₂(μ -S)₂(PPh₃)₄]Cl₂ (2.352(2) /2.378(2) Å) [29], [Zn{Pt₂(μ -S)₂(dppe)₄]Cl₂ (2.374(7) – 2.379(7) Å) [36] however in good conformity with those reported for [{Pt₂(dppy)₄(μ ₃-Se)₂}Ag₃](PF₆)₃ (2.459(1) – 2.477(1) Å) [15]; {Pt₂(μ ₃-Se)₂(PPh₃)₄[Pt(cod)]}{PF₆}₂ (2.4392(6) – 2.4919(6) Å) [40].The Pt–C (2.015(10) Å) distance is in agreement with the one reported for [PtX(Ph)(PPh₃)₂] (X = Cl, I) (Pt–C = 2.01(1), 2.015(9) Å) [35, 36]. The Zn–N and Zn–Cl distances are as expected [29, 36, 43-46].

The molecular structure of complex [$Pt(SeC_5H_4N)_2(dppp)$]CdCl(OAc)] (**2b**) is solvated in nature. The complex shows eight member puckered ring restrained between platinum and cadmium metal center. The geometry around the Pt metal center is confined with 'P₂Se₂' fragments with distorted square planner geometry however Cd atom opts distorted octahedral shape which is defined with 'N₂O₂Cl' frame with Cl and Se atom at axial position. The Pt–P and Pt–Se distances are as expected [29, 36]. Due to a poor refinement of the complex, structural data is not reported here. The Cd–N distances (2.36 $_{avg}$ Å) are well in agreement with the reported values [47-49]. The Cd....Se (2.969(4) Å) are slightly longer than the reported value for [Cd{Pt₂(µ-Se)₂(PPh₃)₄]Cl₂ (Cd....Se = [2.6852(10) Å]) [19], [Cd{Pt₂(µ-S)₂(dppe)₄]Cl₂ (Cd....S = 2.561(2) - 2.553(2) Å) [36]. Because of these interactions Cd....Se pyridyl selenolate group move out from metal plane.

4. Conclusion

The reactions of d^{10} metal precursors with platinum selenolato compounds [Pt(SeC₅H₄N)₂(P∩P)] (P∩P = dppm, dppp) yield a different type of complexes depending on the nature of the phosphine ligand and d^{10} metal centre. In comparison to dppm analogue, the complex [Pt(SeC₅H₄N)₂(dppp)] is nucleophilic enough to trap the metal precursor of d^{10} system results an addition product.

Acknowledgements

One of the authors (RSC) is grateful to DST for the financial support under the DST young scientist scheme YSS/2014/000797. We thank to Dr. V. K. Jain and A. Wadawale (BARC) for encouragement of this work and assistance for crystal solving.

Supporting Information

CCDC-Nos. 1497006 for $Pt(C_5H_4N)(SeC_5H_4N)(dppp)]$.ZnCl₂, and contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: + 44-1223/336-033; E-mail: deposit@ccdc.cam.ac.uk].

References

- H.L. Hermann, G. Boche, P. Schewerdtfeger, Metallophilic Interactions in Closed-Shell Copper(I) Compounds—A Theoretical Study, Chem.-Eur. J., 7 (2001) 5333-5342.
- [2] B.-H Xia, H.-X. Zhang, Y.-Q. Jiao, Q.-J. Pan, Z. S. Li, C.-C Sun, Metallophilic attractions between d⁴8-d¹⁰ heterometallic compounds trans-[Pt(PH₃)₂(CN)₂] and M(PH₃)²⁺ (M=Ag or Cu): Ab initio study, J. Chem. Phys.,120 (2004) 11487-11492.
- [3] J.-P. Zhang, Y.-B Wang, X.–C. Huang, Y.Y. Lin, X.–M. Chen, Metallophilicity versus π – π Interactions: Ligand-Unsupported Argentophilicity/Cuprophilicity in Oligomers-of-Dimers [M₂L₂]_n (M=CuI or AgI, L=tridentate ligand), Chem.-Eur. J., 11, (2005) 552-561.
- [4] J.M. Poblet, M. Benard, Cuprophilicity, A still elusive concept: a theoretical analysis of the ligand-unsupported CuI–CuI interaction in two recently reported complexes, Chem. Commun., 11 (1998) 1179-1180.
- [5] M.E. Moret, P. Chen, Interaction of Organoplatinum(II) Complexes with Monovalent Coinage Metal Triflates, J. Am. Chem. Soc.,131 (2009) 5675-5690.
- [6] U.M. Miskoski, Y. Li, K.K. Cheung, Luminescent μ -Ethynediyl and μ -Butadiynediyl Binuclear Gold(I) Complexes: Observation of $3(\pi\pi^*)$ Emissions from Bridging C_n^{2-} Units, J. Am. Chem. Soc., 123 (2001) 4985-4991.
- [7] V.W.M. Yam, Molecular Design of Transition Metal Alkynyl Complexes as Building Blocks for Luminescent Metal-Based Materials: Structural and Photophysical Aspects, Acc. Chem. Res., 35 (2002) 555-563. (b) M. Heissler, J.E. McGarrah, W.B. Connick, D.K. Geiger, S.D. Cummings, R. Eisenberg, Platinum diimine complexes: towards a molecular photochemical device, Coord. Chem. Rev., 208 (2000) 115-137.

- [8] U. Rosenthel, Angew. Chem., 115 (2003) 1838-1842; To "Dress" the "Naked" Acetylide with Metal Complexes: How and Why?, Angew. Chem. Int. Ed., 42 (2003)1794-1798.
 (b) N.J. Long, C.K. Williams, Angew. Chem., 115 (2003) 2690-2722; Metal Alkynyl σ Complexes: Synthesis and Materials, Angew Chem. Int. Ed., 42 (2003) 2586-2617.
- [9] V.W.W. Yam, W.K. Lee, Synthesis, spectroscopy and excited-state redox properties of novel luminescent trinuclear three-co-ordinate gold(I) phosphine complexes, J. Chem. Soc, Dalton Trans., 14 (1993) 2097-2100.
- [10] V.W.W. Yam, W.K. Lee, T.F. Lai, Synthesis, spectroscopy, and electrochemistry of trinuclear copper(I) acetylides. X-ray crystal structure of [Cu₃(μ-Ph₂PCH₂PPh₂)₃(μ₃-η¹-C≡C^tBu)(μ₃-Cl)]PF₆, Organometallics, 12 (1993) 2383-2387.
- [11] R. Ugo, G. La Monica, S. Cenini, A. Serge, F. Conti, Zerovalent platinum chemistry. Part VI. The reactions of bis- and tris-triphenylphosphineplatinum(0) with hydrogen sulphide, hydrogen selenide, sulphur, and related molecules, J. Chem. Soc. A, (1971) 522-528.
- [12] C.E. Briant, T.S.A. Hor, N.D. Howells, D.M.P. Mingos, Heterometallic complexes of platinum with bridging sulphido- ligands: crystal structure of [{Pt₂(µ-S)₂(PPh₃)₄}₂Pd](BF₄)₂, J. Chem. Soc. Chem. Commun., 20 (1983) 1118-1120.
- [13] C.E. Briant, E.I. Gilmour, M.A. Luke, D.M.P. Mingos, Chemistry of platinum sulphido-complexes. Part 5. Synthesis and crystal and molecular structure of 3-(η-cyclo-octa-1,5-diene)bis(µ₃-sulphido)-1,1,2,2-tetrakis(triphenylphosphine)diplatinum(II)rhodium(I) hexafluorophosphate–dichloromethane (1/1), [Pt₂Rh(µ₃-S)₂(PPh₃)₄(η-C₈H₁₂)]PF₆·CH₂Cl₂, J. Chem. Soc. Dalton Trans., 4 (1985) 851-855.

- [14] S.-W.A. Fong, T.S.A. Hor, The {Pt₂S₂} core—a butterfly that stings, J. Chem. Soc. Dalton Trans., 5 (1999) 639-652; b) W. Henderson, T.S.A. Hor, Using electrospray ionisation mass spectrometry as a synthesis-targeting technique – An update on the chemistry of the platinum chalcogenide dimers [Pt₂(μ_2 -E)₂(PPh₃)₄] (E = S, Se), Inorg. Chim. Acta, 411 (2014) 199-211
- [15] V.W.-W. Yam, K.-L. Yu, E.C.-C. Cheng, P.K.-Y. Yeung, K.-K. Cheung, N. Zhu, Luminescent Homo- and Heteropolynuclear Platinum(II) Chalcogenido Aggregates Based on [Pt₂E₂(P^N)₄] Units (E=S, Se), Chem. Eur. J., 8 (2002) 4121-4128; b) B.H. Aw, K.K. Looh, H.S.O. Chan, K.L. Tan and T.S.A. Hor, X-Ray photoelectron spectroscopic characterization of [{Pt(PPh₃)₂(µ₃-S)}₂PtCl₂], [{Pt₂(PPh₃)₄(µ₃-S)₂Cu}₂(µ-dppf)][PF₆]₂ [dppf = Fe(C₅H₄PPh₂)₂] and other heterometallic aggregates derived from [{Pt(PPh₃)₂(µ-S)}₂], Dalton Trans., 21 (1994) 3177-3182.
- [16] V.W.-W. Yam, W.K. Lee, T.F. Lai, Synthesis and luminescent properties of a novel tetranuclear copper(I) cluster containing a μ₄-sulfur moiety. X-Ray crystal structure of [Cu₄(μ-dppm)₄(μ₄-S)](PF₆)₂·2Me₂CO [dppm = bis(diphenylphosphino)methane], J. Chem. Soc. Chem. Commun., 24 (1993) 1571-1573.
- [17] V.W.–W. Yam, P.K.Y. Yeung, K.K. Cheung, J. Chem. Soc. Chem. Comm., 1995, 267;
 Synthesis, photophysics and electrochemistry of a novel luminescent platinum(II) sulfido
 complex. Crystal structure of [Pt₂(μ-S)(μ-dppm)(dppm)₂]²⁺ (dppm = Ph₂PCH₂PPh₂), J.
 Chem. Soc., Dalton Trans., 24 (1994) 2587-2588.
- [18] V.W.–W. Yam, P.K.Y. Yeung, K.K. Cheung, An Unprecedented Example of Pt_4Ag_3 Cluster Formation: Synthesis and Crystal Structure of $[Pt_2(dppy)_4(\mu_3 S)_2Ag_3(\mu_3 S)_2Pt_2(dppy)_4]^{3+}$, Angew Chem. Int. Ed. 35 (1996) 739-740.

- [19] J.S. Yeo, J.J. Vittal, W. Anderson, T.S.A. Hor, Exploring the Lewis basicity of the metalloligand [Pt₂(μ-Se)₂(PPh₃)₄] on metal substrates by electrospray mass spectrometry. Synthesis, characterization and structural studies of new platinum selenido phosphine complexes containing the {Pt₂Se₂} core, J. Chem. Soc. Dalton Trans., 3 (2002) 328-336.
- [20] J.S. Yeo, J.J. Vittal, W. Anderson, T.S.A. Hor, Metal Scrambling in the Trinuclear $\{Pt_2Se_2M\}$ (M = Pt, Pd, Au) System Using an Electrospray Mass Spectrometry (ESMS) Directed Synthetic Methodology; Isolation and Crystallographic Characterization of $\{Pt_2(\mu_3-Se)_2(PPh_3)_4[Pt(cod)]\}\{PF_6\}_2$ and $\{Pt(\mu_3-Se)_2(PPh_3)_2[Pt(cod)]_2\}\{PF_6\}_2$ (cod = Cyclo-octa-1,5-diene), Inorg. Chem., 41 (2002) 1194-1198.
- [21] V.W.-W Yam, E.C.-C. Cheng, K.K. Cheung, Angew. Chem. 111 (1999) 193-195; A
 Novel High-Nuclearity Luminescent Gold(I)–Sulfido Complex, Angew. Chem. Int. Ed., 38 (1999) 197-199.
- [22] V.W.-W Yam, E.C.-C. Cheng, Z.Y. Zhou, Angew. Chem., 112 (200) 1749-1751; A
 Highly Soluble Luminescent Decanuclear Gold(I) Complex with a Propeller-Shaped
 Structure, Angew Chem. Int. Ed., 39 (2000) 1683-1685.
- [23] T.G. Appleton, M.A. Bennett, I.B. Tomkins, Effect of Chelate-ring Size on Spectroscopic and Chemical Properties of Methylplatinum(II) Complexes of the Ditertiary Phosphines Ph₂P-[CH₂]_nPPh₂ (n = 1, 2, or 3), J. Chem. Soc., Dalton Trans., (1976) 439-446.
- [24] S. Narayan, V.K. Jain, B. Varghese, Pyridine-2-selenolate complexes of palladium(II) and platinum(II): crystal structure of [(Prn₃P)Cl₂Pd(NC₅H₄Se)PdCl(PPrn₃)], J. Chem. Soc., Dalton Trans. (1998) 2359-2366.
- [25] R. K. Sharma, G. Kedarnath, V. K. Jain, A. Wadawale, C. G. S. Pillai, M. Nalliath, C. Vishwanadh, 2-Pyridyl selenolates of antimony and bismuth: Synthesis, characterization,

structures and their use as single source molecular precursor for the preparation of metal selenide nanostructures and thin films, Dalton Trans., 39 (2010) 8779-8787.

- [26] G. M. Sheldrick, A short history of SHELX, Acta Cryst. A64 (2008) 112–122.
- [27] T. Higashi, ABSCOR-Empirical Absorption Correction based on Fourier Series Approximation, Rigaku Corporation, 3-9-12 Matsubara, Akishima, Japan, 1995.
- [28] C.K. Johnson, ORTEP II, Report ORNL-5136, Oak Ridge National Laboratory, Oak Ridge TN, 1976.
- [29] Z. Li, W. Zheng, H. Liu, K.F. Mok, and T.S.A. Hor, Interpolymetallic Assembly of d⁸-d¹⁰ Sulfide Aggregates from [Pt₂(PPh₃)₄(μ-S)₂] and Group 12 Metals, Inorg. Chem., 42 (2003) 8481-8488.
- V.W.-W. Yam, P.K.-Y. Yeung and K.-K. Cheung, Unusual reactivity of a luminescent [30] bis-µ-sulfido platinum(II) dimer with methylene chloride. X-Ray structural characterization of $[Pt_2(\mu-S)_2(dppy)_4]$ and $[Pt(dppy)_2(S_2CH_2)]$ (dppy 2-= diphenylphosphinopyridine), J. Chem. Soc., Chem. Commun., (1995) 267-269; (b) A. Shaver, R.D. Lai, P.H. Bird and W. Wickramasinghe, The preparation and structure of methanedithiolatobis(dimethylphenylphosphine)platinum(II), (PMe₂Ph)₂Pt(S₂CH₂), Can. J. Chem., 63 (1985) 2555-2558.
- [31] M. Zhou, C.F. Lam, K.F. Mok, P.-H. Leung and T.S.A. Hor, Facile ligand transformation from bridging thio to terminal chloromethanethiolato. Bridge opening of [Pt(μ-S)(dppf)]₂ by dichloromethane to give Pt(SCH₂Cl)₂(dppf) [dppf Fe(C₅H₄PPh₂)₂], J. Organomet. Chem., 476 (1994) C32-C34.
- [32] R. Mas-Balleste, M. Capdevila, P.A. Champkin, W. Clegg, R. A. Coxall, A. Lledo's, C.
 Me´gret, P. Gonza´lez-Duarte, Diverse Evolution of [{Ph₂P(CH₂)_nPPh₂}Pt(μ-

S)₂Pt{Ph₂P(CH₂)_nPPh₂}] (n = 2, 3) Metalloligands in CH₂Cl₂, Inorg. Chem. 41 (2002) 3218-3229.

- [33] R.S. Chauhan, G. Kedarnath, A. Wadawale, A. Munoz-Castro, R. Arratia-Perez and V. K. Jain, W. Kaim, Tellurium(0) as a Ligand: Synthesis and Characterization of 2-Pyridyltellurolates of Platinum(II) and Structures of [Pt{2-Te-3-(R)C₅H₃N}₂Te(PR'₃)] (R = H or Me), Inorg. Chem. 49 (2010) 4179-4185.
- [34] R.S. Chauhan, R.K. Sharma, G. Kedarnath, D.B. Cordes, A.M.Z. Slawin, V.K. Jain, Reactivity of dipyrimidyldiselenides with $[M(PPh_3)_4]$ and 2-pyrimidylchalcogenolates with $[MCl_2(diphosphine)]$ (M = Pd or Pt), J. Organomet. Chem., 717 (2012) 180-186.
- [35] R.S. Chauhan, G. Kedarnath, A. Wadawale, J.A. Golen, A.L. Rheingold, V.K. Jain, *Cis* configured bis phosphine platinum(II) chalcogenolate complexes: Structures, NMR and computational studies, J. Organomet. Chem.,737 (2013) 40-46.
- [36] M. Capdevila, Y. Carrasco, W. Clegg, R.A. Coxall, P. Gonza'lez-Duate, A. Lledo's, J.A. Ramırez, Extending knowledge on the nucleophilicity of the {Pt₂S₂} core: Ph₂PCH₂CH₂PPh₂ as an alternative terminal ligand in [L₂Pt(μ-S)₂PtL₂] metalloligands, J. Chem. Soc., Dalton Trans. (1999) 3103-3113.
- [37] H. Liu, A.L. Tan, Y. Xu, K.F. Mok, T.S.A. Hor, Stabilization of a Y-shaped Cu^I coordination in [CuPt₂(PPh₃)₅(μ₃-S)₂]PF₆ by Pt₂(PPh₃)₄(μ-S)₂ and its expansion to a pentanuclear aggregate [Cu{Pt₂(PPh₃)₄(μ₃-S)₂}]PF₆. X-ray crystal structure of [CuPt₂(PPh₃)₅(μ₃-S)₂]PF₆Polyhedron, 16 (1997) 377-382.
- [38] M. Capdevila, Y. Carrasco, W. Clegg, R.A. Coxall, P.G. Duarte, A. Lledos, J. Sola, G. Ujaque, The first stable copper(II) complex containing four sulfide ligands: synthesis

and structural characterization of $[Pt_2(dppe)_2(\mu-S)_2]$ and $[Cu\{Pt_2(dppe)_2(\mu_3-S)_2\}_2]^{2+}$, Chem. Commun. (1998) 597-598.

- [39] R.S. Chauhan, G. Kedarnath, A. Wadawale, A.L. Rheingold, A. Munoz-Castro, R. Arratia-Perez, V.K. Jain, Reactivity of Dipyridyl Ditellurides with (Diphosphine)Pt⁰ and 2-Pyridyltellurolates with (Diphosphine)PtCl₂ and Isolation of Different Structural Motifs of Platinum(II) Complexes, Organometallics 31 (2012) 1743-1750.
- [40] J.S.L. Yeo, J.J. Vittal, W. Henderson, T.S.A. Hor, Metal Scrambling in the Trinuclear $\{Pt_2Se_2M\}$ (M = Pt, Pd, Au) System Using an Electrospray Mass Spectrometry (ESMS) Directed Synthetic Methodology; Isolation and Crystallographic Characterization of $\{Pt_2(\mu_3-Se)_2(PPh_3)_4[Pt(cod)]\}\{PF_6\}_2$ and $\{Pt(\mu_3-Se)_2(PPh_3)_2[Pt(cod)]_2\}\{PF_6\}_2$ (cod = Cyclo-octa-1,5-diene), Inorganic Chemistry, 41 (2002) 1194-1198
- [41] W. Conzelmann, J.D. Koola, U. Kunze, J. Strähle, Molecular structure of *trans*chloro(η ¹-phenyl)-bis(triphenylphosphine)platinum(II), Inorg. Chim. Acta, 89 (1984) 147-149.
- [42] R.S. Chauhan, C.P. Prabhu, P.P. Phadnis, G. Kedarnath, J.A. Golen, A.L. Rheingold, V.K. Jain, Oxidative addition reactions of nicotinamide based organoselenium compounds on [M(PPh₃)₄] (M = Pd or Pt): An insight study for the formation of several isolable products, J. Organomet. Chem., 723 (2013) 163-170.
- [43] Q. Dong Tu, Y.-G. Yin, H. He, J. Xiang, D. Li., S.W. Ng, catena-Poly[[[(4'-phenyl-2,2':6',2"-terpyridine-κ³N,N',N")zinc(II)]-μ-terephthalato-κ²O:O'] monohydrate], Acta Cryst., E-61 (2005) m-254-256.

- [44] L. Mei, T.H. Ming, L.Q. Rong, S. Jie, Y.S. Zhing, L.X. Liang, The synthesis of N-Zn, N-Cu complexes involving 2-amino pyridine and ethylenediamine ligands and application to the Henry reaction, J. Chem. Sci., 121 (2009) 435-440.
- [45] Q.-Dong Tu, D. Ti, T. Wu, Y.G. Yin, S.W. Ng, Acta Cryst., Dichloro(4'-phenyl-2,2':6',2"-terpyridine-³N)zinc(II) monohydrate, E-60 (2004) m-1403-1404.
- [46] S.P. Tang, Y. -L. Feng, D. -Z.Kuang, Dichlorido(4'-ferrocenyl-2,2':6',2"-terpyridine-*
 ³N,N',N")zinc acetonitrile monosolvate S.-P. Tang, Y.-L. Feng and D.-Z. Kuang, Acta Cryst., E-67 (2011) m-1017.
- [47] R.K. Sharma, G. Kedarnath, A. Wadawale, B. Vishwanadh, V.K. Jain, Pyrimidyl-2selenolates of cadmium and mercury: Synthesis, characterization, structures and their conversion to metal selenide nano-particles, Inorg. Chim. Acta, 411(2014) 90-96.
- [48] R.K. Sharma, G. Kedarnath, A. Wadawale, V.K. Jain, B. Vishwanadh, Monomeric pyridyl-2-selenolate complexes of cadmium and mercury: Synthesis, characterization and their conversion to metal selenide nanoparticles, Inorg. Chim. Acta, 365 (2010) 333-339.
- Y. Cheng, T.J. Emge and J.G. Brennan, polymeric Cd(Se-2-NC₅H₄)₂ and Square Planar Hg(Se-2-NC₅H₄)₂: Volatile CVD Precursors to II-VI Semiconductors, Inorg. Chem., 33 (1994) 3711-3714.

Table1.Crystallographicandstructuraldeterminationdatafor

 $[Pt(C_5H_4N)(SeC_5H_4N)(dppp)].ZnCl_2\ (\textbf{2a})$

Complex	$[Pt(SeC_5H_4N)(C_5H_4N) (dppp)].ZnCl_2$	
Chemical formula	C ₃₇ H ₃₄ N ₂ Cl ₂ P ₂ PtSeZn	
Formula wt.	978.92	
Crystal size (mm ³)	0.30 x 0.30 x 0.20	
Radiation used for data collection	Μο-Κ _α	
Crystal system	Monoclinic	
Space group	P1 _{21/c}	
Unit cell dimensions		
a (Å)	20.307(7)	
b(Å)	8.971(3)	
c(Å)	21.000(4)	
$\alpha(^{0})$	90	
$\beta(^{0})$	103.02(4)	
$\gamma(^{0})$	90	
Volume (Å ³)	3727(2)	
Z	4	
ρ_{calcd} , g cm ⁻³	1.744	
θ for data collection (°)	7.8-10.9	
$\mu (mm^{-1})/F(000)$	5.627 / 1904	
Index range	$-25 \le h \le 26$	
	$-11 \le k \le 0$	
	$-27 \le l \le 15$	
No of reflections collected	10213	
No of independent reflection / No. of observed	9922 / 4457	
reflections with $I > 2\sigma I$		
Data/restraints/parameters	9922 / 0 / 484	
	0.0474 / 0.0005	
Final K_1 , ωK_2 indices	0.047470.0903	
$\mathbf{K}_1, \boldsymbol{\omega}\mathbf{K}_2 \text{ (all data)}$	0.17027 0.1211	
Goodness of fit on F ²	0.932	

Pt1–P1	2.279(3)	Pt1-P2	2.335(3)
Pt1–Se1	2.4821(11)	Pt1–C1	2.015(10)
Zn1–N1	2.013(8)	Zn–N2	2.084(9)
Zn1–Cl1	2.255(3)	Zn1–Cl2	2.282(3)
Pt1–Zn1	3.1526(13)	Se1–C6	1.903(11)
P1–Pt1–P2	94.24(9)	C1–Pt1–Se1	85.4(3)
P1Pt1C1	88.0(3)	P2–Pt1–Se1	92.37(8)
P1-Pt1-Se1	172.09(7)	P2-Pt1-C1	177.8(3)
C6–Se1–Pt1	108.1(4)	N1–C1–Pt1	116.5(7))
Se1-Pt1-Zn1	82.55(4)	C1–Pt1–Zn1	63.3(3)
P1-Pt1-Zn1	98.34(7)	P2–Pt1–Zn1	116.42(8)
N1–Zn1–Cl1	125.4(2)	N2–Zn1–Cl2	103.1(3)
N1-Zn1-Cl2	102.1(2)	N2–Zn1–Cl1	105.6(3)
Cl1–Zn1–Cl2	107.72(11)	N1–Zn1–N2	110.8(4)
N1–Zn1–Pt1	63.5(2)	N2–Zn1–Pt1	86.6(3)
Cl1–Zn1–Pt1	79.91(8)	Cl2–Zn–Pt2	165.07(9)

Table 2. Selected bond lengths (Å) and angles (°) of [Pt(SeC₅H₄N)(C₅H₄N) (dppp)].ZnCl₂ (2a)

Figure Captions

Figure 1. ORTEP drawing of $[Pt(C_5H_4N)(SeC_5H_4N)(dppp)]$.ZnCl₂with atomic number scheme. Hydrogen atoms are omitted for clarity. The ellipsoids were drawn at the 50% probability.

Chillin Maria

Figure 1. ORTEP drawing of $[Pt(C_5H_4N)(SeC_5H_4N)(dppp)].ZnCl_2$ (1) with atomic number scheme. The ellipsoids were drawn at the 50% probability.

Highlights

- •
- Reactions of $[Pt(SeC_5H_4N)_2(dppm)]$ with d^{10} metal system resulted $[PtX_2(dppm)]$. Reactions of $[Pt(SeC_5H_4N)_2(dppp)]$ with d^{10} metal system yielded an additive product. •
- Interaction between $Pt-d^{10}$ depends on the size of metal. •