Novel Synthesis of the Main Central 2,3,6-Trisubstituted Pyridine Skeleton [Fragment A-B-C] of a Macrobicyclic Antibiotic, Cyclothiazomycin

Chung-gi Shin,* Akihiro Okabe, Akinori Ito, Akio Ito, and Yasuchika Yonezawa

Laboratory of Organic Chemistry, Faculty of Engineering, Kanagawa University, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686

(Received December 21, 2001)

The useful synthesis of the main central 2,3,6-trisubstituted pyridine skeleton [the protected Fragment A-B-C] of a macrobicyclic antibiotic, cyclothiazomycin, was first accomplished. First, the 2-[2-(2-substituted thiazol-4-yl)]-4,5-di-hydrothiazole-4-carboxylate [Fragment A derivative], attached to the 6-substituent of the main pyridine skeleton, was synthesized by two consecutive thiazolations of the protected Ser thioamide derivative with 3-bromopyruvate, and then thiazolination of the C-terminal Ser residue of the sequence. Secondly, an efficient synthesis of the central 2-(2-{2-[(1*R*)-1-aminoethyl]pyridin-6-yl}thiazol-4-yl)-4,5-dihydrothiazole-4-carboxylate [Fragment B derivative] was also achieved by thiazolation of the formyl group of the 2-(1-aminoethyl)-6-formylpyridine derivative, and then thiazolination. Thirdly, a convenient synthesis of the protected dehydrotetrapeptide [Fragment C derivative], which is bound to the 2-substituent of the pyridine skeleton, was attained by the usual stepwise elongation of the appropriate α -amino acids and β -elimination of a Thr residue of the sequence. Finally, the facile fragment condensation of the three Fragments thus obtained gave the protected Fragment A-B-C derivative via Fragment A-B. Furthermore, the configurational structures of the three Fragments (A, B, and C) were also investigated.

Cyclothiazomycin (1),¹ isolated from a culture of *Strepto-myces NR0516*, is a very interesting thiostrepton-type macrobicyclic antibiotic. So far, many structurally similar thiostrepton antibiotics, such as GE 2270 A,² micrococcins P and P₁,³ have also been isolated from various kinds of strains. However, no total synthesis of any similar antibiotic has yet been reported, except for the recent syntheses of micrococcin P and P₁.⁴⁻⁶ The cyclothiazomycin features a very unique structure and interesting bioactivities,¹ which attracted our attention and prompted us to investigate its total synthesis and structure-bioactivity relationship. The natural product **1** includes a charac-

teristic main central and long chain 2,3,6-trisubstituted pyridine skeleton, called Fragment A-B-C **2**, which is constituted of an (*S*)-2-{2-[2-(1-aminoethenyl)thiazol-4-yl]thiazol-4-yl}thiazoline-4-carboxylate segment called Fragment A **4**, a central (4*S*)-2-(2-{2-[(1*R*)-1-aminoethyl]-3-carboxypyridin-6-yl}thiazol-4-yl)-4,5-dihydrothiazole-4-carboxylate skeleton, called Fragment B **5**, and L-Thr-Gly-(*Z*)- Δ Abu-L-Pro (Δ Abu = 2-amino-2-butenoic acid residue) sequence, called Fragment C **6**, as shown in Fig. 1. Moreover, interestingly, many 4,5-dihydrothiazole-4-carboxylate moieties, which are unusual in thiostrepton-type antibiotics, are involved.

Cyclothiazomycin (1)

Protected Fragment A-B-C [(P)-2]

Fig. 1. Retrosynthesis of 1.

In connection with the total synthesis of 1, we have already briefly reported a novel synthesis of the protected Fragment A derivative (**P**)- 4^7 by two consecutive thiazolations, and then thiazolination of the protected Ser thioamide derivative with 3bromopyruvate by the Hantzsch method.⁸ More recently,⁹ a useful synthesis of the protected Fragment B derivative (**P**)-**5** by successive thiazolination and thiazolation of a 2,3-disubstituted 6-formylpyridine derivative¹⁰ with H-Cys-OMe was achived by the Shioiri method.¹¹ Furthermore, the facile synthesis of the protected Fragment A-B drivative (**P**)-**3** by the coupling of Fragment A with Fragment B, mentioned above, has also been briefly reported.⁹

In this paper, we wish to report in detail on versatile synthetic methods for all of the Fragment derivatives [(P)-4, 5, and 6], the protected Fragment [A-B (P)-3], and Fragment A-B-C derivatives [(P)-2], derived by coupling of (P)-3 with (P)-6. Furthermore, in order to determine which of the two synthetic stereoisomers, 2-(1'*R*)- and 2-(1'*S*)-(P)-5, is identical to the configuration of natural 1, the structures of the two isomers were thoroughly examined by comparing the circular dichroism (CD) spectra and the specific rotations ($[\alpha]_D$) with those of an independently prepared structurally similar 2-(1-aminoethyl)pyridine derivative.

Results and Discussion

The novel syntheses of the protected Fragment A, B, and C derivatives and their couplings for the formations of the protected Fragments A-B and A-B-C derivatives were accomplished as follows. In particular, with regard to the synthesis of the Fragment A (P)-4, since the previous synthetic method⁷ was found to be slightly difficult, and the overall yield from Ser is very low (2%), an alternative revised method was adopted. First of all, to synthesize the protected 3,4-bithiazolylthiocarbonyl-Ser-OMe derivative 16 as the precursor of (P)-4, the synthesis of the desired thiazolylthiazole sequence 13 by the stepwise thiazolations of thioamides was successfully tried. Initially, the thiazolation of the 3-t-butoxycarbonyl(Boc)-2,2dimethyloxazolidine-4-thiocarboxamide (7),⁴ derived from Boc-L-Cys-OH and acetone, with ethyl 3-bromopyruvate in the presence of KHCO₃, and then with trifluoroacetic anhydride (TFAA) and pyridine, proceeded to give 2-substituted thiazole-4-carboxylate derivative 8 by the Hantzsch method.⁸ After ester hydrolysis with 1 M LiOH (1 M = 1 mol dm⁻³), amidation of the formed free carboxylic acid 9 with ClCOOEt and then a 28% NH₃ aqueous solution gave the corresponding thiazole-4-carboxamide derivative 10. Similarly to the case of 8, thioamidation with Lawesson's reagent, followed by thiazolation of the formed thiazole-4-thioamide 11 with ethyl 3bromopyruvate, gave the corresponding 2-substituted 2-(thiazol-4-yl)thiazole-4-carboxylate derivative 12. The ester was again hydrolyzed with 1 M LiOH to give the corresponding free acid 13.

Subsequently, the coupling of **13** with H-L-Ser(TBS)-OMe (TBS = t-butyldimethylsilyl) by using DPPA (DPPA = diphenyl phosphorazidate)¹² as the condensing agent, followed by thioamidation of the formed peptide derivative **14** with Lawesson's reagent gave 2,4-bithiazole-4-thiocarbonyl-Ser-(TBS)-OMe **15**. Deprotection of the TBS group with TBAF (tetrabutylammonium fluoride) was then performed to give the corresponding thiocarbonyl-Ser-OMe derivative **16**, which was treated with triphenylphosphine (Ph₃P) and diethyl azodicarboxylate (DEAD) by the Mitsunobu reaction¹³ to give the expected 2-(2,4'-bithiazol-4-yl)-4,5-dihydrothiazole-4-carboxylate **17**.

Finally, deprotection of only the isopropylidene (Isop) group of the 2,2-dimethyloxazolidine ring with a mixture of trifluoroacetic acid (TFA) and CHCl₃ (4:96 v/v) gave the corresponding 2-[2'-(1-amino-2-hydroxyethyl)-2,4'-bithiazol-4yl]-4,5-dihydrothiazole derivative 18. Subsequent protection of the formed hydroxy group of 18 with *t*-butyldiphenylsilyl chloride (TPS-Cl) in the presence of imidazole gave the corresponding 2-(O-TPS)ethyl derivative 19 as the protected Fragment A derivative, as shown in Scheme 1. As a result, a convenient synthesis of 19 was achieved by two consecutive thiazolations and thiazolination from 7; the overall yield was found to attain to 19% from Ser. Later, after deprotection of the Boc group of 19 with TFA, without isolation, the obtained amino group free amino-2-(2,4'-bithiazol-4-yl)-4,5-dihydrothiazole derivative (P)-4 was intact utilized to the next coupling with **(P)-5**.

The structure of **19** was determined by the ¹H NMR spectral data and satisfactory elemental analysis. In particular, the appearances of two protons of the thiazole rings as a singlet at δ 8.03 and 8.04, the methylene protons as a double doublet at δ 3.68 (J = 5.8 and 9.2 Hz) and the methine proton of thiazoline (4,5-dihydrothiazole) ring as a triplet at δ 5.32 supported the formation of **19**.

On the other hand, to synthesize the Fragment B derivative, as was already reported,9 first, the starting 3-cyano-6-dimethoxymethyl-2-pyridone $(20)^{10}$ was converted to the corresponding 2-oxo-1,2-dihydropyridine-3-carboxylic acid 21 by hydrolysis of the cyano group with 6 M KOH. Without the isolation of 21, one-pot esterification with MeOH gave the methyl ester 22, the carbonyl group of which was then triflated with trifluoromethanesulfonic (triflic) anhydride (Tf₂O) to give the corresponding 2-(trifluoromethylsulfonyloxy)pyridine derivative 23. The 2-TfO group was then treated with ethyl vinyl ether in the presence of Pd(OAc)₂ and dppp [1,3-bis(diphenylphosphino)propane] to give the 2-(1-ethoxyvinyl)pyridine derivative 24. Without the purification of 24, the conversion of the ethoxyvinyl group to an acetyl group by using 70% AcOH afforded the corresponding 2-acetyl-3-methoxycarbonyl derivative 25, which was then subjected to reduction. That is, the simultaneous reductions of both the acetyl and methoxycarbonyl groups with NaBH₄ in the presence of CaCl₂ gave the (*RS*)-2-(1-hydroxyethyl)-3-(hydroxymethyl)pyridine derivative 26 as a racemate. Subsequently, the formed primary hydroxy group of 26 was protected by TPS-Cl to give the 3-(O-TPS-hydroxymethyl)pyridine derivative 27, and the secondary hydroxy group was mesylated with methanesulfonyl (mesyl) chloride (Ms-Cl) in the presence of Et₃N and then azidated with NaN₃ in one-pot to give the corresponding 2-(1-azidoethyl)pyridine derivative 28. The hydrogenolysis of the azido group with 10% Pd-C/H₂ gave the 2-(1-aminoethyl)pyridine derivative 29, the amino group of which was in situ protected with Boc₂O (di-t-butyl dicarbonate) to give the expected 6dimethoxymethyl-2-[1-(N-Boc)aminoethyl]pyridine derivative 30, as shown in Scheme 2.

Scheme 1. Reagents and conditions: i) a) KHCO₃, ethyl 3-bromopyruvate, DME, 0 °C, 30 min, rt, 2 h, b) TFAA, pyridine, DME, 0 °C, 1 h, ii) 1 M LiOH, H₂O–dioxane (1:1 v/v), 0 °C, 30 min, rt, 3 h, iii) a) ClCOOEt, Et₃N, THF, 0 °C, 30 min, b) 28% aq NH₃, THF, 0 °C, 5 min, iv) Lawesson's reagent, DME, rt, 10 h, v) H-Ser(TBS)-OMe, DPPA, Et₃N, DMF, 0 °C, 30 min, rt, 9 h, vi) Lawesson's reagent, 50 °C 16 h, vii) TBAF, THF, 0 °C 1 h, viii) Ph₃P, DEAD, THF, 0 °C, 1 h, ix) TFA–CHCl₃ (4:96 v/v), rt, 2 h, x) TPSCl, imidazole, CHCl₃, 0 °C, rt, 12 h, xi) THF–CHCl₃ (2:3 v/v), rt, 30 min.

Scheme 2. Reagents and conditions: i) 6 M KOH, EtOH, reflux, 8 h, 0 °C, 30 min, rt, 2 h, ii) H⁺, MeOH, reflux, overnight, iii) Tf₂O, DMAP, pyridine, 0 °C, 30 min, iv) Pd(OAc)₂, dppp, ethyl vinyl ether, v) 70% AcOH, THF, rt, overnight, vi) NaBH₄, CaCl₂, EtOH, 0 °C, 30 min, rt, 3 h, vii) TPS-Cl, Et₃N, DMAP, CH₂Cl₂, 0 °C, 30 min, rt, 2 h, viii) a) MsCl, Et₃N, CH₂Cl₂, 0 °C, 10 min, b) NaN₃, DMF, rt, 1 h, ix) H₂, 10% Pd–C, EtOH, rt, 30 min, x) Boc₂O, Et₃N, CHCl₃, 0 °C, 30 min, rt, 4 h.

Secondly, in order to construct the thiazolylthiazoline-4-carboxylate segment to the 6-position of the pyridine ring of **30**, in the first place, the 6-dimethoxymethyl group was hydrolyzed. That is, the hydrolysis of the 6-dimethoxymethyl group with 2 M HCl, followed by one-pot thiazolation of the formed 6-formylpyridine derivative **31** with H-L-Cys-OMe and then oxidation with MnO_{2} ,¹¹ gave the 2-(pyridin-6-yl)thiazole-4carboxylate derivative **32**. The subsequent ester hydrolysis of **32** with 1 M LiOH gave the free acid **33**, without purification, the carboxyl group of which was again esterified with phenacyl bromide (Pac-Br) to give the corresponding Pac ester 34. On the other hand, deprotection of the 3-(*O*-TPS)hydroxymethyl group by using TBAF was followed by oxidation of the formed 3-(hydroxymethyl)pyridine derivative 35 with Jones' reagent. As a result, unexpectedly, the formed labile 2-[1-(*N*-Boc)aminoethyl]pyridine-3-carboxylic acid was immediately intramolecularly cyclized to give the corresponding γ -lactam derivative 36. Fortunately, it was found that the formation of the γ -lactam ring resulted in the effective protection of the 2 and 3-positions of 36. Consequently, after hydrolysis of the Pac ester with K_2CO_3 aqueous solution, without isolation, the formed free acid **37** was in situ coupled with H-L-Ser(TBS)-OBu' by the DPPA method to give the 2-(pyridin-6-yl)thiazoloyl-Ser-OBu' derivative **38** as a diastereomeric mixture. Furthermore, the γ -lactam ring was easily clevaged with 1 M LiOH to give the corresponding 3-carboxyl-pyridine derivative **39**, which was utilized in the next reaction without isolation.

Later, to differentiate the carboxy (C-) terminal *t*-butyl ester from another ester, the carboxyl group of **39** was esterified with benzyl bromide (Bn-Br) to give the corresponding 3-benzyl ester derivative **40**. Similarly to the case of **15**, the thioamidation of **40** with Lawesson's reagent gave the expected thiocarbonyl-Ser(TBS) derivative **41**. Although compound **41** was obtained as a diastereomeric mixture, the separation was tried very successfully. That is, after the deprotection of the TBS group with 2 M HCl, the product was chromatographed intact on a silica-gel column using a mixture of CHCl₃ and acetone (50:1 v/v) to give the corresponding 2-[(1*R*)- and (1*S*)-1aminoethyl]pyridine derivatives **42** from the last eluate and **43** from the first eluate, respectively.

Lastly, one of the diastereomers 42 was thiazolinated with Mitsunobu reagent¹³ to give only the corresponding 2-[2-(pyridin-6-yl)thiazol-4-yl]-4,5-dihydrothiazole derivative 44. On the other hand, in the case of another diastereomer 43, interestingly, although similar thiazolination proceeded, it was found that a mixture of the thiazolylthiazoline derivative 46 and thiazolvlithiazole derivative 47 was obtained in 67% vield in a 1:2.5 ratio. The obtained mixture could be readily separated by the chromatogram method on a silica-gel column using a mixture of hexane and EtOAc (2:1 v/v). Subsequently, oxidation of the thiazoline ring of 44 with MnO₂ in toluene gave the corresponding bithiazole derivatives 45, similar to 47, as shown in Scheme 3. As a result, the physical (IR and ¹H NMR) and chemical constants (mp and elemental analysis) of 45 and 47 were found to be completely identical, but only the sign of the specific rotations were reversed. These facts clearly indicate that compounds 44 and 46 as well as 42 and 43 are diastereomers; further, 45 and 47 are enantiomers to each other.

Naturally, it is neccessary to examine which of the two configurational structures of 44 and 46 is identical with that of the natural product (1). Accordingly, in order to determine the configuration of the 2-(1-aminoethyl) moiety of the synthetic 44 and 46, both (R)- and (S)-configurational 2-[1-(N-Boc)aminoethyl]pyridines (51) were independently synthesized, and their CD spectra were compared with those of 44 and 46. That is, the well-known asymmetric reduction of 2-acetylpyridine (48) with Baker's Yeast afforded the authentic (S)-2-(1-hydroxyethyl)pyridine 49,¹⁴ which was further converted to (R)-51 via (R)-2-(1-azidoethyl)pyridine 50. The specific rotation value of 49 thus obtained was $[\alpha]_D^{26}$ -55.5° (c 1.6, EtOH) {lit.¹⁴ $[\alpha]_D = 55.5^\circ$ (c 1.5, EtOH)}, showing high optical purity (96% ee). Similarly, (S)-51 was also obtained from (S)-49 via successive (R)-49 and (S)-50, as shown in Scheme 4. Moreover, the CD spectra of optically active 44 and (R)-51 showed strong negative Cotton effects at 373 and 270 nm, respectively, while those of 46 and (S)-51 showed positive Cotton effects in the same region. Furthermore, from the ¹H NMR spectrum of 44, the appearances of the chemical shifts of the pyridine ring protons at δ 8.17 and 8.34 as a doublet (2H, J = 8.3 Hz), the thiazole ring protons at $\delta 8.20$ as a singlet (1H), and the thiazoline ring protons at $\delta 3.63$ as a doublet (2H, J = 9.2 Hz) and at $\delta 5.22$ as a triplet (1H, J = 9.2 Hz) definitely support the Fragment B skeleton structure. Therefore, it could be completely determined that the absolute structure of **44** was the (1'*R*,4*S*)configuration and identical with that of the natural **1**. As a result, the compound (**P**)-**5** (**44**) was found to be first synthesized.

In addition, to synthesize the protected Fragment C derivative (P)-6, the condensation of N-Boc-N,O-Isop-L-Thr-OH (52) with H-Gly-OMe by the usual DCC and N-hydroxysuccinimide (HOSu) method gave the corresponding dipeptide methyl ester 53, the methyl ester of which was hydrolyzed with 1 M LiOH to give the free carboxylic acid 54. Similarly, compound 54 was elongated by coupling with H-L-Thr(TBS)-OMe to give the protected tripeptide methyl ester 55, the TBS group of which was then deprotected with TBAF to give the protected L-Thr-Gly-L-Thr-OMe derivative 56. Subsequently, to synthesize the expected Δ^3 -dehydrotripeptide,¹⁵ the β -elimination of 56 with successive Ms-Cl in the presence of Et₃N and with DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) was performed to give the protected Δ^3 -dehydrotripeptide derivative $(N-\text{Boc}-N,O-\text{Isop-L-Thr-Gly-}(Z)-\Delta\text{Abu-OMe})$ 57, by a previously reported method.¹⁶ After ester hydrolysis with 1 M LiOH, the obtained free acid 58 was further elongated with H-L-Pro-OMe by the DCC method to give Δ^3 -dehydrotetrapeptide methyl ester 59, the methyl ester of which was finally hydrolyzed to give the corresponding hydrolyzate derivative (P)-6 as the protected Fragment C, as shown in Scheme 5. The geometry of the ΔAbu residue was readily determined to be the (Z)-configurational structure by a comparison with the extensive ¹H NMR data of the authentic samples previously reported by us.¹⁷

Finally, the hydrolysis of the *t*-butyl ester of (1'R,4S)-(**P**)-**5** with a mixture of TFA and CHCl₃ (3:2 v/v), accompanying deprotection of the Boc group, gave the corresponding free intermediate of both the amino and carboxyl groups. The amino group of the yielded intermediate was protected intact again with Boc₂O to give the corresponding *N*-Boc-4,5-dihydrothiazole-4-carboxylic acid derivative **60**. Without isolating **60**, one-pot coupling with (**P**)-**4** gave the protected Fragment A-B derivative (**P**)-**3**, by the BOP method.¹⁸ Lastly, deprotection of the Boc group of (**P**)-**3** with a mixture of TFA and CHCl₃ (2:3 v/v), followed by similar coupling with (**P**)-**6** gave first the expected Fragment A-B-C (**P**)-**2**, as shown in Scheme 6.

The structures of all the thus-obtained new products were confirmed by the spectral data (¹H NMR, IR, and specific rotation) and satisfactory elemental analyses.

In conclusion, a useful synthetic method for the main central Fragment A-B-C skeleton of cyclothiazomycin (1) was successfully developed. A further investigation of the total synthesis of 1 is currently under way in our laboratory.

Experimental

The melting points were measured using a Yamato (Model Mp-21) micro-melting point apparatus, and are uncorrected. The IR spectra were recorded using an EPI-G2 spectrometer in KBr. The ¹H NMR spectra were measured with JEOL EX 90, EX 200, and JNE 500 spectrometers in CDCl₃ or DMSO- d_6 solution with tet-

Scheme 3. Reagents and conditions: i) 2 M HCl, rt, overnight, ii) a) HCl·H-L-Cys-OMe, Et₃N, toluene, rt, 10 h, b) MnO₂, toluene, rt, overnight, iii) 1 M LiOH, H₂O-dioxane (1:1 v/v), 0 °C, 30 min, rt, 8 h, iv) PacBr, Et₃N, DMF, 0 °C, 30 min, rt, 6 h, v) TBAF, THF, 0 °C, 30 min, vi) Jones reagent, acetone, 0 °C, 30 min, vii) K₂CO₃, THF, H₂O, 0 °C, 30 min, rt, 8 h, viii) H-L-Ser(TBS)-OBu', DPPA, Et₃N, DMF, 0 °C, 30 min, rt, overnight, ix) 1 M LiOH, THF, H₂O, 0 °C, 30 min, rt, 1 h, x) BnBr, Et₃N, DMF, 0 °C, 30 min, rt, 12 h. xi) Lawesson's, reagent, DMF, 50 °C, 12 h, xii) 2 M HCl, THF, rt, xiii) Ph₃P, EDAD, THF, 0 °C, 30 min, xiv) MnO₂, toluene, rt, 20 h.

ramethylsilane used as the internal standard. The specific rotations were measured in a 0.5 dm tube using a JASCO DIP-4 polarimeter in MeOH. Thin-layer chromatography (TLC) was performed with Merck silica-gel 60Art 5554 plates, and column chromatography was carried out with Merck silica-gel 60 or Wakogel C-300.

Starting Materials. H-Gly-OH, H-L-Ser-OH, and H-L-Thr-OH were purchased from Nippon Rikagakuyakuhin Co., Ltd.

(S)-3-t-Butoxycarbonyl-2,2-dimethyloxazolidine-4-thiocarboxamide (7). A solution of (S)-3-t-butoxycarbonyl-2,2-dimethyloxazolidine-4-carboxamide⁴ (1.51 g, 6.19 mmol) and Lawesson's reagent (1.38 g, 3.40 mmol) in DME (100 mL) was stirred at room temperature for 18 h. The reaction mixture was concentrated in vacuo to give a residual syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give a solid material. Recrystallization from a hexane–EtOAc gave 7 as colorless prisms. Yield 80% (1.29 g). Mp 114–115 °C. $[\alpha]_{2}^{25}$ +14.9° (*c* 1.01, MeOH). IR 3346, 3275, 3182, 3006, 2982, 2943, 2885, 1479, 1438 cm^{-1.} ¹H NMR (DMSO-*d*₆, 80 °C) δ 1.49 (s, 9H, Boc), 1.54 and 1.74 (each s, 6H, Isop's CH₃ × 2), 3.95, 3.99 and 4.27, 4.30 (each dd, 2H, CH₂, *J* = 3.6, 7.6, 8.9 Hz), 4.67 and 4.69 (dd, 1H, CH, *J* = 3.6, 7.6 Hz), 8.75 and 9.50 (each br s, 2H, NH₂). Found: C, 50.86; H, 7.66; N, 10.51%. Calcd for C₁₁H₂₀N₂O₃S: C, 50.75; H, 7.74; N, 10.76%.

Ethyl (S)-2-(3-t-Butoxycarbonyl-2,2-dimethyloxazolidin-4yl)thiazole-4-carboxylate (8). To a solution of 7 (533 mg, 2.05 mmol) in DME (20 mL) in the presence of KHCO₃ (410 mg, 4.10 mmol) was added, with stirring, BrCH₂COCOOEt (0.51 mL, 4.10

Scheme 4. Reagents and conditions: i) Baker's Yeast, D-Glucose, H₂O, 48 h, ii) a) MsCl, Et₃N, CHCl₃, 0 °C, 30 min, b) NaN₃, DMF, rt, overnight, iii) a) H₂, 10% Pd–C, EtOH, rt, 30 min, b) Boc₂O, Et₃N, CHCl₃, 0 °C, 30 min, rt, 3 h, iv) a) MsCl, Et₃N, 0 °C, 30 min, b) NaOAc, 15-crown-5-ether, DMF, rt, 24 h, c) K₂CO₃, MeOH, H₂O, 0 °C, 30 min, rt, 3 h.

Scheme 5. Reagents and conditions: i) DCC, HOSu, HCl·H-Gly-OMe, CH₂Cl₂, 0 °C, 30 min, rt, 6 h, ii) 1 M LiOH, H₂O-dioxane (1:1 v/v), 0 °C, 30 min, rt, 1 h, iii) H-L-Thr(TBS)-OMe, DCC, HOBt, 0 °C, 30 min, rt, 6 h, iv) TBAF, THF, 0 °C, 30 min, v) a) MsCl, Et₃N, CH₂Cl₂, 0 °C, 30 min, b) DBU, CH₂Cl₂, 0 °C, 10 min, rt, 6 h, vi) H-Pro-OMe, DCC, HOBt, DMF, 0 °C, 30 min, rt, 6 h.

Scheme 6. Reagents and conditions: i) THF–CHCl₃ (3:2 v/v), rt, 5 h, ii) Boc₂O, Et₃N, CHCl₃, 0 °C, 30 min, 5 h, iii) (**P**)-4, BOP, (*i*-Pr)₂NEt, DMF, 0 °C, 30 min, rt, 4 h, iv) TFA–CHCl₃ (2:3 v/v), rt, 30 min, v) (**P**)-6, BOP, (*i*-Pr)₂NEt, DMF, 0 °C, 30 min, rt, 12 h.

mmol) at 0 °C. After stirring for 2 h, to the mixture were further added, with stirring, TFAA (0.85 mL, 6.15 mmol) and pyridine (1.07 mL, 13.33 mmol) at 0 °C. The reaction mixture was stirred continuously for 1 h and then concentrated in vacuo to give a residual substance, which was dissolved in EtOAc (30 mL). The re-

sulting solution was washed successively with 10% citric acid (30 mL \times 3), saturated NaHCO₃ aqueous solution (30 mL \times 3), and brine (30 mL \times 3) and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residue, which was purified on a silicagel column using a mixture of hexane and EtOAc (2:1 v/v) to give

colorless crystals. Recrystallization from a hexane-EtOAc gave **8** as colorless prisms. Yield 89% (647 mg). Mp 131–132 °C. $[\alpha]_{2^{\infty}}^{2^{\infty}}$ +6.2° (*c* 1.00, MeOH). IR 3127, 3001, 2982, 2937, 2900, 1731, 1698, 1377, 1364 cm⁻¹. ¹H NMR (DMSO-*d*₆, 80 °C) δ 1.32 (t, 3H, CH₂CH₃, *J* = 6.9 Hz), 1.36 (s, 9H, Boc), 1.54 and 1.67 (each s, 6H, Isop's CH₃ × 2), 4.04–4.10 and 4.27–4.37 (each m, 4H, CH₂O, *CH*₂CH₃), 5.25 (dd, 1H, CHN, *J* = 2.0, 6.6 Hz), 8.38 (s, 1H, thiazole's H). Found: C, 53.42; H, 6.31; N, 7.61%. Calcd for C₁₆H₂₄N₂O₅S: C, 53.91; H, 6.79; N, 7.86%.

(S)-2-(3-t-Butoxycarbonyl-2,2-dimethyloxazolidin-4-yl)thiazole-4-carboxylic Acid (9). A solution of 8 (1.38 g, 3.87 mmol) and 1 M LiOH (5.81 mL) in a mixture of water and dioxane (50 mL, 1:1 v/v) was stirred at 0 °C. After stirring for 30 min and at room temperature for 3 h, the reaction mixture was washed with diethyl ether (30 mL \times 3). The aqueous layer was acidified with citric acid hydrate to pH 4 and then extracted with EtOAc (30 mL imes 3). The combined extracts were washed with brine (30 mL imes3) and dried over anhydrous Na₂SO₄. Concentration in vacuo gave crude crystals, which were recrystallized from a hexane-EtOAc to give 9 as colorless crystals. Yield 97% (1.26 g). Mp 230–232 °C. $[\alpha]_{D}^{25}$ +12.0° (c 0.05, acetone). IR 3179, 3086, 2992, 2979, 1786, 1673, 1475, 1404, 1370 $\rm cm^{-1}.~^1H~NMR$ (DMSO- d_6 , 80 °C) δ 1.37 (s, 9H, Boc), 1.54 and 1.67 (each s, 6H, Isop's CH₃ \times 2), 4.01–4.13 and 4.25–4.40 (each m, 2H, CH₂O), 5.19-5.28 (m, 1H, CHN), 8.31 (s, 1H, thiazole's H). Found: C, 51.19; H, 6.19; N, 8.21%. Calcd for C₁₄H₂₀N₂O₅S: C, 51.21; H, 6.14: N. 8.53%.

(S)-2-(3-t-Butoxycarbonyl-2,2-dimethyloxazolidin-4-yl)thiazole-4-carboxamide (10). A solution of 9 (1.27 g, 3.87 mmol) and ethyl chloroformate (0.41 mL, 4.26 mmol) in THF (30 mL) in the presence of Et₃N (0.59 mL, 4.26 mmol) was strried at 0 °C for 30 min. To the resulting solution was added 28% aq NH₃ (0.42 mL, 5.81 mmol) and, after stirring for 5 min, the aqueous layer was removed. The organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo to give crude crystals. Recrystallization from a hexane-EtOAc gave 10 as colorless crystals. Yield 99% (1.26 g). Mp 157–159 °C. $[\alpha]_{D}^{24} + 1.8^{\circ}$ (c 1.00, MeOH). IR 3450, 2982, 1704, 1681, 1596 cm⁻¹. ¹H NMR (DMSO-d₆, 80 °C) δ 1.37 (s, 9H, Boc), 1.54 and 1.67 (each s, 6H, Isop's CH₃ \times 2), 4.05–4.38 (m, 2H, CH₂O), 5.15–5.27 (m, 1H, CHN), 7.33 (br s, 2H, NH₂), 8.14 (s, 1H, thiazole's H). Found: C, 51.30; H, 6.28; N, 12.83%. Calcd for $C_{14}H_{21}N_3O_4S$: C, 51.36; H, 6.47; N, 12.83%.

(S)-2-(3-*t*-Butoxycarbonyl-2,2-dimethyloxazolidin-4-yl)thiazole-4-thiocarboxamide (11). A solution of 10 (1.26 g, 3.85 mmol) and Lawesson's reagent (856 mg, 2.12 mmol) in DME (30 mL) was stirred at room temperature for 10 h. The reaction mixture was concentrated in vacuo to give a residual substance, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give yellow crystals. Recrystallization from a hexane–EtOAc gave 11 as yellow prisms. Yield 70% (924 mg). Mp 178–179 °C. $[\alpha]_D^{25} - 0.2^{\circ}$ (*c* 1.00, MeOH). IR 3389, 3298, 3215, 2979, 1684, 1627 cm⁻¹. ¹H NMR (DMSO-*d*₆, 80 °C) δ 1.38 (s, 9H, Boc), 1.54 and 1.66 (each s, 6H, Isop's CH₃ × 2), 4.15–4.37 (m, 2H, CH₂O), 5.20–5.24 (m, 1H, CHN), 8.14 (s, 1H, thiazole's H), 9.10 and 9.68 (each br s, NH₂). Found: C, 49.28; H, 5.98; N, 12.51%. Calcd for C₁₄H₂₁N₃O₃S₂: C, 48.96; H, 6.16; N, 12.23%.

Ethyl (S)-2-[2-(3-t-Butoxycarbonyl-2,2-dimethyloxazolidin-4-yl)thiazol-4-yl]thiazole-4-carboxylate (12). A solution of 11 (810 mg, 2.36 mmol) and BrCH₂COCOOEt (0.59 mL, 4.72 mmol) in the presence of KHCO₃ (472 mg, 4.72 mmol) in DME (30 mL) were stirred at 0 °C for 2 h. To the resulting solution was added, with stirring, TFAA (0.98 mL, 7.08 mmol) and pyridine (1.23 mL, 15.34 mmol) and, after stirring for 1 h, the reaction mixture was concentrated in vacuo to give a residual substance. The residue was dissolved in EtOAc (30 mL) and the resultant solution was washed successively with 10% citric acid (30 mL \times 3), saturated NaHCO₃ aqueous solution (30 mL \times 3), and brine (30 mL \times 3), and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave crude crystals, which were purified on a silica-gel column using a mixture of hexane and EtOAc (2:1 v/v) to give 12 as colorless crystals. Yield 98% (1.03 g). Mp 134–136 °C. $[\alpha]_{\rm D}^{26}$ +2.4° (c 1.01, MeOH). IR 3100, 2978, 2935, 2872, 1699, 1366, 1239 cm⁻¹. ¹H NMR (DMSO- d_6 , 80 °C) δ 1.35 (t, 3H, CH₂CH₃, J = 7.3 Hz), 1.36 (s, 9H, Boc), 1.55 and 1.71 (each s, 6H, Isop's $CH_3 \times 2$, 4.11 and 4.36 (each dd, 2H, CH_2O , J = 1.9, 6.5, 9.2Hz), 4.36 (q, 2H, CH₂CH₃, J = 7.3 Hz), 5.30 (dd, 1H, CHN, J = 1.9, 6.5 Hz), 8.26 and 8.47 (each s, 2H, thiazole's H). Found: C, 51.44; H, 5.50; N, 9.13%. Calcd for C₁₉H₂₅N₃O₅S₂: C, 51.92; H, 5.73; N, 9.56%.

(S)-2-[2-(3-t-Butoxycarbonyl-2,2-dimethyloxazolidin-4-yl)thiazol-4-yl]thiazole-4-carboxylic Acid (13). A solution of 12 (1.01 g, 2.30 mmol) and 1 M LiOH (3.45 mL) in a mixture of H₂O and dioxane (30 mL, 1:1 v/v) was stirred at 0 °C for 30 min and then at room temperature for 3 h. After washing with diethyl ether $(30 \text{ mL} \times 3)$, the aqueous layer was acidified to pH 4 with citric acid hydrate. The reaction mixture was extracted with EtOAc (30 mL \times 3) and the combined extracts were washed with brine (30 $mL \times 3$) and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave crude crystals, which were recrystallized from a hexane-EtOAc to give 13 as colorless needles. Yield 98% (945 mg). Mp 203–205 °C. $[\alpha]_D^{23}$ +4.8° (*c* 1.01, MeOH). IR 3446, 3133, 2979, 1694, 1363 cm⁻¹. ¹H NMR (DMSO- d_6 , 80 °C) δ 1.36 (s, 9H, Boc), 1.55 and 1.71 (each s, 6H, Isop's $CH_3 \times 2$), 4.11 and 4.36 (each dd, 2H, CH₂O, J = 1.7, 6.3, 9.2 Hz), 5.30 (dd, 1H, CHN, J = 1.7, 6.3 Hz), 8.22 and 8.38 (each s, 2H, thiazole's H \times 2). Found: C, 48.45; H, 5.09; N, 10.10%. Calcd for C₁₇H₂₁N₃-O₅S₂•0.5H₂O: C, 48.56; H, 5.27; N, 9.99%.

(S,R)-2-[2-(3-t-Butoxycarbonyl-2,2-dimethyloxazolidin-4-yl)thiazol-4-yl]thiazole-4-carbonyl-L-Ser(TBS)-OMe (14). To a solution of 13 (392 mg, 0.95 mmol) and H-Ser(TBS)-OMe (357 mg, 1.53 mmol) in the presence of Et₃N (0.24 mL, 1.71 mmol) in DMF (20 mL) was added, with stirring, DPPA (0.27 mL, 1.24 mmol) at 0 °C. The resulting solution was stirred for 30 min and continuously at room temperature for 9 h and then extracted with EtOAc (30 mL \times 3). The combined extracts were washed with 10% citric acid (30 mL \times 3), saturated NaHCO₃ aqueous solution $(30 \text{ mL} \times 3)$, and brine $(30 \text{ mL} \times 3)$ and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (2:1 v/v) to give 14 as a pale-yellow syrup. Yield 98% (595 mg). $[\alpha]_{\rm D}^{24}$ +26.0° (c 1.00, MeOH). IR 2953, 2932, 2884, 2857, 1749, 1706, 1375 cm⁻¹. ¹H NMR (DMSO- d_6) δ 0.06 and 0.08 (each s, 6H, TBS's $CH_3 \times 2$), 0.88 (s, 9H, TBS's Bu'), 1.36 (s, 9H, Boc), 1.56 and 1.71 (each s, 6H, Isop's $CH_3 \times 2$), 3.72 (s, 3H, OCH₃), 3.94–4.42 (m, 4H, CH₂OC, Ser's β -H), 4.65– 4.77 (m, 1H, Ser's α-H), 5.26–5.34 (m, 1H, CHN), 8.03–8.15 (m, 1H, Ser's NH), 8.12 and 8.32 (each s, 2H, thiazole's H \times 2). Found: C, 51.48; H, 6.67; N, 8.80%. Calcd for C₂₇H₄₂N₄O₇S₂Si: C, 51.73; H, 6.73; N, 8.94%.

(S,R)-2-[2-(3-t-Butoxycarbonyl-2,2-dimethyloxazolidin-4-yl)-

thiazol-4-yl]thiazole-4-thiocarbonyl-L-Ser(TBS)-OMe (15).

Similarly to the case of **11**, a solution of **14** (592 mg, 0.94 mmol) and Lawesson's reagent (209 mg, 0.52 mmol) in DME (10 mL) was woked up at 50 °C for 16 h. The reaction mixture was concentrated in vacuo to give a residual syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (3:1 v/v) to give **15** as a yellow syrup. Yield 82% (495 mg). $[\alpha]_D^{24} + 60.2^{\circ}$ (*c* 1.00, MeOH). IR 2952, 2931, 1778, 1706, 1521 cm⁻¹. ¹H NMR (DMSO-*d*₆) δ 0.07 and 0.08 (each s, 6H, TBS's CH₃ × 2), 0.88 (s, 9H, TBS's Bu¹), 1.37 (s, 9H, Boc), 1.56 and 1.72 (each s, 6H, Isop's CH₃ × 2), 3.75 (s, 3H, OCH₃), 4.05–4.42 (m, 4H, CH₂OC, Ser's β -H), 5.23–5.38 (m, 2H, CHN, Ser's α -H), 8.11 and 8.51 (each s, 2H, thiazole's H × 2), 9.90 (br d, 1H, Ser's NH, *J* = 6.6 Hz). Found: C, 50.69; H, 6.37; N, 8.62%. Calcd for C₂₇H₄₂-N₄O₇S₂Si: C, 50.44; H, 6.58; N, 8.71%.

(*S*,*R*)-2-[2-(3-*t*-Butoxycarbonyl-2,2-dimethyloxazolidin-4-yl]thiazol-4-yl]thiazole-4-thiocarbonyl-L-Ser-OMe (16). A solution of 15 (486 mg, 0.76 mmol) and TBAF (1.13 mL, 1 M in THF) in THF (10 mL) was stirred at 0 °C for 1 h. Evaporation of THF gave a residual substance, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give 16 as a yellow amorphous material. Yield 66% (264 mg). $[\alpha]_D^{24}$ +31.2° (*c* 1.00, MeOH). IR 3335, 2979, 1744, 1704, 1523, 1366 cm⁻¹. ¹H NMR (DMSO-*d*₆, 80 °C) δ 1.14–1.47 (m, 10H, Boc, OH), 1.56 and 1.72 (each s, 6H, Isop's CH₃ × 2), 3.73 (s, 3H, OCH₃), 3.90–4.42 (m, 4H, CH₂OC, Ser's β-H), 5.17–5.38 (m, 2H, CHN, Ser's α-H), 8.28 and 8.50 (each s, 2H, thiazole's H × 2), 9.90–10.01 (m, 1H, Ser's NH). Found: C, 47.96; H, 5.39; N, 10.43%. Calcd for C₂₁H₂₈N₄O₆S₃: C, 47.71; H, 5.34; N, 10.60%.

Methyl (*S,R*)-2-{2-[2-(3-*t*-Butoxycarbonyl-2,2-dimethyloxazolidin-4-yl)thiazol-4-yl]thiazol-4-yl]-4,5-dihydrothiazole-4carboxylate (17). To a solution of 16 (249 mg, 0.47 mmol) in THF (10 mL) were added, with stirring, Ph₃P (185 mg, 0.71 mmol) and DEAD (40% in toluene; 0.28 mL, 0.71 mmol) at 0 °C. After stirring for 1 h, evaporation of THF gave a residual substance, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give 17 as a colorless amorphous material. Yield 72% (173 mg). $[\alpha]_D^{24} + 3.7^{\circ}$ (*c* 1.02, MeOH). IR 2980, 1743, 1704 cm⁻¹. ¹H NMR (DMSO-*d*₆, 80 °C) δ 1.36 (s, 9H, Boc), 1.55 and 1.71 (each s, 6H, Isop's CH₃ × 2), 3.76 (s, 3H, OCH₃), 3.60–4.40 (m, 4H, thiazoline's CH₂, CH₂O), 5.27–5.42 (m, 2H, CHN, thiazoline's CH), 8.20 and 8.29 (each s, 2H, thiazole's H). Found: C, 49.37; H, 5.51; N, 10.92%. Calcd for C₂₁H₂₆N₄O₅S₃: C, 49.39; H, 5.13; N, 10.97%.

Methyl (S,R)-2-{2-[2-(1-t-Butoxycarbonylamino-2-hydroxyethyl)thiazol-4-yl]thiazol-4-yl}-4,5-dihydrothiazole-4-carboxylate (18). A solution of 17 (173 mg, 0.34 mmol) in a mixture of TFA and CHCl₃ (10 mL, 4:96 v/v) was stirred at room temperature for 2 h. The reaction mixture was neutralized with saturated NaHCO3 aqueous solution and the organic layer was washed with brine (10 mL \times 3) and dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual substance, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give 18 as colorless crystals. Yield 70% (112 mg). Mp 207-209 °C. $[\alpha]_{D}^{23}$ +1.3° (c 0.31, MeOH). IR 3439, 3336, 1732, 1700, 1586, 1524 cm⁻¹. ¹H NMR δ 1.48 (s, 9H, Boc), 178–2.04 (m, 1H, OH), 3.68 (dd, 2H, thiazoline's CH_2 , J = 5.2, 9.4 Hz), 3.84 (s, 3H, OCH₃), 3.93-4.18 (m, 2H, CH₂O), 5.02-5.15 (m, 1H, CHN), 5.32 (t, 1H, thiazoline's CH, J = 9.4 Hz), 6.70–6.80 (m, 1H, NH), 8.03 and 8.04 (each s, 2H, thiazole's H \times 2). Found: C, 45.59; H, 4.41; N, 11.96%. Calcd for C₁₈H₂₂N₄O₅S₃: C, 45.94; H, 4.71; N, 11.91%.

Methyl (S,R)-2-{2-[2-(1-t-Butoxycarbonylamino-2-t-butyldiphenylsiloxyethyl)thiazol-4-yl]thiazol-4-yl}-4,5-dihydrothiazole-4-carboxylate (19). To a solution of 18 (100 mg, 0.21 mmol) in CHCl₃ (5 mL) were added, with stirring, TPS-Cl (6 µL, 0.25 mmol) and imidazole (29 mg, 0.42 mmol) at 0 °C. After stirring for 12 h, the reaction mixture was washed with brine (5 mL imes3) and dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (3:1 v/v) to give 19 as a colorless syrup. Yield 97% (145 mg). $[\alpha]_D^{23} + 10.0^\circ$ (*c* 0.06, MeOH). IR 2926, 2855, 1717, 1489 cm⁻¹. ¹H NMR δ 0.97 (s, 9H, TPS's Bu^t), 1.49 (s, 9H, Boc), 3.69 (dd, 2H, thiazoline's CH_2 , J = 5.8, 9.2 Hz), 3.86 (s, 3H, OCH₃), 3.97-4.18 (m, 2H, CH₂O), 5.10-5.20 (m, 1H, CHN), 5.33 (t, 1H, thiazoline's CH, J = 9.2 Hz), 6.58– 6.68 (m, 1H, NH), 7.27–7.62 (m, 10H, TPS's Ph \times 2), 8.04 and 8.05 (each s, 2H, thiazole's H \times 2). Found: C, 57.81; H, 5.39: N, 8.01%. Calcd for C₃₄H₄₀N₄O₅S₃Si: C, 57.60; H, 5.67; N, 7.90%.

Methyl 6-Dimethoxymethyl-2-oxo-1,2-dihydropyridine-3carboxylate (22). A solution of 20 (10.0 g, 51.5 mmol) and 6 M KOH (100 mL) in EtOH (100 mL) was refluxed for 8 h. Evaporation of EtOH gave an aqueous reaction mixture, which was washed with diethyl ether (30 mL \times 3). The aqueous layer was acidified to pH 4 with citric acid hydrate and the resulting solution was extracted with EtOAc (100 mL \times 5). The combined extracts were washed with brine (50 mL) and dried over anhydrous Na_2SO_4 . Concentration in vacuo gave a residual substance 21, which was dissolved in MeOH (200 mL). To the resulting solution was added p-toluenesulfonic acid hydrate (4.43 g) and, after refluxing overnight, the resultant solution was neutralized with Et₃N at room temperature. Concentration in vacuo gave crude crystals, which were purified on a silica gel column using a mixture of CHCl₃ and acetone (7:1 v/v) to give colorless crystals. Recrystallization from a hexane-EtOAc gave 22 as colorless needles. Yield 63% (7.73 g) from 20 in two steps. Mp 94-95 °C. IR 3046, 2944, 2830, 1740, 1641, 1599, 1566 cm⁻¹. ¹H NMR δ 3.42 (s, 6H, CH(OCH₃)₂), 3.92 (s, 3H, OCH₃), 5.31 (s, 1H, CH(OCH₃)₂), 6.60 (d, 1H, pyridone's H, J = 7.6 Hz), 8.25 (d, 1H, pyridone's H, J = 7.6 Hz), 10.69–10.92 (br s, 1H, NH). Found: C, 53.06; H, 5.75; N, 6.47%. Calcd for C10H13NO5: C, 52.86; H, 5.77; N, 6.16%.

Methyl 6-Dimethoxymethyl-2-trifluoromethylsulfonyloxypyridine-3-carboxylate (23). To a solution of 22 (2.0 g, 8.80 mmol) in pyridine (50 mL) were added, with stirring, DMAP (1.51 g, 12.32 mmol) and Tf₂O (1.59 g, 9.68 mmol) at 0 °C. After stirring for 30 min, the reaction mixture was concentrated in vacuo to give a residual substance, which was dissolved in EtOAc (70 mL). The resulting solution was washed with a saturated NaHCO₃ aqueous solution (10 mL \times 3), and brine (10 mL \times 3) and then dried over anhydrous Na2SO4. Concentration in vacuo gave a syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give 23 as a colorless syrup. Yield 81% (2.56 g). IR 3478, 2932, 2836, 2248, 1725, 1608, 1557 cm⁻¹. ¹H NMR δ 3.44 (s, 6H, CH(OCH₃)₂), 4.00 (s, 3H, OMe), 5.29 (s, 1H, $CH(OCH_3)_2$), 7.75 (d, 1H, pyridine's H, J = 7.8 Hz), 8.50 (d, 1H, pyridine's H, J = 7.8 Hz). Found: C, 36.65; H, 3.39; N, 3.84%. Calcd for C₁₁H₁₂NO₇SF₃: C, 36.77; H, 3.37; N, 3.90%.

Methyl 6-Dimethoxymethyl-2-(1-ethoxyethenyl)pyridine-3carboxylate (24). To a solution of 23 (2.64 g, 7.35 mmol) in toluene (50 mL) were added $Pd(OAc)_2$ (0.25 g, 1.11 mmol), dppp (0.45 g, 1.09 mmol), ethyl vinyl ether (8.49 mL, 88.30 mmol) and Et₃N (3.08 mL, 22.10 mmol) at room temperature. The resulting suspension was refluxed for 6 h and then concentrated in vacuo to give a residual substance, which was dissolved in CHCl₃ (70 mL). The obtained solution was washed with brine (30 mL \times 2) and dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give **24** as a colorless syrup. Without purification, the compound **24** was used to the next reaction.

Methyl 2-Acetyl-6-dimethoxymethylpyridine-3-carboxylate (25). To a solution of 24 (1.43 g, 5.08 mmol) in THF (5 mL) was added, with stirring, 70% AcOH (50 mL) at room temperature. After stirring overnight, the reaction mixture was concentrated in vacuo to give a residual syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give 25 as a pale-yellow syrup. Yield 91% (1.28 g). IR 2926, 2838, 2620, 1704, 1584 cm⁻¹. ¹H NMR δ 2.69 (s, 3H, CH₃), 3.43 (s, 6H, CH(OCH₃)₂), 3.91 (s, 3H, OCH₃), 5.37 (s, 1H, CH-(OCH₃)₂), 7.73 (d, 1H, pyridine's H, J = 8.1 Hz), 8.04 (d, 1H, pyridone's H, J = 8.1 Hz). Found: C, 56.56; H, 6.08; N, 5.31%. Calcd for C₁₂H₁₅NO₅: C, 56.91; H, 5.97; N, 5.53%.

(RS)-2-(1-Hydroxyethyl)-3-hydroxymethyl-6-dimethoxymethylpyridine (26). To a solution of 25 (2.58 g, 10.20 mmol) in EtOH (50 mL) were added, with stirring, CaCl₂ (6.80 g, 61.27 mmol) and NaBH₄ (2.32 g, 61.33 mmol) at 0 °C. After stirring for 30 min and for 3 h at room temperature, a saturated NH₄Cl aqueous solution (50 mL) was added to the reaction mixture. Evaporation in vacuo gave a residual aqueous layer. The layer was extracted with EtOAc (50 mL \times 5) and the combined extracts were dried over anhydrous Na₂SO₄. Concentration in vacuo gave a syrup, which was purified on a silica-gel column using EtOAc to give 26 as a colorless syrup. Yield 94% (2.17 g). IR 3384, 2935, 1579 cm⁻¹. ¹H NMR δ 1.41 (d, 3H, CH₃, J = 6.4 Hz), 3.38 and 3.40 (each s, 6H, CH(OCH₃)₂), 3.43–3.46 (m, 1H, OH), 4.68 (s, 2H, CH₂), 4.81-5.00 (m, 2H, CHOH, OH), 5.34 (s, 1H, CH(OCH₃)₂), 7.46 (d, 1H, pyridine's H, J = 7.8 Hz), 7.81 (d, 1H, pyridine's H, J = 7.8 Hz). Found: C, 57.94; H, 7.98; N, 6.24%. Calcd for C₁₁H₁₇NO₄: C, 58.14; H, 7.54; N, 6.16%.

(RS)-3-t-Butyldiphenylsiloxymethyl-6-dimethoxymethyl-2-(1-hydroxyethyl)pyridine (27). To a solution of 26 (0.31 g, 1.36 mmol) in CH₂Cl₂ (30 mL) were added, with stirring, Et₃N (0.23 mL, 1.64 mmol), DMAP (0.02 g, 0.16 mmol), and TPS-Cl (0.36 mL, 1.55 mmol) at 0 °C for 30 min. After stirring at room temperature for 2 h, diethyl ether (40 mL) was added to the reaction mixture. The resulting solution was washed successively with 10% citric acid (30 mL \times 3), a saturated NaHCO₃ aqueous solution (30 mL \times 3), and brine (30 mL \times 3) and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give 27 as a colorless syrup. Yield 86% (0.54 g). IR 3448, 2854, 2230, 1959, 1893, 1821, 1728, 1584 cm⁻¹. ¹H NMR δ 1.09 (s, 9H, TPS's Bu^t), 1.27 (d, 3H, CH₃, J = 6.1 Hz), 1.84 (s, 1H, OH), 3.40 and 3.43 (each s, 6H, CH-(OCH₃)₂), 4.69–4.83 (m, 3H, CHOH, CH₂), 5.36 (s, 1H, CH- $(OCH_3)_2$, 7.34–7.45 and 7.64–7.70 (each m, 10H, TPS's Ph \times 2), 7.50 (d, 1H, pyridine's H, J = 8.1 Hz), 7.91 (d, 1H, pyridine's H, J = 8.1 Hz). Found: C, 69.35; H, 7.77; N, 3.18%. Calcd for C₂₇H₃₅NO₄Si: C, 69.64; H, 7.58; N, 3.18%.

(*RS*)-2-(1-Azidoethyl)-3-*t*-butyldiphenylsiloxymethyl-6-dimethoxymethylpyridine (28). To a solution of 27 (0.44 g, 0.94 mmol) in CH_2Cl_2 (40 mL) were added, with stirring, Et_3N (0.18 mL, 1.29 mmol) and Ms-Cl (0.10 mL, 1.23 mmol) at 0 °C. After stirring for 10 min, the reaction mixture was mixed with diethyl ether (60 mL) and the resulting solution was washed with brine (30 mL), and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual substance, which was purified on a silicagel column using a mixture of hexane and EtOAc (3:1 v/v) to give a colorless syrup. The obtained syrup was again dissolved in DMF (40 mL) and the resulting solution was stirred with NaN₃ (0.31 g, 4.71 mmol) at room temperature for 30 min. The reaction mixture was extracted with EtOAc (30 mL \times 3) and the combined extracts were washed with brine (30 mL) and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (5:1 v/v) to give 28 as a colorless syrup. Yield 92% (0.42 g). IR 3304, 2902, 2074, 1902, 1821, 1737, 1587 cm⁻¹. ¹H NMR δ 1.08 (s, 9H, TPS's Bu^t), 1.58 (d, 3H, CH₃, J = 6.6 Hz), 3.42 and 3.47 (each s, 6H, CH(OCH₃)₂), 4.54 (d, 1H, CHN₃, J =6.8 Hz), 4.77 (ABq, 2H, CH₂, J = 13.2 Hz), 5.34 (s, 1H, CH(OCH₃)₂), 7.34–7.46 and 7.62–7.69 (each m, 10H, TPS's Ph \times 2), 7.54 (d, 1H, pyridine's H, J = 8.1 Hz), 7.77 (d, 1H, pyridine's H, J = 8.1 Hz). Found: C, 65.68; H, 6.91; N, 11.60%. Calcd for C₂₇H₃₄N₄O₃Si: C, 66.04; H, 6.98; N, 11.42%.

(RS)-2-(1-t-Butoxycarbonylaminoethyl)-3-t-butyldiphenylsiloxymethyl-6-dimethoxymethylpyridine (30). A suspension of 28 (1.0 g, 2.03 mmol) and 10% Pd-C (0.10 g) in EtOH (50 mL) was stirred under H₂ gas stream for 30 min at room temperature. After the Pd-C was filtered off, the filtrate was concentrated in vacuo and the residual substance 29, which was in situ dissolved in CHCl₃ (50 mL). To the resulting solution were added, with stirring, Et₃N (0.28 mL, 2.03 mmol) and Boc₂O (0.53 g, 2.40 mmol) at 0 °C. After stirring for 30 min and at room temperature for 4 h, the reaction mixture was mixed with diethyl ether (70 mL), and then washed with 10% citric acid (30 mL \times 2), saturated NaHCO₃ aqueous solution (30 mL \times 2) and brine (30 mL \times 2), and finally dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give 30 as a colorless syrup. Yield 98% (1.14 g) from 28 in two steps. IR 3418, 2914, 1707, 1575 cm⁻¹. ¹H NMR δ 1.09 (s, 9H, TPS's Bu^t), 1.26 (d, 3H, CH_3 , J = 6.6 Hz), 1.41 (s, 9H, Boc), 3.40 (s, 6H, $CH(OCH_3)_2$), 4.72–4.93 (m, 3H, CHNH and CH₂), 5.36 (s, 1H, CH(CH₃)₂), 6.05 (br d, 1H, NH, J = 7.3 Hz), 7.33–7.47 and 7.63–7.69 (each m, 11H, TPS's Ph \times 2 and pyridine's H), 7.85 (d, 1H, pyridine's H, J = 8.1 Hz). Found: C, 67.64; H, 8.05; N, 4.55%. Calcd for C₃₂H₄₄N₂O₅Si: C, 68.05; H, 7.85; N, 4.96%.

Methyl (RS)-2-[2-(1-t-Butoxycarbonylaminoethyl)-3-(t-butyldiphenylsiloxymethyl)pyridin-6-yl]thiazole-4-carboxylate (32). After a solution of 30 (3.0 g, 5.31 mmol) and 2 M HCl (40 mL) in THF (40 mL) was stirred at room temperature overnight, the reaction mixture was neutralized with saturated NaHCO3 aqueous solution. After evaporating THF, the residue was extracted with EtOAc (50 mL \times 3). The combined extracts were washed with saturated NaHCO₃ aqueous solution (50 mL \times 3) and brine (50 mL \times 2), and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual substance 30, which was dissolved in toluene (80 mL). The resultant solution was stirred with H-L-Cys-OMe·HCl (1.82 g, 10.62 mmol) in the presence of Et₃N (1.48 mL, 10.62 mmol) at 0 °C for 10 h. Concentration in vacuo gave a residual substance, which was dissolved again in EtOAc (100 mL) and then washed with 10% citric acid (40 mL \times 3), a saturated NaHCO₃ aqueous solution (40 mL \times 3), brine (40 mL \times 3) and then dried over anhydrous Na₂SO₄. After concentrating in vacuo, the obtained residue was dissolved in toluene (80 mL); to the resulting solution was added MnO₂ (9.23 g, 106.2 mmol), and the mixture was stirred at room temperature overnight. After removal of MnO₂, the reaction mixture was concentrated in vacuo to give a viscous syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (3:1 v/v) to give **32** as a colorless amorphous material. Yield 57% (1.91 g). IR 3439, 2931, 1731, 1587 cm⁻¹. ¹H NMR δ 1.10 (s, 9H, TPS's Bu'), 1.34 (d, 3H, CH₃, J = 6.6 Hz), 1.42 (s, 9H, Boc), 3.99 (s, 3H, OMe), 4.76–4.95 (m, 3H, *CH*NH, CH₂), 5.75 (br d, 1H, NH, J = 8.3 Hz), 7.33–7.45 and 7.64–7.69 (each m, 10H, TPS's Ph × 2), 7.86 (br d, 1H, pyridine's H, J = 8.6 Hz), 8.18 (d, 1H, pyridine's H, J = 7.8 Hz), 8.26 (s, 1H, thiazole's H). Found: C, 64.52; H, 6.86; N, 6.29%. Calcd for C₃₄H₄₁N₃O₅SSi: C, 64.63; H, 6.54; N, 6.65%.

(*RS*)-2-[2-(1-*t*-Butoxycarbonylaminoethyl)-3-(*t*-butyldiphenylsiloxymethyl)pyridin-6-yl]thiazole-4-carboxylic Acid (33). To a solution of 32 (6.20 g, 9.81 mmol) in H₂O-dioxane (60 mL, 1:1 v/v) was added, with stirring, 1 M LiOH (11.77 mL, 11.77 mmol) at 0 °C. After stirring for 10 min and for 5 h at room temperature, the resultant solution was acidified with citric acid hydrate to pH 4. The reaction mixture was extracted with EtOAc (50 mL × 3) and the combined extracts were washed with brine (30 mL × 2), and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a colorless syrup 33, which was intact used the next reaction.

Phenacyl (*RS*)-2-[2-(1-*t*-Butoxycarbonylaminoethyl)-3-(*t*-butyldiphenylsiloxymethyl)pyridin-6-yl]thiazole-4-carboxy-

late (34). To a solution of 33 (2.36 g, 3.82 mmol) in DMF (50 mL) were added, with stirring, Et₃N (0.80 mL, 5.73 mmol) and Pac-Br (1.14 g, 5.37 mmol) at 0 °C. After stirring for 30 min and at room temeperature for 6 h, the reaction mixture was added to water (50 mL). The resulting solution was extracted with EtOAc $(30 \text{ mL} \times 3)$ and the combined extracts were dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give 34 as a colorless amorphous material. Yield 83% (2.45 g). IR 3435, 3070, 2960, 2930, 2891, 2857, 2359, 1704, 1586 cm⁻¹. ¹H NMR δ1.10 (s, 9H, TPS's Bu^t), 1.34 (d, 3H, CH₃, J = 6.6 Hz), 1.43 (s, 9H, Boc), 4.87 (s, 2H, CH₂), 4.75–4.97 (m, 1H, CHN), 5.66 (s, 2H, Pac's CH₂), 5.76 (br d, 1H, NH, J = 7.9 Hz), 7.35–7.72 (each m, 15H, TPS's and Pac's Ph \times 3), 7.87 (d, 1H, pyridine's H, J = 7.9 Hz), 8.20 (d, 1H, pyridine's H, J = 7.9 Hz), 8.40 (s, 1H, thiazole's H). Found: C, 66.48; H, 6.01; N, 5.77%. Calcd for C₄₁H₄₅N₃O₆SSi: C, 66.91; H, 6.16; N, 5.71%.

Phenacyl (RS)-2-[2-(1-t-Butoxycarbonylaminoethyl)-3-(hydroxymethyl)pyridin-6-yl]thiazole-4-carboxylate (35). To а solution of 34 (1.0 g, 1.36 mmol) in THF (30 mL) was added, with stirring, TBAF (2.04 mL of 1 M THF, 2.04 mmol) at 0 °C. After stirring for 30 min, the reaction mixture was concentrated in vacuo to give a residual substance. The residue was purified on a silicagel column using a mixture of hexane and EtOAc (1:1 v/v) to give colorless crystals, which were recrystallized from a hexane-EtOAc to give 35 as colorless crystals. Yield 77% (0.52 g). Mp 173-174 °C. IR 3450, 3377, 3133, 2974, 2930, 2888, 1734, 1699, 1663, 1599, 1583, 1518 cm⁻¹. ¹H NMR δ 1.41 (s, 9H, Boc), 1.51 (d, 3H, CH_3 , J = 6.6 Hz), 3.95–4.80 (m, 1H, OH), 4.54–4.68 and 4.90–5.10 (each m, 2H, CH₂), 5.57 (br d, 1H, NH, J = 8.9 Hz), 5.65 (s, 2H, Pac's CH₂), 7.48-7.68 and 7.92-8.01 (each m, 5H, Pac's Ph), 7.84 (d, 1H, pyridine's H, J = 8.2 Hz), 8.19 (d, 1H, pyridine's H, J = 8.2 Hz), 8.40 (s, 1H, thiazole's H). Found: C, 60.27; H, 5.41; N, 8.58%. Calcd for $C_{25}H_{27}N_3O_6S$: C, 60.35; H, 5.47; N, 8.45%.

(RS)-2-(1H-2-t-Butoxycarbonyl-1-oxo-2,3-dihy-Phenacyl dropyrrolo[3,4-b]pyridin-5-yl)thiazole-4-carboxylate (36).To a solution of 35 (1.07 g, 2.15 mmol) in acetone (75 mL) was added 2.67 M Jones reagent (1.21 mL, 3.23 mmol) at 0 °C. After stirring for 40 min, the reaction mixture was mixed with *i*-PrOH (40 mL) and the precipitated Cr salt was filtered off. The filtrate was made to pH 9 with a saturated NaHCO₃ aqueous solution. Evaporation of acetone gave a residual solution, which was extracted with EtOAc (40 mL \times 3); the combined extracts were washed with brine (30 mL \times 3) and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave residual crystals, which were purified on a silica-gel column using a mixture of hexane and EtOAc (1:2 v/v) to give crude crystals. Recrystallization from a hexane-EtOAc gave 36 as a colorless amorphous material. Yield 83% (0.88 g). IR 3749, 3417, 2931, 2360, 1738, 1596 cm⁻¹. ¹H NMR δ 1.63 (s, 9H, Boc), 1.77 (d, 3H, CH₃, J = 6.6 Hz), 5.14 (q, 1H, CHN, J = 6.6 Hz), 5.67 (s, 2H, CH₂), 7.50–7.68 and 7.97– 8.00 (each m, 5H, Pac's Ph), 8.27 (d, 1H, pyridine's H, J = 7.9Hz), 8.48 (d, 1H, pyridine's H, J = 7.9 Hz), 8.50 (s, 1H, thiazole's H). Found: C, 61.17; H, 4.52; N, 8.38%. Calcd for C₂₅H₂₃N₃O₆S: C, 60.84; H, 4.70; N, 8.51%.

(RS)-2-(1H-2-t-Butoxycarbonyl-1-oxo-2,3-dihydropyrrolo-[3,4-*b*]pyridin-5-yl)thiazole-4-carbonyl-L-Ser(TBS)-OBu^t (38). A solution of 36 (0.52 g, 1.05 mmol) and K₂CO₃ (0.44 g, 3.15 mmol) in water-THF (40 mL, 1:2 v/v) was stirred at 0 °C for 30 min and then at room temperature for 8 h. Evaporation of THF gave an aqueous solution, which was acidified to pH 4 with citric acid hydrate. The reaction mixture was extracted with EtOAc (20 $mL \times 2$) and the combined extracts were washed with brine (10 $mL \times 2$) and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a free acid 37 as a residual substance, which was in situ dissolved in DMF (30 mL). To the resulting solution were added, with stirring, H-L-Ser(TBS)-OBu^t (0.32 g, 1.16 mmol), Et₃N (0.23 mL, 1.68 mmol), and DPPA (0.30 mL, 1.37 mmol) at 0 °C. After stirring for 30 min and at room temperature overnight, water (30 mL) was added to the reaction mixture, and the resulting solution was extracted with EtOAc (20 mL \times 3). The combined extracts were washed with 10% citric acid (20 mL \times 2), saturated NaHCO₃ aqueous solution (20 mL \times 2), and brine (20 mL \times 2) and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residue, which was purified on a silica-gel column using a mixture of CHCl₃ and acetone (1:1 v/v) to give 38 as a colorless amorphous material. Yield 70% (0.47 g). IR 3418, 2932, 2857, 1783, 1748, 1682, 1594, 1537, 1506 cm⁻¹. ¹H NMR δ each 0.05 (each s, 6H, TBS's $CH_3 \times 2$), 0.91 (s, 9H, TBS's Bu'), 1.50 (s, 9H, Boc), 1.62 (s, 9H, OBu^t), diastereomer 1.74 and 1.75 (each d, 3H, CH₃, J = each 6.6 Hz), 3.94 and 4.17 (dABq, 2H, Ser's β -H, J =2.3, 10.1 Hz), 4.68-4.78 (m, 1H, Ser's α-H), diastereomer each 5.12 (each q, 1H, CHCH₃, J = 6.6 Hz), 8.16 (br d, 1H, NH, J =8.6 Hz), 8.25 (d, 1H, pyridine's H, J = 8.3 Hz), 8.29 (s, 1H, thiazole's H), 8.33 (d, 1H, pyridine's H, J = 8.3 Hz). Found: C, 56.75; H, 7.15; N, 8.45%. Calcd for C₃₀H₄₄N₄O₇SSi: C, 56.94; H, 7.01; N. 8.85%.

2-{3-Benzyloxycarbonyl-2-[(1*SR*)-1-*t*-butoxycarbonylaminoethyl]pyridin-6-yl}thiazole-4-carbonyl-L-Ser(TBS)-OBu^t (40). A solution of **38** (2.59 g, 4.09 mmol) and 1 M LiOH (12.27 mL, 12.27 mmol) in THF–water (100 mL, 2:1 v/v) was stirred at 0 °C for 30 min and at room temperature for 1 h. Evaporation of THF

gave a residual aqueous solution, which was extracted with EtOAc (50 mL \times 3). The combined extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo to give a residue 39, which was in situ dissolved in DMF (50 mL). To the resulting solution were added, with stirring, Et₃N (1.31 mL, 9.41 mmol) and Bn-Br (0.97 mL, 8.18 mmol) at 0 °C. After stirring for 30 min and at room temperature for 12 h, water (50 mL) was added to the reaction mixture and the resulting solution was extracted with EtOAc (30 mL \times 3). The combined extracts were washed with 10% citric acid (30 mL \times 3), saturated NaHCO₃ aqueous solution (30 mL \times 3), and brine (30 mL \times 3), and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residue, which was purified on a silica-gel column using a mixture of hexane and EtOAc (2:1 v/v) to give 40 as a colorless amorphous material. Yield 67% (2.03 g) in two steps from 38. IR 3419, 2977, 2931, 2885, 2857, 1720, 1677, 1584, 1536 cm⁻¹. ¹H NMR δ 0.04 and 0.05 (each s, 6H, TBS's CH₃ \times 2), 0.90 (s, 9H, TBS's Bu^t), 1.37–1.50 (m, 12H, CH₃, Boc), 1.50 (s, 9H, O-t-Bu), 4.33 and 4.56 (dABq, 2H, Ser's β -H, J = 2.3, 10.1 Hz), 4.70–4.79 (m, 1H, Ser's α -H), 5.40 (s, 2H, Bn's CH₂), 5.68–5.88 (m, 2H, NHBoc, CH₃CH), 7.35–7.52 (m, 5H, Bn's Ph), diastereomer 8.08 and 8.09 (each d, 1H, pyridine's H, J = each 8.3 Hz), 8.14 (d, 1H, NH, J = 8.9 Hz), 8.26 (s, 1H, thiazole's H), 8.33 (d, 1H, pyridine's H, J = 8.3 Hz). Found: C, 59.88; H, 7.13; N, 7.17%. Calcd for C₃₇H₅₂N₄O₈SSi: C, 59.97; H, 7.07; N, 7.56%.

2-{3-Benzyloxycarbonyl-2-[(1RS)-1-t-butoxycarbonylaminoethyl]pyridin-6-yl}thiazole-4-thiocarbonyl-L-Ser(TBS)-OBu^t (41). A solution of 40 (1.31 g, 1.77 mmol) and Lawesson's reagent (0.72 g, 1.77 mmol) in DME (50 mL) was stirred at 50 °C for 12 h. The reaction mixture was concentrated in vacuo to give a residue, which was purified on a silica-gel column using a mixture of hexane and EtOAc (3:1 v/v) to give 41 as a yellow amorphous material. Yield 68% (0.91 g). IR 3439, 3352, 3115, 3091, 3066, 3033, 2928, 1956, 1722, 1583, 1501 cm⁻¹. ¹H NMR δ 0.01 and 0.04 (each s, 6H, TBS's $CH_3 \times 2$), 0.88 (s, 9H, TBS's Bu'), 1.43 (s, 9H, Boc), 1.46 (d, 3H, CH_3 , J = 6.3 Hz), 1.52 (s, 9H, OBu'), 4.17–4.19 (m, 2H, Ser's β -H), 5.27–5.32 (m, 1H, Ser's α -H), 5.41 (s, 2H, Bn's CH₂), 5.66–5.90 (m, 2H, NHBoc, CH₃CH), 7.34–7.50 (m, 5H, Bn's Ph), diastereomer 8.08 and 8.09 (each d, 1H, pyridine's H, J = each 8.3 Hz), diastereomer 8.33 and 8.34 (each d, 1H, pyridine's H, J = 8.3 Hz), 8.56 (s, 1H, thiazole's H), 9.96 (d, 1H, NH, J = 10.0 Hz). Found: C, 59.01; H, 6.88; N, 7.10%. Calcd for C₃₇H₅₂N₄O₇ S₂Si: C, 58.69; H, 6.92; N, 7.40%.

2-{3-Benzyloxycarbonyl-2-[(1R)- and (1S)-t-butoxycarbonylaminoethyl]pyridin-6-yl}thiazole-4-thiocarbonyl-L-Ser-OBu^t (42 and 43). To a solution of 41 (0.22 g, 0.29 mmol) in THF (30 mL) was added, with stirring, 2 M HCl (30 mL) at room temperature for a few minutes. Evaporation of THF gave a aqueous solution, which was extracted with EtOAc (20 mL \times 3). The combined extracts were washed with saturated NaHCO3 aqueous solution (20 mL \times 2), and brine (10 mL \times 2), and dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residue, which was purified on a silica-gel column using a mixture of hexane and EtOAc (2:1 v/v) to give a mixture of diastereomeric isomers as a crystalline material. The obtained crystals were again chromatographed on a silica-gel column using a mixture of CHCl₃ and acetone (50:1 v/v) to give 42 from first eluate and 43 from last eluate as yellow crystals. 42: Yield 41% (76 mg). Mp 174.5-176.5 °C. $[\alpha]_{\rm D}^{25}$ -33.6° (c 1.00, CHCl₃). IR 3392, 3302, 2981, 2934, 1725, 1692, 1584, 1522 cm⁻¹. ¹H NMR δ 1.43 (s, 9H, Boc), 1.45 (d, 3H, CH₃, *J* = 6.6 Hz), 1.55 (s, 9H, OBu^{*t*}), 2.20 (t, 1H, OH, *J* = 6.3 Hz), 4.12–4.20 and 4.28–4.46 (each m, 2H, Ser's β-H), 5.29–5.34 (m, 1H, Ser's α-H), 5.40 (s, 2H, Bn's CH₂), 5.63–5.91 (m, 2H, BocN*H*, CH₃C*H*), 7.34–7.49 (m, 5H, Bn's Ph), 8.14 (d, 1H, pyridine's H, *J* = 8.3 Hz), 8.34 (d, 1H, pyridine's H, *J* = 8.3 Hz), 8.55 (s, 1H, thiazole's H), 9.98 (br d, 1H, NH, *J* = 7.3 Hz). **43**: Yield 41% (76 mg). Mp 141–145 °C. $[\alpha]_D^{24}$ +95.7° (*c* 0.92, CHCl₃). IR 3551, 3428, 3331, 2978, 2932, 1710, 1581, 1509 cm⁻¹. ¹H NMR δ 1.43 (s, 9H, Boc), 1.45 (d, 3H, CH₃, *J* = 6.6 Hz), 1.55 (s, 9H, OBu'), 2.15–2.17 (m, 1H, OH), 4.12–4.20 and 4.28–4.36 (each m, 2H, Ser's β-H), 5.28–5.33 (m, 1H, Ser's α-H), 5.40 (s, 2H, Bn's CH₂), 5.63–5.91 (m, 2H, BocN*H*, CH₃C*H*), 7.36–7.49 (m, 5H, Bn's Ph), 8.14 (d, 1H, pyridine's H, *J* = 8.3 Hz), 8.30 (d, 1H, pyridine's H, *J* = 7.3 Hz). Found: C,57.92; H, 6.01; N, 8.63%. Calcd for C₃₁H₃₈N₄O₇S₂: C, 57.93; H, 5.96; N, 8.72%.

t-Butyl (4S)-2-(2-{3-Benzyloxycarbonyl-2-[(1R)-t-butoxycarbonylaminoethyl]pyridin-6-yl}thiazol-4-yl)-4,5-dihydrothiazole-4-carboxylate (44). To a solution of 42 (460 mg, 0.72 mmol) in THF (10 mL) were added, with stirring, Ph₃P (0.28 g, 1.08 mmol) and DEAD (0.28 mL, 1.08 mmol) (40% in toluene) at 0 °C. After stirring for 30 min, THF in the reaction mixture was evaporated and the residual substance was purified on a silica-gel column using a mixture of hexane and EtOAc (2:1 v/v) to give 44 as a colorless syrup. 44: Yield 69% (340 mg). $[\alpha]_{D}^{26}$ -50.9° (c 0.70, CHCl₃). IR 3435, 3113, 2977, 2931, 2360, 1719, 1606, 1583 cm⁻¹. ¹H NMR δ 1.43 (s, 9H, Boc), 1.46 (d, 3H, CH₃, J = 6.3 Hz), 1.53 (s, 9H, OBu^t), 3.63 (d, 2H, thiazoline's CH₂, J = 9.2Hz), 5.22 (t, 1H, thiazoline's H, J = 9.2 Hz), 5.39 (s, 2H, Bn's CH₂), 5.62-5.89 (m, 2H, BocNH, CHNH), 7.34-7.49 (m, 5H, Bn's Ph), 8.17 (d, 1H, pyridine's H, J = 8.3 Hz), 8.20 (s, 1H, thiazole's H), 8.34 (d, 1H, pyridine's H, J = 8.3 Hz). Found: C, 59.50; H, 5.85; N, 8.90%. Calcd for C₃₁H₃₆N₄O₆S₂: C, 59.61; H, 5.77; N, 8.97%.

t-Butyl (4S)-2-(2-{3-Benzyloxycarbonyl-2-[(1R)-t-butoxycarbonylaminoethyl]pyridin-6-yl}thiazol-4-yl)thiazole-4-carboxylate (45). A suspension of 44 (31 mg, 0.05 mmol) and MnO₂ (65 mg, 0.75 mmol) in toluene (1 mL) was stirred at room temperature for 20 h. The MnO₂ was filtered off and the filtrate was concentrated in vacuo to give a residual substance, which was purified on a silica-gel column using a mixture of hexane and EtOAc (3:1 v/v) to give 45 as a colorless syrup. Yield 77% (24 mg). $[\alpha]_{D}^{25} - 44.7^{\circ}$ (c 0.43, CHCl₃). IR 3434, 3108, 2975, 2931, 2361, 2342, 1718, 1583 cm⁻¹. ¹H NMR δ 1.44 (s, 9H, Boc), 1.47 (d, 3H, CH₃, J = 6.3 Hz), 1.64 (s, 9H, OBu^t), 5.40 (s, 2H, Bn's CH₂), 5.64-5.92 (m, 2H, BocNH, CHNH), 7.34-7.50 (m, 5H, Bn's Ph), 8.09 (s, 1H, thiazole's H), 8.18 (d, 1H, pyridine's H, J =8.3 Hz), 8.32 (s, 1H, thiazole's H), 8.37 (d, 1H, pyridine's H, J =8.3 Hz). Found: C, 59.69; H, 5.74; N, 8.66%. Calcd for C₃₁H₃₄-N₄O₆S₂: C, 59.79; H, 5.50; N, 9.00%.

(4*S*)-2-(2-{3-Benzyloxycarbonyl-2-[(1*S*)-*t*-butoxycarbonylaminoethyl]pyridin-6-yl}thiazol-4-yl)-4,5-dihydrothiazole-4carboxylate (46) and 2-(2-{3-Benzyloxycarbonyl-2-[(1*S*)-*t*-butoxycarbonylaminoethyl]pyridin-6-yl}thiazol-4-yl)thiazole-4carboxylate (47). Similarly to the case of 42, a treatment of 43 (460 mg) with Ph₃P (0.28 g) and DEAD (0.28 mL, 40% in toluene) was worked up to give a mixture of two chemical species, which were easily separated on a silica-gel column using a mixture of hexane and EtOAc (2:1 v/v) to give 46 from last eluate and 47 from first eluate as a colorless syrup. 46: Yield 19% (84 mg). $[\alpha]_D^{26}$ +47.1° (*c* 0.31, CHCl₃). IR 3435, 3113, 2976, 2930, 2360, 1716, 1582 cm⁻¹. ¹H NMR δ 1.43 (s, 9H, Boc), 1.46 (d, 3H, CH₃, J = 6.3 Hz), 1.53 (s, 9H, OBu'), 3.63 (d, 2H, thiazoline's CH₂, J = 9.2 Hz), 5.23 (t, 1H, thiazoline's CH, J = 9.2 Hz), 5.39 (s, 2H, Bn's CH₂), 5.62–5.89 (m, 2H, BocN*H*, C*H*NH), 7.34–7.48 (m, 5H, Bn's Ph), 8.17 (d, 1H, pyridine's H, J = 8.3 Hz), 8.20 (s, 1H, thiazole's H), 8.34 (d, 1H, pyridine's H, J = 8.3 Hz). **47**: Yield 48% (211 mg). $[\alpha]_{D}^{26} + 54.0^{\circ}$ (*c* 0.50, CHCl₃). Found: C, 59.72; H, 5.63; N, 8.59%. Calcd for C₃₁H₃₆N₄O₆S₂: C, 59.60; H, 5.77; N, 8.97%. The IR and ¹H NMR spectra of **47** were completely identical with those of **45**.

(S)-2-(1-Hydroxyethyl)pyridine [(S)-49]. According to the method reported,¹⁴ the treatment of 2-acetylpyridine (2.50 g, 26.64 mmol) with dry Yeast (56 g) and D-glucose (64 g) in water (500 mL) at room temperature for 24 h gave (S)-49 as a colorless oil. Yield 48% (1.22 g). $[\alpha]_{D}^{26} - 55.5^{\circ}$ (*c* 1.61, EtOH). {lit.¹⁴ $[\alpha]_{D} - 55.5^{\circ}$ (*c* 1.50, EtOH)}.

(R)-2-(1-Hydroxyethyl)pyridine [(R)-49]. A solution of (S)-49 (1.56 mg, 1.27 mmol) and Ms-Cl (0.15 mL, 2.54 mmol) in the presence of Et₃N (0.53 mL, 3.81 mmol) in CHCl₃ (20 mL) was stirred at 0 °C for 30 min. The reaction mixture was washed with brine (10 mL \times 3), dried over anhydrous Na₂SO₄, and then concentrated in vacuo to give a residue. The residue was dissolved in DMF (20 ml), to which was added AcONa (313 mg, 3.81 mmol) and 15-crown-5-ether (18 µL, 0.13 mmol) at room temperature. After stirring for 24 h, to the reaction mixture was added water (20 mL) and then the resulting solution was extracted with EtOAc (20 $mL \times 2$). The combined extracts were washed with brine (20 mL \times 3), dried over anhydrous Na₂SO₄ and then concentrated in vacuo to give a residue. The obtained residue was purified on a silicagel column using a mixture of hexane and EtOAc (2:1 v/v) to give a residual oil. The oil was again dissolved in a MeOH-water (20 mL, 2:1 v/v), to which was added, with stirring, K₂CO₃ (263 mg, 1.91 mmol) at 0 °C for 30 min. After stirring for 3 h at room temperature, MeOH was evaporated and the residual aqueous layer was extracted with EtOAc (20 mL \times 5). The combined extracts were washed once with brine (20 mL), dried over anhydrous Na₂SO₄, and then concentrated in vacuo to give a residual oil. The obtained oil was purified on a silica gel column using EtOAc to give (**R**)-49 as a colorless oil. Yield 46% (72 mg). $[\alpha]_{D}^{24} + 56.2^{\circ}$ (c 1.53, EtOH).

(R)-2-(1-Azidoethyl)pyridine [(R)-50]. A solution of (S)-49 (185 mg, 1.50 mmol) and Ms-Cl (0.23 mL, 3.00 mmol) in the presence of Et₃N (0.62 mL, 4.50 mmol) in CHCl₃ (20 mL) was stirred at 0 °C for 30 min. The reaction mixture was washed with brine (10 mL \times 3), dried over anhydrous Na₂SO₄ and then concentrated in vacuo to give a residual substance. The residue was dissolved in DMF (20 mL) and treated with NaN₃ (293 mg, 450 mmol) at room temperature. After stirring overnight, the reaction mixture was diluted with water (20 mL) and the resulting solution was extracted with EtOAc (20 mL \times 2). The combined extracts were washed with brine (20 mL \times 3) and dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual oil, which was purified on a silica-gel column using a mixture of hexane and EtOAc (2:1 v/v) to give (**R**)-50 as a colorless oil. Yield 75% (166 mg). $[\alpha]_{D}^{25}$ +61.1° (*c* 1.09, MeOH). IR 2981, 2933, 2110, 1592, 1473, 1436 cm⁻¹. ¹H NMR δ 1.61 (d, 3H, CH₃, J = 6.8 Hz), 4.68 (q, 1H, CH, J = 6.8 Hz), 7.18–7.30 (m, 1H, pyridine's H), 7.35 (d, 1H, pyridine's H, J = 7.8 Hz), 7.72 (dt, 1H, pyridine's H, J = 1.7, 7.8 Hz), 8.59 (d, 1H, pyridine's H, J = 4.9 Hz).

(S)-2-(1-Azidoethyl)pyridine [(S)-50]. Similarly to the above case, (**R**)-50 was obtained from (**R**)-49. Yield 72% (160 mg). $[\alpha]_{2^4}^{D^4} - 50.4^{\circ}$ (c 1.10, MeOH).

(R)-2-(1-t-Butoxycarbonylaminoethyl)pyridine [(R)-51].

A suspension of (R)-50 (166 mg, 1.12 mmol) and 10% Pd-C (10 mg) in EtOH (20 mL) under H₂ gas stream was stirred at room temperature for 30 min. The Pd-C was filtered off, the filtrate was concentrated in vacuo to give a residue, which was dissolved in CHCl₃ (20 mL). To the resulting solution was added, with stirring, Boc₂O (367 mg, 1.68 mmol) and Et₃N (0.91 mL, 1.34 mmol) at 0 °C. After stirring for 3 h, the reaction mixture was washed with brine (10 mL \times 3) and dried over anhydrous Na₂SO₄. Concentration in vacuo gave a syrup, which was purified on a silicagel column using a mixture of hexane and EtOAc (2:1 v/v) to give (*R*)-51 as a colorless syrup. Yield 81% (202 mg). $[\alpha]_{D}^{25} + 49.7^{\circ}$ (*c* 1.01, MeOH). IR 3336, 2976, 2931, 1712, 1592, 1572, 1496, 1444 cm⁻¹. ¹H NMR δ 1.44 (s, 9H, Boc), 1.37–1.52 (m, 3H, CH₃), 4.74–4.94 (m, 1H, CH), 5.64–5.78 (m, 1H, NH), 7.12–7.28 (m, 2H, pyridine's H \times 2), 7.64 (dt, 1H, pyridine's H, J = 1.7, 7.8Hz), 8.54 (d, 1H, pyridine's H, J = 4.9 Hz). Found: C, 64.37; H, 7.97; N, 12.23%. Calcd for C12H18N2O2: C, 64.84; H, 8.16; N, 12.60%.

(*S*)-2-(1-*t*-Butoxycarbonylaminoethyl)pyridine [(*S*)-51]. Similarly to the above case, (*S*)-51 was obtained from (*S*)-50. Yield 78% (194 mg). $[\alpha]_D^{25} - 54.1^\circ$ (*c* 0.98, MeOH). Found: C, 64.88; H, 8.05; N, 12.62%. Calcd for C₁₂H₁₈N₂O₂: C, 64.84; H, 8.16; N, 12.60%.

(S)-3-t-Butoxycarbonyl-2,2,5-trimethyloxazolidine-4-carbonyl-Gly-OMe (53). A solution of 52 (3.0 g, 12.92 mmol), DCC (2.9 g, 14.21 mmol), HOSu (1.6 g, 14.21 mmol), and HCl·H-Gly-OMe (1.15 g, 12.92 mmol) in CH2Cl2 (70 mL) was stirred at 0 °C for 30 min and at room temperature for 6 h. The precipitated DCC urea salt was filtered off, the filtrate was added to diethyl ether (80 mL). The resulting solution was washed with 10% citric acid (50 mL \times 3), saturated NaHCO₃ aqueous solution (50 mL \times 3), and brine (50 mL \times 3) and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residue, which was purified on a silicagel column using a mixture of hexane and EtOAc (1:1 v/v) to give colorless crystals. Recrystallization from a hexane-EtOAc gave 53 as colorless needles. Yield 70% (2.64 g). Mp 135-137 °C. $[\alpha]_{\rm D}^{23}$ -4.40° (c 1.80, MeOH). IR 3328, 2980, 1755, 1710, 1671, 1566 cm⁻¹. ¹H NMR δ 1.38 (d, 3H, Thr's CH₃, J = 5.7 Hz), 1.44 (s, 9H, Boc), 1.61 and 1.63 (each s, 6H, Isop's $CH_3 \times 2$), 3.77 (s, 3H, OMe), 3.75–3.78 (m, 1H, Thr's β -H), 4.08 (d, 2H, Gly's CH₂, J = 5.1 Hz), 4.05–4.11 (m, 1H, Thr's α -H), 6.38–6.70 (br d, 1H, Gly's NH). Found: C, 44.07; H, 9.54; N, 9.98%. Calcd for C₁₇H₂₆N₂O₆: C, 44.43; H, 9.69; N, 10.36%.

(S)-3-t-Butoxycarbonyl-2,2,5-trimethyloxazolidine-4-carbonyl-Gly-OH (54). To a solution of 53 (205 mg, 0.60 mmol) in water-dioxane (30 mL, 1:1 v/v) was added 1 M LiOH (0.90 mL, 0.90 mmol) at 0 °C. After stirring for 30 min, the reaction mixture was washed with diethyl ether (10 mL \times 3), and the resulting aqueous solution was acidified to pH 4 with citric acid hydrate and then extracted with EtOAc (10 mL \times 3). The combined extracts were dried over anhydrous Na₂SO₄. Concentration in vacuo gave colorless crystals, which were recrystallized from a hexane-EtOAc to give 54 as colorless needles. Yield 98% (194 mg). Mp $175-176 \,^{\circ}\text{C}$. $[\alpha]_{D}^{24} + 180.8^{\circ} (c \, 0.1, \text{MeOH})$. IR 3289, 2980, 2932, 1749, 1668, 1578 cm⁻¹. ¹H NMR δ 1.40 (d, 3H, Thr's CH₃, J =6.1 Hz), 1.44 (s, 9H, Boc), 1.59 and 1.62 (each s, 6H, Isop's CH₃ × 2), 3.89 (d, 1H, Thr's β -H, J = 7.6 Hz), 4.08–4.11 (m, 2H, Gly's CH₂), 4.23–4.18 (m, 1H, Thr's α-H), 6.68–6.95 (br s, 1H, Gly's NH), 8.46-8.70 (br s, 1H, COOH). Found: C, 53.05; H, 7.55; N, 8.53%. Calcd for C14H24N2O6: C, 53.15; H, 7.65; N, 8.86%.

(S)-3-t-Butoxycarbonyl-2,2,5-trimethyloxazolidine-4-carbonyl-Gly-L-Thr(TBS)-OMe (55). To a solution of 54 (4.84 g, 14.22 mmol) in DMF (50 mL) were added, with stirring, HOBt (2.88 g, 21.33 mmol) at 0 °C for 10 min and then DCC (3.95 g, 19.13 mmol). After stirring for 30 min at 0 °C, H-L-Thr(TBS)-OMe (3.52 g, 14.22 mmol) was added, and the resulting solution was further stirred at room temperature for 6 h. The precipitated DCC urea salt was filtered off and the filtrate was added to water (50 mL). The solution was extracted with EtOAc (40 mL \times 3) and the combined extracts were washed with 10% citric acid (30 mL \times 2), a saturated NaHCO₃ aqueous solution (30 mL \times 2), and brine (30 mL \times 2), and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residue, which was purified on a silicagel column using a mixture of hexane and EtOAc (2:1 v/v) to give **55** as a colorless syrup. Yield 96% (7.45 g). $[\alpha]_{D}^{28} - 51.4^{\circ}$ (c 0.86, MeOH). IR 3376, 3334, 2920, 2890, 2854, 1662, 1503 cm⁻¹. ¹H NMR (DMSO- d_6) δ 0.01 and 0.05 (each s, 6H, TBS's CH₃ × 2), 0.86 (s, 9H, TBS's Bu^{*t*}), 1.11 (d, 3H, Thr's CH₃, J = 6.3 Hz), 1.31 (d, 3H, Thr's CH_3 , J = 5.9 Hz), 1.36 (s, 9H, Boc), 1.51 and 1.52 (each s, 6H, Isop's $CH_3 \times 2$), 3.65 (s, 3H, OCH_3), 3.65–3.85 (m, 2H, Gly's CH₂), 3.98–4.19 (m, 2H, Thr's α-H, Thr's β-H), 4.31– 4.36 (m, 1H, Thr's β -H), 4.43–4.47 (m, 1H, Thr's α -H), 7.44 (d, 1H, Thr's NH, J = 8.9 Hz), 8.19–8.23 (br s, 1H, Gly's NH). Found: C, 55.02; H, 8.97; N, 7.56%. Calcd for C₂₅H₄₇N₃O₈Si: C, 55.02; H, 8.68; N, 7.70%.

(S)-3-t-Butoxycarbonyl-2,2,5-trimethyloxazolidine-4-carbonyl-Gly-L-Thr-OMe (56). A solution of 55 (3.48 g, 6.38 mmol) in THF (80 mL) in the presence of TBAF (9.57 mL in 1 M THF, 9.57 mmol) was stirred at 0 °C for 5 min and then at room temperature for 30 min. The reaction mixture was concentrated in vacuo to give a residue, which was purified on a silica-gel column using EtOAc to give 56 as a colorless syrup. Yield 83% (2.28 g). $[\alpha]_D^{23}$ -44.3° (c 0.94, MeOH). IR 3338, 3079, 2981, 2937, 1748, 1666, 1534 cm⁻¹. ¹H NMR δ 1.22 (d, 3H, Thr's CH₃, J = 6.3 Hz), 1.40 (d, 3H, Thr's CH₃, J = 5.9 Hz), 1.45 (s, 9H, Boc), 1.61 (s, 6H, Isop's CH₃ \times 2), 3.59–3.76 (br s, 1H, OH), 3.76 (s, 3H, OCH₃), 3.80–3.83 (m, 1H, Thr's α -H), 4.16–4.24 (m, 1H, Thr's β -H), 4.34–4.41 (m, 1H, Thr's β -H), 4.61 (dd, 1H, Thr's β -H, J = each9.2 Hz), 7.00–7.24 (br s, 2H, NH × 2). Found: C, 52.07; H, 7.75; N, 9.14%. Calcd for C₁₉H₃₃N₃O₈•0.5H₂O: C, 51.81; H, 7.78; N, 9.54%.

(S)-3-t-Butoxycarbonyl-2,2,5-trimethyloxazolidine-4-carbonyl-Gly-(Z)-Abu-OMe (57). A solution of 56 (1.16 g, 2.69 mmol) and Ms-Cl (0.25 mL, 3.23 mmol) in CHCl₃ (50 mL) in the presence of Et₃N (0.75 mL, 5.38 mmol) was stirred at 0 °C for 30 min. To the resulting solution was further added DBU (4.02 mL, 26.90 mmol). After stirring at 0 °C for 10 min and at room temperature for 6 h, the reaction mixture was washed with 10% citric acid (20 mL \times 2), saturated NaHCO₃ aqueous solution (20 mL \times 3), and brine (20 mL \times 2) and the dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residue, which was purified on a silica-gel column using EtOAc to give a crystalline residue. Recrystallization from a hexane-EtOAc gave 57 as colorless fibrous. Yield 89% (0.99 g). Mp 141–142 °C. $[\alpha]_D^{28}$ –15.6° (c 0.87, MeOH). IR 3286, 2968, 1701, 1641, 1521 cm⁻¹. ¹H NMR δ 1.35 (d, 3H, Thr's CH₃, J = 5.9 Hz), 1.37 (s, 9H, Boc), 1.58 (s, 6H, Isop's CH₃ \times 2), 1.74 (d, 3H, Δ Abu's CH₃, J = 7.1 Hz), 3.71 (s, 3H, OMe), 3.76–4.40 (m, 4H, Thr's α -H, Thr's β -H, Gly's CH₂), 6.84 (q, 1H, Δ Abu's H, J = 7.1 Hz), 6.92–7.20 (br s, 1H, Gly's NH), 8.29-8.64 (br s, 1H, ΔAbu's NH). Found: C, 55.32; H, 7.80; N, 9.68%. Calcd for C₁₉H₃₁N₃O₇: C, 55.19; H, 7.56; N, 10.16%.

(S)-3-t-Butoxycarbonyl-2,2,5-trimethyloxazolidine-4-carbonyl-Gly-(Z)-ΔAbu-OH (58). To a solution of 57 (1.50 g, 3.63 mmol) in water-dioxane (100 mL, 1:1 v/v) was added, with stirring, 1 M LiOH (5.45 mL, 5.45 mmol) at 0 °C. After stirring for 30 min and at room temperature for 6 h, the reaction mixture was washed with diethyl ether (30 mL \times 2) and acidified to pH 4 with citric acid hydrate. The resulting solution was extracted with EtOAc (30 mL \times 3) and the combined extracts were washed with brine (20 mL \times 2), and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a crystalline residue, which was recrystallized from a hexane-EtOAc to give 58 as colorless needles. Yield 98% (1.43 g). Mp 174–175 °C. $[\alpha]_D^{26}$ –17.4° (c 1.01, MeOH). IR 3281, 3058, 2981, 2936, 2360, 2342, 1707, 1669, 1528 cm⁻¹. ¹H NMR (DMSO- d_6) δ 1.31 (d, 3H, Thr's CH₃, J =5.9 Hz), 1.36 (s, 9H, Boc), each 1.52 (each s, 6H, Isop's $CH_3 \times 2$), 1.67 (d, 3H, ΔAbu's CH₃, J = 7.3 Hz), 3.75–4.10 (m, 4H, Thr's α-H, Thr's β -H, Gly's CH₂), 6.58 (q, 1H, Δ Abu's H, J = 7.3 Hz), 8.15-8.23 (br s, 1H, Gly's NH), 8.70-8.59 (br s, 1H, ΔAbu's NH), 12.07-12.21 (br s, 1H, COOH). Found: C, 54.28; H, 7.46; N, 10.20%. Calcd for C₁₈H₂₉N₃O₇: C, 54.13; H, 7.32; N, 10.52%.

(S)-3-t-Butoxycarbonyl-2,2,5-trimethyloxazolidine-4-carbonyl-Gly-(Z)- Δ Abu-L-Pro-OMe (59). To a solution of 58 (1.38 g, 3.45 mmol) in DMF (50 mL) were added, with stirring, HOBt (0.70 g, 5.18 mmol) at 0 °C for 10 min and DCC (0.89 g, 4.31 mmol). After stirring for 30 min, H-Pro-OMe (0.53 g, 4.14 mmol) was added to the resulting solution, which was then further stirred at 0 °C for 30 min and at room temperature for 6 h. The precipitated DCC urea salt was filtered off, the filtrate was added to water (60 mL), and the solution was extracted with EtOAc (30 mL \times 3). The combined extracts were washed with 10% citric acid (30 mL \times 2), saturated NaHCO₃ aqueous solution (30 mL \times 3), and brine $(30 \text{ mL} \times 3)$ and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residue, which was purified on a silica-gel column using a mixture of hexane and acetone (1:1 v/v) to give 59 as a colorless amorphous. Yield 71% (1.25 g). $\left[\alpha\right]_{\rm D}^{24}$ -41.4° (c 0.4, MeOH). IR 3310, 2980, 1877, 1746, 1671, 1617 cm⁻¹. ¹H NMR (DMSO- d_6) δ 1.29 (d, 3H, Thr's CH₃, J = 5.5 Hz), 1.35 (s, 9H, Boc), 1.50 and 1.51 (each s, 6H, Isop's $CH_3 \times 2$), 1.65 (d, 3H, Δ Abu's CH₃, J = 6.7 Hz), 1.75–1.92 (m, 3H, Pro's H and H₂), 2.08-2.15 (m, 1H, Pro's H), 3.38-3.43 (br s, 1H, Pro's H), 3.56-3.62 (m, 1H, Pro's H), 3.62 (s, 3H, OCH₃), 3.72–4.09 (m, 4H, Thr's α -H, Thr's β -H, and Gly's CH₂), 4.29–4.45 (br s, 1H, Pro's H), 5.45-5.69 (br s, 1H, ΔAbu's H), 8.10-8.20 (br s, 1H, Gly's NH), 8.94–9.12 (br s, 1H, ΔAbu's NH). Found: C, 56.98; H, 7.11; N, 10.83%. Calcd for C₂₄H₃₈N₄O₈: C, 56.75; H, 7.54; N, 11.03%.

(S)-3-t-Butoxycarbonyl-2,2,5-trimethyloxazolidine-4-carbonyl-Gly-(Z)- Δ Abu-L-Pro-OH [(P)-6]. A solution of 59 (1.25 g, 2.45 mmol) and 1 M LiOH (3.68 mL) in a mixture of H₂O-dioxane (30 mL, 1:1 v/v) was stirred at 0 °C for 10 min and then at room temperature for 1 h. The reaction mixture was washed with diethyl ether (30 mL × 3). The aqueous layer was acidified with citric acid hydrate to pH 4 and then extracted with EtOAc (30 mL × 3). The combined extracts were washed with brine (30 mL × 3) and dried over anhydrous Na₂SO₄. Concentration in vacuo gave a colorless syrup (P)-6, quantitatively, which was used to the reaction with (P)-3.

The Protected Fragment A-B [(P)-3]. To a solution of 44 (78 mg, 0.13 mmol) in CHCl₃ (2 mL) was added TFA (3 mL) at room temperature. After stirring for 5 h, the reaction mixture was concentrated in vacuo to give a residue, which was dissolved in

CHCl₃ (5 mL). The resulting solution was stirred with Et₃N (30 µL, 0.20 mmol) and Boc₂O (42 mg, 0.20 mmol) at 0 °C for 30 min and at room temperature for 5 h. The reaction mixture was mixed with 10% citric acid (5 mL). The organic layer was washed with brine (5 mL) and dried over anhydrous Na₂SO₄. Concentration in vacuo gave a colorless syrup 60, which was dissolved in DMF (10 mL). To the resultant solution was added (P)-4, derived by deprotection of the Boc group of 19 (92 mg, 0.13 mmol) with TFA-CHCl₃ (10 mL, 2:3 v/v) at room temperature for 30 min, and then N,N-diisopropylethylamine (40 µL, 0.23 mmol) and BOP (75 mg, 0.17 mmol) at 0 °C. After stirring for 30 min and at room temperature for 4 h, the reaction mixture was mixed with water (10 mL) and extracted with EtOAc (10 mL \times 3). The combined extracts were washed with 10% citric acid (10 mL \times 2), saturated NaHCO₃ aqueous solution (10 mL \times 2), brine (10 mL \times 2), and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residual syrup, which was purified on a silica-gel column using a mixture of hexane and EtOAc (1:1 v/v) to give (P)-3 as a colorless syrup. Yield 58% (87 mg) from 44 in three steps. $[\alpha]_D^{22} + 11.1^\circ$ (c 0.27, CHCl₃). IR 3389, 2929, 2333, 1715, 1684, 1582, 1489, 1438 cm⁻¹. ¹H NMR δ diastereomer 0.93 and 0.95 (each s, 9H, TPS's Bu^t), 1.29–1.65 (m, 12H, Boc, CH₃CH), 3.62–3.85 (m, 4H, thiazoline's $CH_2 \times 2$), diastereomer 3.86 (each s, 3H, OCH₃), 3.94-4.14 (m, 2H, CH₂O), 4.37 (d, 1H, CHCH₂O, J = 10.5 Hz), 5.28–5.39 (m, 2H, thiazoline's H \times 2), 5.40 (s, 2H, Bn's CH₂), 5.46-5.54 (m, 1H, CONH), 5.63-5.85 (m, 2H, BocNH, CH₃CH), 7.20–7.60 (m, 15H, TPS's Ph \times 2, Bn's Ph), 7.98–8.10 (m, 3H, thiazole's H \times 3), 8.15 and 8.34 (each d, 2H, pyridine's H, J = 7.5Hz). Found: C, 58.00; H, 4.99; N, 9.88%. Calcd for C₅₆H₅₈N₈O₈-S₅Si: C, 58.01; H, 5.04; N, 9.66%.

The Protected Fragment A-B-C [(P)-2]. A solution of (P)-3 (51 mg, 0.04 mmol) and TFA (1 mL) in CHCl₃ (1.5 mL) was stirred at room temperature for 30 min. The reaction mixture was concentrated in vacuo to give a residual syrup, which was dissolved in DMF (5 mL). To the resulting solution were added, with stirring, (P)-6 (44 mg, 0.08 mmol), N,N-diisopropylethylamine (14 µL, 0.07 mmol), and BOP (25 mg, 0.05 mmol) at 0 °C. After stirring for 30 min and at room temperature for 12 h, the reaction mixture was mixed with water (5 mL) and the resulting solution was extracted with EtOAc (10 mL \times 2). The combined extracts were washed with 10% citric acid (5 mL \times 2), saturated NaHCO₃ aqueous solution (5 mL \times 2), and brine (5 mL \times 2), and then dried over anhydrous Na₂SO₄. Concentration in vacuo gave a syrup, which was purified on a silica-gel column using a mixture of CHCl₃ and MeOH (20:1 v/v) to give (P)-2 as a pale-yellow syrup. Yield 76% (47 mg). $[\alpha]_D^{22} - 38.8^\circ$ (c 0.50, MeOH). IR 3310, 2973, 2931, 1677, 1507, 1437 cm⁻¹. ¹H NMR (DMSO-*d*₆, 80 °C) δ 0.90–0.98 (m, 9H, TPS's Bu'), 1.28–1.55 (m, 15H, Thr's CH₃, Δ Abu's CH₃, pyridine-CHCH₃, Isop's CH₃ × 2), 1.37 (s, 9H, Boc), 1.67-1.80 (m, 2H, Pro's H₂), 1.83-1.93 (m, 1H, Pro's H), 1.97-2.07 (m, 1H, Pro's H), 3.32-3.44 (m, 1H, Pro's H), diastereomer 3.77 and 3.79 (each s, 3H, OCH₃), 3.56-4.27 (m, 11H, Pro's H₂, thiazoline's CH₂ \times 2, Thr's β -H, Gly's CH₂, CHCH₂O), 5.45 (s, 2H, Bn's CH₂), 5.36-5.53 (m, 4H, Pro's H, CHCH₂O, thiazoline's CH \times 2), 5.71–5.84 (m, 2H, Δ Abu's olefin-H, pyridine-CHCH₃), 7.32–7.62 (m, 15H, TPS's Ph × 2, Bn's Ph), 8.03–8.42 (m, 7H, pyridine-CHNH, pyridine's H \times 2, thiazole's H \times 3, Gly's NH), 9.05 (br s, 1H, ΔAbu's NH). Found: C, 57.95; H, 5.67: N, 10.49%. Calcd for $C_{74}H_{84}N_{12}O_{13}S_5Si;$ C, 57.79; H, 5.51; N, 10.93%.

This work was supported in part by a Grant-in-Aid for Scientific Research No. 12640529 from the Ministry of Education, Science, Sports and Culture and by "High-Tech Research Project" from the Ministy of Education, Culture, Sports, Science and Technology.

References

 a) M. Aoki, T. Ohtsuka, M. Yamada, Y. Ohba, H. Yoshizaki, H. Yasuno, T. Sano, and H. Seto, *J. Antibiot.*, 44, 582 (1991).
b) M. Aoki, T. Ohtsuka, Y. Itezono, K. Yokose, K. Furihata, and H. Seto, *Tetrahedron Lett.*, 32, 217 (1991).
c) M. Aoki, T. Ohtsuka, Y. Itezono, K. Furihata, and H. Seto, *Tetrahedron Lett.*, 32, 212 (1991).

2 a) E. Selva, G. Beretta, N. Montanini, G. S. Saddler, L. Gastsldo, P. Ferrari, R. Lorenzetti, P. Landini, F. Ripamonti, B. P. Goldstein, M. Berti, L. Montanaro, and M. Denaro, *J. Antibiot.*, **44**, 693 (1992). b) J. Kettenring, L. Colombo, P. Ferrari, P. Tavecchia, M. Nebuloni, K. Vekey, G. G. Gallo, and E. Selva, *J. Antibiot.*, **44**, 702 (1992).

3 a) P. Brooks, A. T. Fuller, and J. Walker, J. Chem. Soc., **1957**, 689. b) J. Walker, A. Olesker, L. Valente, R. Rabanal, and G. Lukacs, J. Chem. Soc., Chem. Commun., **1977**, 706. c) B. W. Bycroft and M. S. Gowland, J. Chem. Soc., Chem. Commun., **1978**, 256.

4 C. Shin, K. Okumura, M. Shigekuni, and Y. Nakamura, *Chem. Lett.*, **1998**, 139; K. Okumura, Y. Nakamura, and C. Shin, *Bull. Chem. Soc. Jpn.*, **72**, 1561 (1999).

5 K. Okumura, A. Ito, D. Yoshioka, and C. Shin, *Heterocycles*, **48**, 1319 (1998); K. Okumura, T. Suzuki, Y. Nakamura, and C. Shin, *Bull. Chem. Soc. Jpn.*, **72**, 2483 (1999).

6 M. A. Ciufolini and Y-C. Shen, Org. Lett., 1, 1843 (2000).

7 C. Shin, A. Ito, K. Okumura, and Y. Nakamura, *Chem. Lett.*, **1995**, 45.

8 a) R. C. Kelly, I. Ebhard, and N. Wicnienski, *J. Org. Chem.*, **51**, 4590 (1986). b) M. W. Bredenkamp, C. W. Holzapfel, and W. Van Zyl, *Synth. Commun.*, **20**, 2235 (1990).

9 A. Okabe, A. Ito, K. Okumura, and C. Shin, *Chem. Lett.*, **2001**, 380.

10 J. P. Sanches, T. F. Mich, and G. G. Huang, *J. Heterocycl. Chem.*, **31**, 297 (1994).

11 Y. Hamada, M. Shibata, T. Sugiura, S. Kato, and T. Shioiri, *J. Org. Chem.*, **52**, 1252 (1987).

12 T. Shioiri, K. Ninomiya, and S. Yamada, J. Am. Chem. Soc., 94, 6203 (1972).

13 O. Mitsunobu, *Synthesis*, **1981**, 1.

14 M. Takeshita, K. Terada, N. Akutsu, S. Yoshida, and T. Sato, *Heterocycles*, **26**, 3051 (1987).

15 In this paper, the symbol Δ^3 indicates the position number of double bond of α -dehydroamino acid residue from the N-terminus in sequence.

16 For examples, a) C. Shin, N. Takahashi, and Y. Yonezawa, *Chem. Pharm. Bull.*, **38**, 2020 (1990). b) C. Shin, M. Koshimizu, and Y. Yonezawa, *Chem. Lett.*, **1994**, 1909.

17 C. Shin, M. Hayakawa, T. Suzuki, A. Ohtsuka, and J. Yoshimura, *Bull. Chem. Soc. Jpn.*, **51**, 550 (1978).

18 BOP = (Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium. hexafluorphosphate. J. R. Dormoy, B. Dourtoglou, G. Evin, C. Selve, and J. C. Ziegler, *Synthesis*, **1976**, 751.