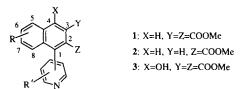


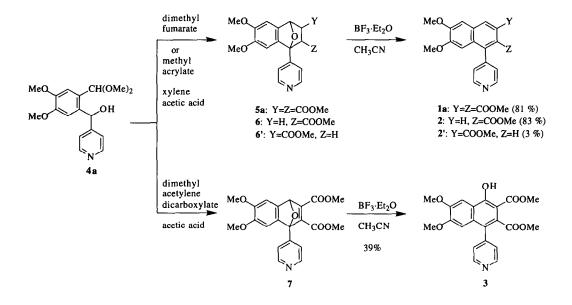
Tetrahedron Letters 39 (1998) 1377-1380

TETRAHEDRON LETTERS


A Synthesis of 1-Pyridylnaphthalene Lignan Analogs

Masakatsu Sugahara, Yasunori Moritani, Yoshihiro Terakawa, Tsuyoshi Ogiku, Tatsuzo Ukita,* and Tameo Iwasaki

Lead Optimization Research Laboratory, Tanabe Seiyaku Co., Ltd., 3-16-89, Kashima, Yodogawa, Osaka 532, Japan Received 20 November 1997; revised 8 December 1997; accepted 12 December 1997


Abstract: A new series of 1-arylnaphthalene lignan analogs having a variety of pyridyl substituents at the C-1 position were synthesized in moderate to good yields by means of the Diels-Alder reaction by utilizing 1-pyridylisobenzofuran precursors with dimethyl fumarate, methyl acrylate, or dimethyl acetylene dicarboxylate, followed by BF₃:Et₃O-mediated aromatization. © 1998 Elsevier Science Ltd. All rights reserved.

Heterocyclic analogs of 1-arylnaphthalene lignans have recently attracted considerable interest with the discovery of their interesting biological activities, such as antihyperlipidemic and 5-lipoxygenase inhibitory activities.^{1, 2} Current synthetic methods of 1-arylnaphthalene lignans^{3, 4} include those based on the Diels-Alder reaction utilizing phenylpropionic acid derivatives⁵ or 1-arylisobenzofurans,⁶ cyclization of the Stobbe condensation products,⁷ nucleophilic addition of aryllithium to naphthyloxazolines,⁸ and the conjugate addition-aldol reaction utilizing thioacetals⁹ or *O*-(*t*-butyldimethylsilyl) cyanohydrins.¹⁰ These methods, however, cannot be applied to the synthesis of arylnaphthalene lignan analogs having an electron-deficient aryl group, such as pyridyl group at the C–1 position. In connection with our efforts in search of new compounds having interesting biological activities, we now disclose a synthesis of 1-pyridylnaphthalene lignan analogs 1—3 by means of the Diels-Alder reaction of pyridylisobenzofuran with dimethyl fumarate, methyl acrylate, or dimethyl acetylene dicarboxylate, followed by BF₃-Et₂O-mediated aromatization.

We first examined the Diels-Alder reaction by utilizing isobenzofuran precursor 4a and dimethyl fumarate; 4a was prepared by the usual method⁶ from 3,4-dimethoxy-6-bromobenzaldehyde dimethyl acetal and commercially available isonicotinaldehyde. Treatment of 4a (59.5 g, 0.186 mol) with dimethyl fumarate (28.2 g, 0.195 mol) in the presence of acetic acid (25 mL) for 3 hr in refluxing xylene (100 mL) gave a mixture of 2-*exo*- and 2-*endo*-cycloadducts 5a (*ca* 1.4:1); 4a was not observed by TLC analysis. The reaction proceeded very sluggishly in the absence of acetic acid. Without purification of 5a, the mixture was

refluxed in CH₃CN (180 mL) for two hours in the presence of BF₃·Et₂O (68.6 mL, 0.558 mol) to afford the aromatized product, 1-(4-pyridyl)naphthalene (1a) in 81 % yield from 4a. The use of a Brønstead acid such as *p*-TsOH or MeSO₃H did not afford 1a in a satisfactory yield; significant amounts of hydrolyzed compounds were obtained along with 1a. The good result obtained by the use of BF₃·Et₂O is probably due to its ability to trap water produced during the course of the reaction. We next examined the Diels-Alder reaction by using 4a with methyl acrylate in the same reaction conditions to furnish cycloadducts 6 and 6'. Without their being purified, the mixture was treated with BF₃·Et₂O to afford aromatized products 2 and its regio isomer 2' in 86 % yield from 4a; the ratio of 2 to 2' was determined to be 96:4 based on isolated yield. We further examined the Diels-Alder reaction by using 4a with dimethyl acetylene dicarboxylate. In this reaction, however, the cycloadduct 7 was obtained in a very low yield. After examination of the reaction conditions, the use of acetic acid as a solvent and dropwise addition of dienophile gave a fairly satisfactory result to furnish 4-hydroxy-1-(4-pyridyl)naphthalene (3) in 39% yield after treatment of 7 with BF₃·Et₂O.

The above results prompted us to synthesize a variety of 1-pyridylnaphthalene lignan analogs by using this novel method. In order to examine the effect of substituents R^1 , R^2 , and R^3 on this reaction, the isobenzofuran precursors **4b**—**i** were prepared by the procedure described above.¹¹ The precursors **4b**, **c** were firstly treated with dimethyl fumarate and acetic acid in xylene, followed by BF₃·Et₂O. As shown in Table 1 (entries 1 and 2), 1-(4-pyridyl)naphthalenes (**1b**, **c**) were obtained in moderate to good yields. We next examined the reaction of **4d**—**h** with dimethyl fumarate under the same reaction conditions to afford the desired 1-pyridylnaphthalene lignan analogs **1d**—**h** having the regioisomeric and/or halogenated pyridyl group on C-1 position of the naphthalene ring (entries 3—7). We were extremely interested in the bromo- or chloropyridyl derivatives which would be powerful synthetic intermediates for complex derivatives in this series of compounds. 1-(4-Quinolyl)naphthalene lignan analog **4i** was also obtained in a good yield by the same procedure. In the case of compounds 1c and h, significant amounts of debenzylated products were obtained during the $BF_3 \cdot Et_2O$ -mediated aromatization step. To avoid this side reaction, the aromatization was conducted by using 10 equivalents of $BF_3 \cdot Et_2O$ at room temperature for three days. The yields of 1b—i are summarized in Table 1.

	$R^{2} + CH(OMe)_{2} + Me$ $R^{2} + R^{3}$ $4b-i$		MeOOC $\frac{1) \text{ xylene}}{COOMe} \xrightarrow{1) \text{ xylene}}_{2) \text{ BF}_3 \cdot \text{Et}_2\text{O}} \xrightarrow{R^2}_{COOMe} \xrightarrow{COOMe}_{R^3}$			
				1b-i		
entry	R ¹	R ²	R ³	substrate	product	yield (%)°
1	EtO	EtO	4-pyridyl	4 b	1b ¹²	70
2 ^b	PhCH ₂ O	EtO	4-pyridyl	4 c	1 c	41
3	MeO	MeO	2-pyridyl	4d	1 d ¹²	50
4	MeO	MeO	3-pyridyl	4 e	1 e	76
5	MeO	MeO	2-bromo-4-pyridyl	4 f	1 f	60
6	MeO	MeO	3-bromo-5-pyridyl	4 g	1 g	72
7 ^b	MeO	PhCH ₂ O	2-chloro-4-pyridyl	4 h	1 h	48
8°	EtO	EtO	4-quinolyl	4 i	1i	65

Table 1. Diels-Alder reaction by using 4b-i with dimethyl fumarate and aromatization

a) Isolated yield. b) Aromatization was conducted by using 10 equivalents of BF_3 . Et₂O at room temperature for 3 days. c) Toluene was used instead of xylene.

In summary, we accomplished the syntheses of 1-pyridylnaphthalene lignan series 1-3 by means of the Diels-Alder reaction by utilizing 1-pyridylisobenzofuran precursors with dimethyl fumarate, methyl acrylate, or dimethyl acetylene dicarboxylate, followed by BF₃·Et₂O-mediated aromatization. This efficient and practical method should find wide application in the synthesis of this series of lignan derivatives having intriguing biological activities.

References and Notes

 The synthesis of heteroaromatic analogs of the 1-arylnaphthalene lignan series has already been reported by Kuroda, T. *et al.* of our company.; (a) Kuroda, T.; Takahashi, M.; Ogiku, T.; Ohmizu, H.; Kondo, K.; Iwasaki, T. J. Chem. Soc., Chem. Commun. 1991, 1635–1636. (b) Kuroda, T.; Takahashi, M.; Ogiku, T.; Ohmizu, H.; Nishitani, T.; Kondo, K.; Iwasaki, T. J. Org. Chem. 1994, 59, 7353–7357.

- Delorma, D.; Ducharme, Y.; Brideau, C.; Chan, C.-C.; Chauret, N.; Desmarais, S.; Dubé, D.; Falgueyret, J.-P.; Fortin, R.; Guay, J.; Hamel, P.; Jones, T. R.; Lépine, C.; Li, C.; McAuliffe, M.; McFarlane, C. S.; Nicoll-Griffith, D. A.; Riendeau, D.; Yergey, J. A.; Girard, Y. J. Med. Chem. 1996, 39, 3951-3970.
- (a) Ayres, D. C.; Loike, J. D. Lignans; Cambridge Univ. Press: Cambridge, 1990. (b) Yalowich, J. C.; Fry, D. W.; Goldman, I. D. Cancer Res. 1982, 42, 3648-3653 and references cited therein. (c) Kimura, M.; Suzuki, J.; Yamada, T.; Yoshizaki, M.; Kikuchi, T.; Kadota, S.; Matsuda, S. Planta Med. 1985, 291-293. (d) Nishibe, S.; Tsukamoto, H.; Hisada, S.; Nikaido, T.; Ohmoto, T.; Sankawa, U. Shoyakugaku Zasshi 1986, 40, 89-94.
- 4. For reviews, see: (a) Rao, C. B. S. Chemistry of lignans; Andhra University Press: Andhra Pradesh, 1978.; (b) Ward, R. S. Chem. Soc. Rev. 1982, 11, 75-125; Tetrahedron 1990, 46, 5029-5041.
 (c) Yamamura, S. J. Synth. Org. Chem. Jpn. 1985, 43, 583-593. (d) Shizuri, Y. J. Synth. Org. Chem. Jpn. 1984, 42, 889-899. (e) Ohmizu, H.; Iwasaki, T. J. Syn. Org. Chem. Jpn. 1995, 53, 593-603, and references cited therein.
- (a) Block, E.; Stevenson, R. J. Org. Chem. 1971, 36, 3453-3455. (b) Joshi, B. S.; Viswanathan, N.; Balakrishnan, V.; Gawad, D. H.; Ravindranath, K. R. Tetrahedron 1979, 35, 1665-1671.
- 6 (a) Rodrigo, R. J. Org. Chem. 1980, 45, 4538–4540. (b) Forsey, S. P.; Rajapaksa, D.; Taylor, N. J.; Rodrigo, R. J. Org. Chem. 1989, 54, 4280–4290.
- (a) Heller, H. G.; Strydom, P. J. J. Chem. Soc., Chem. Commun. 1976, 50-51. (b) Brown, E.; Daugan, A. Tetrahedron 1989, 45, 141-154.
- (a) Meyers, A. I.; Roth, G. P.; Hoyer, D.; Barner, B. A.; Laucher, D. J. Am. Chem. Soc. 1988, 110, 4611–4624. (b) Andrews, R. C.; Teague, S. J.; Meyers, A. I. J. Am. Chem. Soc. 1988, 110, 7854–7858.
- 9. (a) Ziegler, F. E.; Schwartz, J. A. J. Org. Chem. 1978, 43, 985–991. (b) Pelter, A.; Ward, R. S.; Pritchard, M. C.; Kay, I. T. J. Chem. Soc., Perkin Trans. I 1988, 1603–1613. (c) González, A. G.; Pérez, J. P.; Trujillo, M. Tetrahedron 1978, 34, 1011–1013.
- 10. (a) Ogiku, T.; Seki, M.; Takahashi, M.; Ohmizu, H.; Iwasaki, T. Tetrahedron Lett. 1990, 31, 5487-5490. (b) Ogiku, T.; Yoshida, S.; Ohmizu, H.; Iwasaki, T. J. Org. Chem. 1995, 60, 4585-4590.
- 11. In the case of 4f—h, the reversal addition method was employed in order to avoid lithium-halogen exchange between a lithium salt of benzaldehyde dimethyl acetal derivative and a halogenopyridinecarbaldehyde; a lithium salt of benzaldehyde dimethyl acetal derivative in THF was added dropwise to a THF solution of halogenopyridinecarbaldehyde at -78°C.
- 12. Iwasaki, T.; Kondo, K.; Kuroda, T.; Moritani, Y.; Yamagata, S.; Sugiura, M.; Kikkawa, H.; Kaminuma, O.; Ikezawa, K. J. Med. Chem. 1996, 36, 2696–2704.