Journal of Organometallic Chemistry, 316 (1986) 67-78 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

DOMINANT *cis*-DIACETOXYLATION OF ALKENES WITH TELLURIUM(IV) OXIDE AND LITHIUM BROMIDE IN ACETIC ACID

SAKAE UEMURA*, KOUICHI OHE, SHIN-ICHI FUKUZAWA, SURESH R. PATIL and NOBUYUKI SUGITA

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611 (Japan) (Received June 5th, 1986)

Summary

Oxidation of alkenes with tellurium(IV) oxide and lithium bromide in acetic acid affords the corresponding α,β -diacetoxyalkanes in good yields after acetylation of the primary products with acetic anhydride/pyridine. From cyclic alkenes such as cyclopentene, cyclohexene, cycloheptene, and 1,4-cyclohexadiene, the *cis*-diacetate is obtained as almost the sole product. In the cases of linear *cis*-alkenes such as *cis*-2-octene and *cis*-4-octene *cis*-stereochemistry is also preferred (*cis/trans* = 87 ~ 89/13 ~ 11), while the proportion of the *cis*-product is decreased in the cases of the corresponding *trans*-alkenes (*cis/trans* = 56 ~ 58/44 ~ 42). Transformation of a C-Te bond to a C-OAc bond under these reaction conditions is shown unambiguously by using β -chloroalkyltellurium(IV) trichlorides (TeCl₄ adducts of alkenes) and β -oxyalkyl phenyl tellurides (oxytellurenylation products of alkenes), *cis*-diacetates being solely formed from the *trans*-tellurium compounds in a cyclohexyl system. One of the possible reaction pathways for the oxidation is proposed which involves the acetoxy-, hydroxy-, and/or halogeno-tellurinylation of a double bond followed by an S_N2 type acetolysis of the produced C-Te bond.

Introduction

In connection with Oxirane's ethylene glycol process which involves a catalytic system of tellurium oxide/bromine compounds for direct oxidation of ethylene with oxygen in acetic acid, it has been reported that a combination of tellurium(IV) oxide and alkali metal halide or iodine can be used for oxidation of alkenes to vicinal diacetates [1,2] and also for selective 1,4-diacetoxylation of conjugated dienes in acetic acid [3]. In the alkene oxidation Bergman and Engman declared that the stereochemistry of the products depends on the alkene structure; thus, diacetates from *cis*- and *trans*-2-butenes were *cis*-rich, while no stereospecificity was found in the products from 1-dectere [1]. They postulated β -halogenoalkyltel-lurium(IV) compounds as intermediates. We were interested in the stereochemistry

of the products, diacetates, from a synthetic viewpoint [4] as well as the reaction mechanism of this oxidation, and carried out further work on this subject [2]. As a result, it became clear that *cis*-diacetoxylation predominates in many alkenes, especially cyclic ones, that a nucleophilic conversion of a C-Te bond to a C-OAc bond occurs in several β -acetoxy-, β -hydroxy-, and β -chloro-alkyltellurium compounds under these acetoxylation conditions; *cis*-diacetates being solely formed from the *trans*-tellurium compounds in a cyclohexyl system. New evidence presented here supports the assumption of the intervention of organotellurium compounds as intermediates in this oxidation [1,5]. We describe here the results and discuss the reaction pathway.

Results and discussion

A mixture of cyclohexene (2 equiv.), tellurium(IV) oxide (1 equiv.), lithium bromide (1 equiv.), and acetic acid was refluxed for 20 h. The reaction mixture was orange-colored and heterogeneous, and elemental tellurium was deposited as a black precipitate as the reaction proceeded. After normal work-up, GLC analysis of the organic products revealed that they consisted of a major compound and a variable amount of a minor compound (less than 25% of the major by GLC), IR and ¹H NMR spectra showed them to have strong absorptions due to the hydroxy and acetoxy groups. Small amounts of trans-1-acetoxy-2-bromocyclohexane and 1,4-diacetoxy-2-cyclohexenes were also detected by GLC. When the products were treated with acetic anhydride/pyridine at 110-120 °C for 1 h, only the minor compound described above was converted to the major compound which was revealed to be cis-1,2-diacetoxycyclohexane (1). The corresponding trans-diacetate could not be detected by GLC, but ¹³C NMR measurement showed the presence of traces (<0.5%). With a short reaction time (2 h) the result was reversed, i.e., the minor product (mentioned above) became the major and was identified as cis-1-acetoxy-2hydroxycyclohexane (2) (eq. 1). These results show that 2 is initially formed and then it is acetylated to 1 by prolonging the reaction time. The hydroxy group must have come from water which was probably present in traces in the acetic acid which we used as purchased, and in lithium bromide which is very hygroscopic. Actually, the use of aqueous acetic acid (10% H₂O) as the solvent resulted in a preponderance of 2 even after 20 h, although the total yield of 1 and 2 was lower. The formation of both monoacetate and diacetate as the products, their ratio to one another being dependent on the reaction time were also observed in the oxidation of 1-decene, the products being 9 and 10 together with a small amount of 11. In order to simplify

Alkene	Reaction temp. (°C)	Reaction time (h)	Product and yield (mmol) ^b				
Cyclopentene	120	20	3	13.7			
Cyclohexene	120	2	1	0.64 '	2	5.22 '	
Cyclohexene	120	20	1	8.25 '	2	2.15 ^c	
Cyclohexene ^d	120	20	1	1.68 '	2	2.88 '	
Cyclohexene	80	20	1	1.66 '			
Cycloheptene	120	20	4	9.0(11.8) '			
Styrene	120	20	5	8.44			
Styrene	80	20	5	trace			
1-Octene	120	20	6	16.0			
cis-2-Octene	120	20	7	16.7 (erythro/threo 87/13)			
trans-2-Octene	120	20	7	18.3 (erythro / threo 42/58)			
cis-4-Octene ^e	120	20	8	8.7 (meso/dl 89/11)			
trans-4-Octene ^e	120	20	8	6.5 (meso/dl 44/56)			
1-Decene	120	5	9	56	10 [/]	7.0 [‹]	
1-Decene	120	20	9	10.5 ^c	10 ^f	2.3 '	
Allyl acetae	120	20	12	11.7			
Allylbenzene	120	20	13	12.4			
1,4-Cyclohexadiene	120	20	14	10.3			

DIACETOXYLATION OF ALKENES WITH TeO, /LiBr IN AcOH "

TABLE 1

^{*a*} Alkene (20 mmol), TeO₂ (10 mmol), LiBr (10 mmol), and AcOH (30 ml) were used, unless otherwise stated. ^{*b*} Isolated yield by distillation after acetylation, unless otherwise stated. ^{*c*} Determined by GLC before acetylation. ^{*d*} Solvent, AcOH (27 ml)/H₂O(3 ml). ^{*e*} The reaction was carried out on a half scale. ^{*f*} Contains 15–20% of **11** by ¹H NMR analysis.

product analysis, the primary products were generally acetylated as described above, then analyzed. The results of cyclopentene, cyclohexene, cycloheptene, styrene, 1-octene, trans- and cis-2-octenes, trans- and cis-4-octenes, 1-decene, allyl acetate, allylbenzene, and 1,4-cyclohexadiene are summarized in Table 1, the products being 1-14. Oxidation was very slow at 80°C and it did not proceed at all when TeO_2 or LiBr were absent, even at reflux temperature. The addition of more than 1 equiv. of LiBr to TeO_2 had no appreciable effect on the product yield, stereoselectivity, or the ratio of monoacetate to diacetate [6]. Tellurium(VI) oxide (TeO₃) and telluric acid $(H_6 TeO_6)$ could also be used in place of TeO₂ for preparing *cis*-diacetate. For example, 9.6 and 6.4 mmol of 1 were formed from cyclohexene by using TeO_3 and H_6 TeO₆, respectively, under such conditions where 10.4 mmol of 1 was obtained by using TeO_2 (GLC analysis). As can be seen from the Table, diacetoxylation prefers a cis-stereochemistry, especially in the cases of cyclic alkenes (~ 100%) and linear cis-alkenes ($\sim 90\%$), while with linear trans-alkenes the preference for the cis-product is lowered. All the corresponding *trans*-diacetates were prepared by a reported method [4] and used as authentic samples for GLC and spectral analyses.

As to the reaction pathway of this oxidation, the following three possibilities may be considered [1,7]; (i) a route involving a cyclic tellurium ester (A) as an intermediate analogous to that in the MnO_4^- and the OsO_4 oxidation of alkenes, (ii) a route involving some organotellurium compounds (B) derived from acetoxy- hydroxy-, and/or halogenotellurinylation of alkenes, (iii) a route via *vic*-bromoace-

tates (C) formed by oxidative bromination of alkenes, bromine being produced by the oxidation of the bromide anion by Te(IV).

Bergman and Engman [1] have eliminated the pathway via A because of the stereochemistry of the products and the postulation that β -halogenoalkyltellurium(IV) compounds (**B**; X = halogen) are intermediates. They achieved a facile substitution of a chlorine atom on an alkyl carbon of the TeCl₄-1,5-cyclooctadiene adduct by an alkoxy group with complete retention of configuration, while we obtained direct evidence of the displacement of a tellurium moiety by an alkoxy or acetoxy group by the treatment of *trans*-2-chlorocyclohexyltellurium(IV) trichloride **15** with acetic acid [2a]. Patent work has also shown such an example using bis(2-bromoethyl)tellurium(IV) diacetate [5,8]. In order to obtain more evidence for the displacement of a C-Te bond and C-X bond (X = halogen) to a C-OR (R = H, Ac) bond and its stereochemistry, we carried out some experiments on the behaviour of TeCl₄-alkene adducts and oxytellurenylation products of alkenes towards acetic acid under similar conditions to those employed for the oxidation.

First, treatment of the $TeCl_4$ -cyclohexene adduct (15) with acetic acid at reflux temperature for 20 h afforded 1 as the major product (20%), together with

trans-1-acetoxy-2-chlorocyclohexane (16) (12%) and small amounts of two unidentified compounds (probably isomeric diacetoxycyclohexenes (by GLC) (eq. 2), while in the presence of TeO₂ and LiBr 1 was almost the sole product. The transformation was very slow, after 2 h only small amounts of the above products were produced, with or without TeO₂ and LiBr. Formation of *cis*-diacetate, 1 from the *trans*-compound 15 can be explained by the retentive acetolysis of a C-Cl bond [1] followed by a direct S_N^2 attack by an acetoxy group on a C-Te bond. In all cases *trans*-1,2-diacetoxycyclohexane was not formed. The transformation of both C-Cl

TABLE 2

Organotellurium compound (mmol)		TeO ₂ (mmol)	LiBr (mmol)	AcOH (ml)	Reaction time (h)	Product and yield ^b (mmol)			
15	2	0	0	30	2	16	0.02	2	0.07 '
15	2	0	0	30	20	16	0.20	1	0.39 '
15	2	5	5	30	2	16	0.03	2	0.05 '
15	2	5	5	30	20	1	0.30 °		
17	1	0	0	10	20	9	0.11 ^d		
17	2	5	5	10	20	9	0.57 ^d		
18	2	5	5	20	2	2	0.82 °		
18	2	10	10	30	20	1	1.51 °		
19	2	10	10	30	20	1	0.46 ^e		

TRANSFORMATION OF A C-Te BOND OF ORGANOTELLURIUM COMPOUNDS INTO A C-OR ($\mathbf{R} = \mathbf{H}$, Ac) BOND "

^{*a*} Under reflux in AcOH (bath temp. 120–130 °C). ^{*b*} Determined by GLC. ^{*c*} Small amounts of two unidentified compounds (probably isomeric diacetoxycyclohexenes) were detected by GLC. ^{*d*} Small amounts of four to six unidentified compounds were detected by GLC. ^{*e*} Isolated yield by column chromatography.

and C-Te bonds to C-OAc bonds was also observed in the case of the $TeCl_4$ -1-decene adduct (17) (eq. 3).

Second, oxytellurenylation products of cyclohexene, *trans*-2-acetoxycyclohexyl phenyl telluride (18) and *trans*-2-hydroxycyclohexyl phenyl telluride (19), were converted to 1 and/or 2 by treatment with acetic acid under reflux in the presence of TeO₂ and LiBr (eq. 4). The conversion of 18 was much faster than that of 19. Thus, 18 was transformed to 2 in 40% yield after 2 h, while only small amounts of 1 and 2 were obtained from 19 under the same conditions. By prolonging the reaction time to 20 h 1 was the only product, obtained either from 18 or 19 in 75% or 23% yield respectively, 1 was probably formed by the acetylation of 2 produced during the initial stages of the reaction. Formation of only the *cis*-product (2) suggests a direct S_N^2 attack of a hydroxy group on the alkyl C-Te bond of 18. No *trans*-diacetate was produced in these cases, either. Typical results of eqs. 2-4 are shown in Table 2.

Thus, we can present several examples which support a route via **B** for this alkene oxidation; namely, bromo-, hydroxy-, or acetoxytellurinylation of alkenes followed by acetolysis or hydrolysis of the C-Br or C-Te bonds. On the other hand, a path via C, i.e. via oxidative bromination of alkenes, does not seem to be involved in the main course of this oxidation from the following observations:

(1) The reaction of cyclohexene (4 equiv.) with bromine (1 equiv.) and TeO₂ (1 equiv.) in acetic acid under reflux for 2 h afforded *trans*-1,2-dibromocyclohexane (0.78 equiv.) and *trans*-1-acetoxy-2-bromocyclohexane (0.29 equiv.) as the main products, together with cyclohexyl bromide, but without the formation of 1 and 2. Similarly, treatment of a mixture of *trans*-1,2-dibromocyclohexane and *trans*-1-acetoxy-2-bromocyclohexane (2 equiv., 82:18) prepared separately, with TeO₂ (1 equiv.) in acetic acid under reflux for 3 h resulted in the recovery of the initial reaction mixture almost intact, 1 and 2 were not formed.

(2) The reaction of *trans*-2-octene (2.4 equiv.) with bromine (1 equiv.) and TeO_2 (1 equiv.) in acetic acid under reflux for 20 h gave (7) (0.88 equiv., *erythro / threo* =

49/51) together with 2,3-dibromooctane (0.35 equiv.) and regioisomeric 2.3-acetoxybromooctanes (0.42 equiv.), the isomer ratio of 7 was different from that obtained in the TeO₂/LiBr system (42/58).

(3) Treatment of a mixture of 2,3-dibromooctane and isomeric 2,3-acetoxybromooctanes (1.8 equiv., 88:12), prepared separately from *cis*-2-octene, with TeO₂ (1 equiv.) in acetic acid under reflux for 20 h afforded 7 (0.1 equiv., *erythro / threo* = 55/45) in a low yield, a large portion of the starting materials were changed into tarry materials. The isomer ratio of 7 observed here was quite different from that obtained from the direct oxidation of *cis*-2-octene with TeO₂/LiBr (87/13).

Another possibility may be that tellurium tetrabromide is formed in situ from TeO_2 and LiBr and works as a reactive species for the oxidation. Such a route, however, was ruled out by the following result. Treatment of cyclohexene with commercial TeBr₄ in acetic acid under reflux for 2 h afforded cyclohexyl bromide, *trans*-1,2-dibromocyclohexane, and *trans*-1,2-diacetoxycyclohexane in fair yields, none of them being obtained in appreciable amounts after oxidation with TeO₂/LiBr. It has already been noted that neither TeBr₄ nor TeBr₃⁺ was involved in the main reaction of the oxidation of conjugated dienes by a similar system [3].

Experimental

¹H NMR spectra were recorded with JEOL JNM FX-100 (100 MHz) and JEOL JNM GX-400 (400 MHz) instruments, in CDCl₃ solutions with Me₄Si as internal standard. ¹³C NMR spectra were obtained at 25.1 MHz by use of a JEOLCO ¹³C Fourier transform NMR system (JNM FX-100), in CDCl₃ solutions after 250–1000 pulses with intervals of 2.7–2.8 s. IR spectra were recorded with a JASCO IR-810(400–4000 cm⁻¹) spectrometer (neat). GLC analyses were carried out using a Yanagimoto G 2800 apparatus on EGSS-X(15%)-Chromosorb-W(1 and 3 m), Silicone DC QF-1(5%)-Chromosorb-W(1 m), and PEG 6000(25%)-Chromosorb-W (1 and 3 m) columns (N₂ as carrier gas). Mass spectra were recorded on a JEOL JMN-01SG spectrometer. Melting points were determined with a Yanagimoto MP micro melting point determination apparatus and were uncorrected.

Commercially available acetic acid, alkenes, and all other organic and inorganic compounds were used without further purification. Compounds 15 (m.p. 115–117°C (dec)) and 17 (oil) were prepared by the reaction of cyclohexene and 1-decene with TeCl₄ in CCl₄ or CHCl₃ respectively by a reported method [9]. Compounds 1, 5, 6, 9, 16, and *trans*-1,2-diacetoxycyclohexane were prepared by the acetylation of the corresponding commercial diols and alcohols, thus providing authentic samples for GLC and NMR analyses. Similarly, *trans*-isomers of 3, 4, and 14, *erythro*-(7), and *meso*- and *dl*-(8) were prepared separately by a reported method [4] by oxidation of the corresponding alkenes with FeSO₄ · 7H₂O and (NH₄)₂S₂O₈ in acetic acid at 80°C for 4 h. The characterization of diacetoxycyclohexenes has already been reported [3b]. Other oxidation products were isolated by distillation and/or column chromatography and characterized spectroscopically. Compounds 7, 14, 18, and 19 are new.

Preparation of 2-hydroxycyclohexyl phenyl telluride (19) and 2-acetoxycyclohexyl phenyl telluride (18)

Diphenyl ditelluride (6.20 g, 15.1 mmol) and sodium borohydride (1.75 g, 46.3

mmol) were placed in a two-necked flask, under N2, and ethanol (35 ml) was added by injection through a rubber septum. Cyclohexene oxide (3.04 g, 31.0 mmol) in ethanol (10 ml) was then added in a similar way and the resulting mixture was stirred under reflux for 4 h. The mixture was cooled, treated with brine, and then extracted with $CHCl_3$ (3 \times 50 ml). After being dried over MgSO₄, the solvent was evaporated to leave a yellow oil which was subjected to column chromatography on SiO₂ to give diphenyl ditelluride (0.17 g, 0.4 mmol) (elution with hexane) and 19 (yellow syrup, 8.42 g, 27.7 mmol, 92% yield) (elution with hexane: ethyl acetate (10:1)). Compound 19; δ (H) (100 MHz) 1.0–1.85 (6H, m), 1.95–2.40 (2H, m), 2.74 (1H, br s, exchangeable in D₂O, OH), 3.10 (1H, td, J 10.3 and 3.9 Hz), 3.42 (1H, td, J 10.3 and 3.9 Hz), 7.05–7.36 (3H, m), 7.68–7.88 (2H, m) ppm; ν_{max} (neat) 3400 br s, 3060, 3050, 2930s, 2850s, 1570, 1470s, 1450s, 1435s, 1350, 1320, 1300, 1270, 1250, 1160, 1100, 1060s, 1020s, 1000, 950s, 860, 835, 735s, 695s cm⁻¹. Anal. Found: C, 47.15; H, 5.15. $C_{12}H_{16}OTe$ calcd.: C, 47.43; H, 5.31%. ¹H NMR spectrum was identical with that of the compound obtained by N_2H_4 reduction of trans-(2-hydroxycyclohexyl)phenyltellurium dibromide [10].

The telluride 19 (5.17 g, 17.0 mmol) was dissolved in pyridine (30 ml) containing acetic anhydride (3.02 g, 29.6 mmol) and the mixture stirred at 50–60°C for 2 d. The mixture was cooled and aqueous Na₂CO₃ was added. The aqueous layer was then extracted with CHCl₃ (3 × 50 ml). The extract was washed with aqueous HCl (1*M*) and brine and dried (MgSO₄). Evaporation of the solvent left a dark-red oil which was subjected to column chromatography on SiO₂ to give diphenyl ditelluride (0.27 g, 0.7 mmol) (elution with hexane), 18 (red syrup, 3.56 g, 61% yield) (hexane: ethyl acetate (10:1)). Compound 18; δ (H) (100 MHz) 1.1–1.8(6H, m), 1.98(3H, s), 2.0–2.35(2H, m), 3.34(1H, td, J 9.7 and 3.9 Hz), 4.88(1H, td, J 9.7 and 3.9 Hz), 7.08–7.34 (3H, m), 7.68–7.88(2H, m) ppm; ν_{max} (neat) 3060, 3050, 2930s, 2850s, 1740vs, 1570, 1475, 1450s, 1435s, 1375s, 1240vs, 1200, 1170, 1035s, 1020, 1000, 960, 940, 905, 850, 800, 735s, 695s cm⁻¹. Anal. Found: C, 48.67; H, 5.31. C₁₄H₁₈O₂Te calcd.: C, 48.61; H, 5.25%.

Authentic samples of 1-acetoxy-2-hydroxydecane (10) and 2-acetoxy-1-hydroxydecane (11)

1,2-Epoxydecane (1 g), prepared by epoxidation of 1-decene with *m*-chloroperbenzoic acid in ethyl acetate at 0–20°C for 24 h, was heated in acetic acid (5 ml) at 60–70°C for 24 h as reported for the preparation of 1,2-octanediol monoacetates [11]. Brine was added to the solution and the aqueous layer was extracted with CHCl₃(3 × 30 ml). The extract was washed with aqueous NaHCO₃ and brine, and dried(CaSO₄). Evaporation of the solvent left a pale yellow oil, which upon Kugelrohr distillation, afforded a mixture of (10) and (11) as a colorless liquid (0.95 g, 69% yield, b.p. 200°C/2 Torr) The mixture gave a homogeneous peak with GLC, while analysis of the ¹H NMR spectrum, which closely resembles that of the 1,2-octanediol monoacetates [11], revealed that the isomer ratio of 10:11 was 65:35; 10 and 11, δ (H) (100 MHz) 0.88(t), 1.10–1.70(m), 2.10(s), 2.25(br s, exchangeable in D₂O, OH), 3.60–4.28(m, CHCH₂ of 10 and CH₂ of 11), 4.79–5.08(m, CH of (11)) ppm; ν_{max} (neat) 3450br s, 2930s, 2860s, 1740s, 1730sh, 1470, 1375, 1245s, 1130, 1100sh, 1045 cm⁻¹. Anal. Found: C, 66.38; H, 10.97. C₁₂H₂₄O₃ calcd.: C, 66.63; H, 11.18%. Oxidation of cyclohexene with TeO_2 and LiBr in acetic acid

The following example is a typical experimental procedure for the oxidation of an alkene.

To a mixture of TeO₂ (1.60 g, 10 mmol), LiBr (0.87 g, 10 mmol), and acetic acid (30 ml) was added cyclohexene (1.64 g, 20 mmol) at room temperature. The resulting yellow-orange heterogeneous mixture was stirred, and heated under reflux for 20 h, during which, the mixture gradually became a blackened suspension. The mixture was cooled and the solids were filtered off. The filtrate was treated with brine and then extracted with $CHCl_3(3 \times 50 \text{ ml})$: The extract was washed successively with aqueous NaHCO₃ and brine, and then dried over $MgSO_4$. GLC analysis of the extract revealed the presence of 1 and 2 (79:21 by peak area ratio) together with small amounts of trans-1-acetoxy-2-bromocyclohexane and diacetoxycyclohexenes [3b]. Evaporation of the solvent left an oily residue, of which the IR spectrum showed strong absorptions at 3450, 1740, and 1240 cm^{-1} , due to the hydroxy and acetoxy groups. The residue was then treated with acetic anhydride (3 ml) in pyridine (7 ml) at 120°C for 1 h. GLC analysis of the pyridine solution using benzyl acetate as internal standard revealed the presence of 1 (2.08 g, 10.4 mmol), and none of 2, other minor compounds remaining. For the isolation of 1 the pyridine solution was made slightly acidic using aqueous HCl and then extracted with $CHCl_3(3 \times 30)$ ml). The extract was treated as described above and Kugelrohr distillation afforded 1.50 g of almost pure 1, b.p. $160-165 \circ C/3$ Torr; $\delta(H)$ (100 MHz) 1.2-1.9 (8H, m), 2.06(6H, s), 5.00(2H, d); δ (C) 21.1(q), 21.7(t), 27.6(t), 70.9(d), 170.3(s) ppm; ν_{max} (neat) 2940, 2870, 1740vs, 1450, 1370, 1255vs, 1235vs, 1125, 1055, 1020, 985, 955 cm⁻¹. For comparison, the *trans*-isomer of 1, $\delta(H)$ (100 MHz) 1.2–1.9(8H, m), 2.04(6H, s), 4.80 (2H, br); δ (C) 21.1(q), 23.4(t), 30.1(t), 73.7(d), 170.4(s) ppm.

Isolation of cis-1-acetoxy-2-hydroxycyclohexane 2 and trans-1-acetoxy-2-bromocyclohexane

A mixture of cyclohexene (1.64 g, 20 mmol), TeO₂ (1.60 g, 10 mmol), LiBr (3.48 g, 40 mmol), and acetic acid (30 ml) was stirred at reflux temperature for 2 h, and then treated as above. Evaporation of the solvent from CHCl₃ extract left an oily residue, column chromatography on SiO₂ afforded four fractions: (i) an unidentified compound, 0.073 g (elution with hexane), (ii) *trans*-1-acetoxy-2-bromocyclohexane, 0.173 g (0.78 mmol) (hexane : ethyl acetate (10:1)), (iii) a mixture of 1 and diacetoxycyclohexenes, 0.345 g(hexane : ethyl acetate (5:1)), and (iv) 2, 0.825 g (5.86 mmol) (ethyl acetate). 2, δ (H) (100 MHz) 1.20–2.0(8H, m), 2.09(3H, s), 2.20(1H, br s, exchangeable in D₂O, OH), 3.75–3.95 (1H, m), 4.80–5.0(1H, m) ppm; ν_{max} (neat) 3450s, 2940s, 2860s, 1730vs, 1450, 1370s, 1240vs, 1075, 1040, 1020, 980 cm⁻¹. *trans*-1-Acetoxy-2-bromocyclohexane, δ (H) (100 MHz) 1.2–2.4(8H, m), 2.09(3H, s), 3.96 (1H, ddd, J 10.7, 9.3, and 4.4 Hz), 4.90(1H, td, J 9.8 and 4.4 Hz) ppm; m/z 180 and 178($M - \text{CH}_2\text{CO}$), 162 and 160($M - \text{CH}_3\text{CO}_2\text{H}$), 141(M - Br).

Spectroscopic data of other diacetates (3, 4, 7, 8, 13, 14) are shown below together with those of several corresponding *trans*-diacetates. All samples showed very strong IR spectrum absorptions at about 1740 and 1240 cm⁻¹.

cis-1,2-Diacetoxycyclopentane (3), b.p. $220 \circ C/24$ Torr, $\delta(H)$ (100 MHz) 1.4– 2.0(6H, m), 2.02 (6H, s), 5.12(2H, br m); $\delta(C)$ 19.2(t), 20.9(q), 28.3(t), 74.1(d), 170.4(s). The trans-isomer of 3, prepared [4] in 39% isolated yield, b.p. $220 \circ C/24$ Torr, $\delta(H)$ (100 MHz) 1.5–1.9(4H, m), 2.0–2.3(2H, m), 2.02(6H, s), 4.96–5.14(2H, m); $\delta(C)$ 21.0(q), 21.5(t), 30.4(t), 78.9(d), 170.1(s) ppm. cis-1,2-Diacetoxycycloheptane (4), b.p. $220 \circ C/22$ Torr, $\delta(H)$ (400 MHz) 1.52– 1.74(8H, m), 1.86–1.96(2H, m), 2.05(6H, s), 5.06–5.09(2H, m); $\delta(C)$ 21.1(q), 22.5(t), 26.6(t), 28.7(t), 74.4(d), 170.3(s) ppm. The *trans*-isomer of 4, prepared [4] in 42% isolated yield, b.p. 220°C/22 Torr, $\delta(H)$ (400 MHz) 1.55–1.58(4H, m), 1.66– 1.73(4H, m), 1.78–1.85(2H, m), 2.01(6H, s), 4.93–4.99(2H, m); $\delta(C)$ 21.1(q), 22.8(t), 28.3(t), 30.4(t), 76.9(d), 170.3 (s).

erythro-2,3-Diacetoxyoctane (7), prepared in a pure form (60% isolated yield, b.p. 220°C/23 Torr) by oxidation of *trans*-2-octene by a reported method [4], δ (H) (100 MHz) 0.88(3H, t), 1.21 (3H, d), 1.10–1.70(8H, m), 2.02(3H, s), 2.06(3H, s), 4.84–5.12 (2H, m); δ (C) 13.9(q), 14.7(q), 20.9(q), 21.0(q), 22.5(t), 25.1 (t), 29.8(t), 31.6(t), 70.9(d), 74.5(d), 170.3(s), 170.5(s) ppm.

threo-2,3-Diacetoxyoctane (7), isolated as a mixture with *erythro*-isomer (*threo: erythro* = 58:42), b.p. 190°C/6 Torr, δ (H) (100 MHz) 1.19(3H, d), 2.05(3H, s), 2.08(3H, s), other signals are identical with those of the *erythro*-isomer; δ (C) 13.9(q), 16.3(q), 20.9(q), 21.0(q), 22.5(t), 24.9(t), 30.4(t), 31.6(t), 70.6(d), 74.8(d), 170.3(s), 170.5(s) ppm. Anal. Found: C, 61.93; H, 9.58. C₁₂H₂₂O₄ calcd.: C, 62.58; H, 9.63%.

meso-4,5-Diacetoxyoctane (8), prepared in a pure form by a reported method [4] from *trans*-4-octene (83% isolated yield, b.p. 240°C/25 Torr), δ (H) (100 MHz) 0.8–1.04(6H, m), 1.14–1.74(8H, m), 2.04(6H, s), 4.90–5.10(2H, m); δ (C) 13.8(q), 18.8(t), 21.0(q), 31.3(t), 74.0(d), 170.6(s) ppm.

dl-4,5-Diacetoxyoctane (8), isolated as a mixture with *meso-*isomer (*dl:meso* = 56:44), b.p. 240°C/25 Torr, δ (H)(100 MHz) 2.08(6H, s), other signals are almost identical with those of the *meso-*isomer; δ (C) 13.8(q), 18.5(t), 21.0(q), 32.9(t), 73.7(d), 170.6(s) ppm.

1,2-Diacetoxy-3-phenylpropane (13), b.p. 250°C/4 Torr, δ(H) (100 MHz) 2.0(3H, s), 2.06 (3H, s), 2.90(2H, d, J 7 Hz), 3.99 (1H, dd, J 12 and 6.4 Hz), 4.24(1H, dd, J 12.2 and 3.4 Hz), 5.26(1H, qd, J 6.8 and 3.4 Hz), 7.04–7.26 (5H, m) ppm.

cis-4,5-Diacetoxycyclohexene (14), b.p. 150–160°C/2 Torr, δ (H) (100 MHz) 2.04 (6H, s), 2.36 (4H, d, J 6 Hz), 5.16 (2H, tt, J 6 and 1 Hz), 5.60 (2H, t, J 1.5 Hz); δ (C) 21.1(q), 28.6(t), 69.0 (t), 123.6(d), 170.3(d) ppm. Anal. Found: C, 59.97; H, 7.14. C₁₀H₁₄O₄ calcd.: C, 60.59; H, 7.12%.

trans-Isomer of **14**, prepared [4] in 20% isolated yield, b.p. 220°C/5 Torr, δ (H) (100 MHz) 2.04(6H, s), 2.0–2.75(4H, m), 4.92–5.20(2H, m), 5.52–5.62(2H, m).

Treatment of (18) with acetic acid

A black heterogeneous mixture of **18** (0.69 g, 2 mmol), TeO₂ (1.60 g, 10 mmol), LiBr (0.88 g, 5 mmol), and acetic acid (30 ml) was stirred at reflux temperature for 20 h. The mixture was cooled and the grey solids (1.20 g) which separated were filtered off. The filtrate was treated in the same way as for cyclohexene oxidation, described above. GLC analysis of the CHCl₃ extract showed the presence of only one peak, and evaporation of CHCl₃ left an oily residue which was subjected to column chromatography on SiO₂ to give pure **1** (0.301 g, 1.51 mmol, 75.3% yield) (elution with hexane : diethyl ether(1 : 1)). ¹H and ¹³C NMR spectra, and retention time (GLC) in two different columns, for **1** were identical with those of an authentic sample. Treatment of **15**, **17**, and **19** with acetic acid was carried out in a similar manner in the presence of, or without TeO₂ and/or LiBr.

Treatment of a mixture of bromination products of cis-2-octene with TeO₂ in acetic acid

A solution of bromine (3.2 g, 20 mmol) in acetic acid (15 ml) was added to a solution of *cis*-2-octene (2.24 g, 20 mmol, it contained 5% *trans*-isomer) in acetic acid (15 ml) at room temperature and the resulting pale yellow solution was stirred under reflux for 20 h. The mixture was treated with brine (200 ml) and extracted with CHCl₃ (3×40 ml), which had been washed with aq. NaHCO₃ and brine and dried (MgSO₄). Evaporation of the solvent left a pale-orange oil (5.03 g), GLC analysis using a Silicone DC QF-1(5%) column, revealed that it consisted of 2,3-dibromooctane (88%) and regioisomeric 2,3-acetoxybromooctanes (12%). The IR spectrum showed strong absorptions due to the acetoxy group.

This pale-orange oil (2.43 g, 9 mmol) and tellurium(IV) oxide (0.80 g, 5 mmol) were then stirred in acetic acid (30 ml) under reflux for 20 h. The black solids and a large amount of tarry products were filtered off, and the filtrate treated as above. GLC analysis of the CHCl₃ extract after treatment with acetic anhydride/pyridine revealed the presence of 2,3-dibromooctane (0.28 mmol), regioisomeric 2,3-acetoxy-bromooctanes (0.58 mmol), and 2,3-diacetoxyoctanes (7) (0.48 mmol, *erythro:threo* = 55:45).

Treatment of cyclohexene with TeBr₄

A mixture of TeBr₄ (Strem Chemicals) (4.47 g, 10 mmol), cyclohexene (1.64 g, 20 mmol), and acetic acid (30 ml) was stirred at reflux temperature for 2 h. The mixture quickly turned into a black suspension with evolution of HBr gas. It was cooled and the precipitated black solids (1.05 g) were filtered off, the filtrate was then treated as above (CHCl₃ extraction). GLC analysis of the CHCl₃ extract revealed the presence of cyclohexyl bromide, *trans*-1,2-dibromocyclohexane, *trans*-1,2-diacetoxycyclohexane, and one unidentified compound. Kugelrohr distillation (b.p. 200–240°C/20 Torr) afforded 1.37 g of distillate of this mixture with peak areas of 56:15:18:11 in that order, with 0.13 g of black-brown tarry compounds remaining. GLC analysis showed that neither **1** nor **2** were present.

Acknowledgement

This research was financially supported by the Asahi Glass Foundation for Industrial Technology.

References

- 1 J. Bergman and L. Engman, J. Organomet. Chem., 181 (1979) 335.
- 2 (a) S. Uemura and S. Fukuzawa, The 42nd Annual Meeting of the Chemical Society of Japan, 1980, Abstract II, p. 466; (b) S. Uemura, S.R. Patil and S. Fukuzawa, The 47th Annual Meeting of the Chemical Society of Japan, 1983, Abstract II, p. 1215.
- 3 (a) S. Uemura, S. Fukuzawa and M. Okano, Tetrahedron Lett, (1981) 5331; (b) S. Uemura, S. Fukuzawa, S.R. Patil and M. Okano, J. Chem. Soc., Perkin Trans. 1 (1985) 499.
- 4 Recently, a new oxidation system (alkene-Fe(II)-S₂O₈²⁻-AcOH) for *trans*-rich diacetates was reported: W.E. Fristad and J.R. Peterson, Tetrahedron Lett, (1983) 4547; ibid, Tetrahedron, 40 (1984) 1469.
- 5 L. Engman, Acc. Chem. Res., 18 (1985) 274.
- 6 In the diacetoxylation of conjugated dienes by the same system, the ratio of LiBr/TeO_2 gave a large effect on both the product yield and selectivity for 1,4-diacetoxyalkenes, an excess of LiBr being favored [3].

- 7 R.A. Sheldon and J.K. Kochi, Metal-Catalyzed Oxidations of Organic Compounds, Academic, New York, 1981, pp. 135-136.
- 8 J.-L. Kao and M.N. Sheng, U.S. Pat 4,260,814; Chem. Abstr., 95 (1981) 80190m.
- 9 J.-E. Bäckvall, J. Bergman and L. Engman, J. Org. Chem., 48 (1983) 3918.
- 10 S. Uemura, S. Fukuzawa and A. Toshimitsu, J. Organomet. Chem., 250 (1983) 203.
- 11 A. Lethbridge, R.O.C. Norman and C.B. Thomas, J. Chem Soc., Perkin Trans. 1, (1974) 1929.