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Three novel bisphosphonate analogues of 8-oxo-dGTP 3 in which the bridging b,c-oxygen is replaced by a
methylene, fluoromethylene or difluoromethylene group (4–6, respectively) have been synthesized from
8-oxo-dGMP 2 by reaction of its morpholine 50-phosphoramidate 14 or preferably, its N-methylimidazole
50-phosphoramidate 15 with tri-n-butylammonium salts of the appropriate bisphosphonic acids, 11–13.
The latter method also provides a convenient new route to 3. Analogues 4–6may be useful as mechanistic
probes for the role of 3 in abnormal DNA replication and repair.

� 2021 Elsevier Ltd. All rights reserved.
Introduction

Oxidative DNA damage due to reactive oxygen species (ROS)
has been implicated in the pathogenesis of a wide variety of dis-
eases, including cancer [1], neurodegenerative and neurodevelop-
mental disorders [2], inflammatory disorders [3] and aging [4]. 8-
Oxo-20-deoxyguanosine (8-oxo-dG, 1) is a harbinger of oxidative
DNA damage [5] and has been implicated in carcinogenesis by
inducing mutations [6] as well as by abnormal epigenetic modula-
tion of gene expression [7]. The mutagenicity of 1 is attributed to a
conformational shift of the N9-C10 glycosidic bond from anti to syn,
causing it to mimic a syn thymidine [8]. As a result of A:8-oxo-G
(A:8OG) Hoogsteen base mispairing, replicative DNA polymerases
(pols) often insert dATP opposite 1 instead of dCTP [9,10]. Pol b,
pol g, REV1, pol n and pol j have all been implicated [11] in the
incorporation of 8-oxo-dGMP 2 into DNA from 8-oxo-20-deoxygua-
nosine-50-triphosphate (8-oxo-dGTP, 3), present as an ROS in the
cellular nucleotide pool [12]. Wilson and co-workers recently
described the crystal structure of a pol b DNA complex in which
the adenine of a DNA (syn)8OG:A base pair was replaced at the pri-
mer terminus by a cytosine [13]. It is apparent that complementary
information about the functional mechanism and transition state
(TS) is desirable.

Herein, we report the synthesis of a small toolkit of 8-oxo-dGTP
bisphosphonate probes, including an alternate preparation of the
reference nucleotide, 3. The toolkit comprises three b,c-CXY
bridged 8-oxo-dGTP analogues: b,c-methylene- 4, b,c-monofluo-
romethylene- 5, and b,c-difluoromethylene-8-oxo-dGTP 6 (Fig. 1).

A similar toolkit based on the natural nucleotides has been used
to study leaving group effects on the nucleotidyl transfer kinetic
mechanisms and fidelity of pols [14–18]and other biocatalysts
[19]. As the b,c-bridge atom X and Y substituents become more
electronegative, the pKa4 of the corresponding bisphosphonate
leaving group decreases [20,21], stabilizing the conjugate base
anion. If the rate-determining step (RDS) involves PAO bond break-
ing, then a Brønsted plot of the log of the catalytic rate constant
(kpol) versus pKa4 is predicted to be linear (linear free energy rela-
tionship, LFER) with a negative slope reflecting the sensitivity of
the TS to anion stabilization [22]. The bisphosphonates selected
provide a range of pKa4 of 2.75 units, centered on the pKa4 of the
leaving group in 3, pyrophosphoric acid [20].
Results and discussion

Early oxidative methods [12,23] to prepare 3 itself directly from
dGTP in low or unstated yield were not reproduced by others [24],
as confirmed by ownwork (data not shown). Direct oxidativemeth-
ods have a further limitation in that they do not give convenient
access to 8-[17O]- or 8-[18O]-oxo-guanosine derivatives [25]. Einolf
described an 8-step synthesis of 3 beginning from dG 7 involving
several protection/deprotection steps, culminating in separation
of the final compound from mono- and diphosphate 8-oxo-dG
byproducts [26]. Nampalli and Kumar [24] subsequently outlined

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tetlet.2021.152890&domain=pdf
https://doi.org/10.1016/j.tetlet.2021.152890
mailto:mckenna@usc.edu
https://doi.org/10.1016/j.tetlet.2021.152890
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


Fig. 1. Structures of 8-oxo-dGTP 3, b,c-CH2- 4, b,c-CHF-5, and b,c-CF2-8-oxo-dGTP 6.
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a gram-scale synthesis of 3 from 8-bromo-dG [27,28] 8 in 36% over-
all yield via conversion to the 8-benzyloxy derivative 9 using
sodium/benzyl alcohol in dimethyl sulfoxide, followed by treat-
ment with phosphorus oxychloride (POCl3) [29] in trimethyl phos-
phate and reactionwith bis(tri-n-butylammonium) pyrophosphate.
The final product was obtained by hydrolysis of the resulting cyclic
triphosphate intermediate in aqueous triethylammonium bicar-
bonate (TEAB) at pH 7.5 (Schemes 1 and 2) [24].

8-Benzyloxy-dG 9 can be prepared from 7 in 78% yield [27,28],
and we found that formation of an 8-dimsyl-dG byproduct can be
Scheme 1. Synthesis of 8

Scheme 2. ‘One-pot’ phosphorylation [30,31] synthesis of 8-oxo-dGTP

2

avoided by using anhydrous N,N-dimethylformamide (DMF) in
place of DMSO as the solvent (Scheme 1). However, in our hands,
phosphorylation of 1 or 9 on a small scale using the literature
one-pot-three-step procedure [24,30,31] (Scheme 2) gave much
lower yields than anticipated.

We therefore examined an alternative synthesis of 3 starting
from 8-oxo-dGMP 2 (prepared in 33% yield by monophosphoryla-
tion of 1with POCl3 in PO(OMe)3 [29] followed by aqueous workup
with 0.5 M TEAB) after activation by morpholine [32] or N-
methylimidazole [33,34] to facilitate coupling with pyrophosphate
-oxo-dG 1 [24,27,28].

3 from 8-oxo-dG 1 [24]; (TEAB: triethylammonium bicarbonate).



Scheme 3. Synthesis of 3–6 via the 50-morpholidate 14.

Scheme 4. Synthesis of 3–6 via the 50-N-methylimidazolide 15.
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10, as a method likely to be adaptable to the synthesis of 4–6 from
the appropriate bisphosphonate tri-n-butylammonium salt 11–13
[20], prepared by treatment of commercially available methylene-
bis(phosphonic acid) or its a-fluorinated derivatives [35] with tri-
n-butylamine in aq. ethanol. 8-Oxo-dGMP-morpholidate 14 gave 3
and the target bisphosphonate nucleotides 4–6, but the reactions
were sluggish, with very poor yields (Scheme 3).

Better results were obtained with N-methylimidazole activation
[33,34]. Thus, 2 suspended in a mixture of triethylamine and
excess trifluoroacetic anhydride in acetonitrile was treated with
N-methylimidazole to give the corresponding 8-oxo-dGMP-N-
methylimidazolide 15, which was then added to tri-n-butylammo-
nium pyrophosphate 10 or the tri-n-butylammonium bisphospho-
nate 11, 12 or 13 in DMF (Scheme 4). Deactivated 8-oxo-dGMP 2
can be recovered during purification of the final products (charac-
terized by 1H, 31P and 19F NMR, LC-MS and HRMS) via SAX/C18
preparative HPLC.

In the coupling reactions to form 3–6, the reaction time was
much shorter with the N-methylimidazolides (2–3 h) compared
to the morpholidates (3–5 d) [30–32]. It is critical to thoroughly
dry the tri-n-butylammonium salt of the bisphosphonic acid by
repeated coevaporation with anhydrous DMF before use to achieve
optimal yields.

The proton-decoupled 31P NMR spectra of 3–6 are compared in
Fig. S44. As expected, a dramatic upfield shift of the Pc and Pb res-
3

onances is seen with more electronegative substituents
(CF2 > CHF > CH2) on the bridging b-methylene group. There is
no effect on the Pa resonance which remains constant at about
�10 ppm.

Consistent with published data for the b,c-monofluoro and
b,c-difluoro analogues of dGTP [15], 5 and 6 exhibit 19F NMR
resonances at d �217.32 and d �120.95 ppm, respectively. The
31Pb, 31Pc and 19F peaks of 5 exhibit a slight broadening consistent
with a small Dd for the R v S diastereomers [15] (the individual
isomers should be accessible via chiral synthons derived from 12
[20]).sy).]

Conclusion

In summary, we examined several alternative approaches for
the synthesis of 8-oxo-dGTP 3 and three novel bisphosphonate
analogues: b,c-methylene- 4, (R/S)-b,c-monofluoromethylene- 5,
and b,c-difluoromethylene-8-oxo-dGTP 6. Conjugation of the cor-
responding bisphosphonic acid n-butylammonium salts 11–13
with 8-oxo-dGMP-N-methylimidazolide 15 in anhydrous DMF is
a practical route to these compounds, albeit in low (not optimized)
yields. The availability of the resulting 8-oxo-dGTP analogue
toolkit provides a novel means to probe leaving group effects on
the binding and kinetic mechanisms of 3 interacting with nucleic
acid polymerases.
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Appendix A. Supplementary data

Supplementary data (details of synthetic procedures with spec-
troscopic and other characterization data) to this article can be
found online at https://doi.org/10.1016/j.tetlet.2021.152890.
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