Aluminium Chloride-Catalyzed Intermolecular *vs* Intramolecular Friedel-Crafts Reaction of Acrylanilides and 3-Chloropropanamides

I-Li Chen^a (* * * *), Tai-Chi Wang^b (* * *),

Yeh-Long Chen^a (• • • •) and Cherng-Chyi Tzeng^{*a} (• • • •) ^aSchool of Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, R.O.C. ^bDepartment of Pharmacy, Tajen Institute of Technology, Pingtung, Taiwan, R.O.C.

3-Phenylpropionanilide (**4a**) is obtained in a yield of 89% from acrylanilide by the treatment with AlCl₃/ benzene, compared with a yield of 39% by the 1,4-conjugate addition of phenyllithium. The formation of **4a** indicated that an intermolecular Friedel-Crafts reaction occurred, rather than the relatively more facile intramolecular ring cyclization, and provided a more efficient route than a conjugate addition of phenyllithium for the preparation of 3-phenylpropionanilide and its derivatives. Although the methoxy group is an activator of the nucleophilic substitution, introduction of a methoxy substituent at *N*-phenyl did not increase the competitive capability of the intramolecular cyclization because of AlCl₃-catalyzed demethylation to form the ArOAlCl₂ complex which decreased the availability of the π -electron in the *N*-phenyl aromatic system.

INTRODUCTION

The conjugate addition of organometallic reagents to unsaturated carbonyl compounds constitutes an important class of carbon-carbon bond forming reactions. Although reactive nucleophiles such as alkyllithium reagents usually undergo conjugate addition with α , β -unsaturated amides, several drawbacks have been observed such as large excesses of organometallic reagents are required, enolization of α , β -unsaturated amide to form deconjugated isomer, and poor yields due to the formation of dimers.¹⁻³ In 1980, Baldwin et al. described the conjugate addition of organolithium to α,β -unsaturated anilides.² The *n*- and *t*-butyllithium additions gave satisfying yields with a range of 82-94%, but the yield obtained for phenyllithium additions were only 0-48%. In the course of our investigation on hydroxy-2(1H)-quinolinones as key precursors for the preparation of potential cardiovascular agents, $^{4-8}$ we have synthesized 3,3-diphenylpropionanilide (2) from cinnamanilide (1) in AlCl₃/benzene via Lewis acid catalyzed intermolecular Friedel-Crafts reaction (Scheme I).⁶ The

Scheme I

Dedicated to the memory of the late Pro Ta-shue Chou (

reaction proceeded smoothly and a 67% yield of **2** was obtained, compared with a yield of 32% from the conjugate addition of phenyllithium.² To study the scope and the limitations of this type of reaction, acrylanilide (**3a**, $R_1 = R_2 = H$),⁹ 3,3-dimethylacrylanilide (**3b**, $R_1 = H$, $R_2 = Me$),¹⁰ and its derivatives (**3c-i**),¹¹⁻¹³ *N*-phenyl-3-chloropropanamide (**8a**, $R_1 =$ H)⁹ and its derivatives (**8c-f**)¹⁴⁻¹⁷ were prepared as starting materials. Their treatment with AlCl₃ / benzene and AlCl₃ / chlorobenzene is described.

RESULTS AND DISCUSSION

Treatment of **3a** with AlCl₃ / benzene at 80°C gave 3-phenylpropionanilide (4a) as a sole product in 89% yield (Table 1, entry a), compared with a yield of 39% from the conjugate addition of phenyllithium.² The intermolecular Friedel-Crafts reaction of 3a occurred rather than the relatively more facile intramolecular ring cyclization. However, reaction of 3,3-dimethylacrylanilide with AlCl3 / benzene under the same reaction conditions gave exclusively 3,4dihydro-4,4-dimethyl-2(1*H*)-quinolinone (**5b**, $R_2 = Me$, $R_4 =$ H), an intramolecular ring cyclization product, in a 94% yield (entry b). A more steric hindered carbonium intermediate (entry b) seems to favor the intramolecular cyclization while a less hindered intermediate (entry a) tends to undergo intermolecular addition. Treatment of either N-(2-methoxyphenyl)-3-methyl-2-butenamide or its N-(3-methoxyphenyl)analogue in benzene with aluminum chloride at 80°C gave a

Table 1. Friedel-Crafts Reaction of Arylanilides in Aluminium Chloride / Benzene

	R ₂ AlCl ₃ Benzend		R_2		R_2 R_2 R_2 R_1 R_2	
Entry	R_1	R_2	R ₃	R_4	Yeild (%)	Ratio (4/5)
a	Η	Η	Η	-	89	1/0
b	Η	Me	-	Η	94	0/1
с	2-OMe	Me	2-OH	8-OH	66	2.7/1
d	3-OMe	Me	3 - OH	7- OH	93	2.6/1
e	4-OMe	Me	4 - OH	-	90	1/0
f	4 - OH	Me	4- OH	6-OH	88	3.6/1
g	4-C1	Me	4-C1	6-C1	99	1.3/1
h	$4-NO_2$	Me	$4-NO_2$	-	93	1/0
i	4-Me	Me	-	6-Me	82	0/1

Table 2. Friedel-Crafts Reaction of Arylanilides in Aluminium Chloride / Chlorobenzene

	R ₂ AIC	l ₃ enzene		R_2 + R_2 +	R_2 R_2 R_2 R_2 R_3	$\begin{array}{c} 1 \\ + \\ R_4 \end{array} \begin{pmatrix} R_2 \\ R_2 \\ R_4 \\ R$
Entry	R_1	R_2	R ₃	R_4	Yeild (%)	Ratio (6/7/5)
а	Η	Η	Η	-	66	2/1/0
b	Η	Me	-	Η	93	0/0/1
с	2-OMe	Me	2- OH	8-OH	99	4/0/1
d	3-OMe	Me	-	7- OH	79	0/0/1
e	4-OMe	Me	-	6 - OH	84	0/0/1
f	4- OH	Me	-	6 - OH	62	0/0/1
g	4-C1	Me	4-C1	6-C1	95	1/0/7.6
h	$4-NO_2$	Me	$4-NO_2$	-	76	1/0/0
i	4-Me	Me	-	6-Me	91	0/0/1

mixture of addition and cyclization products in favor of intermolecular addition reaction (entries c and d). However, the *N*-(4-methoxyphenyl) counterpart gave exclusively the intermolecular addition product of *N*-(4-hydroxyphenyl)-3-methyl-3-phenylbutanamide (entry e). This is unusual because the methoxy is an electron-donating group which should accelerate the intramolecular cyclization. Both 4-hydroxy derivative (entry f) and 4-chloro derivative (entry g) tend to favor the intermolecular addition in a ratio of 3.6:1 and 1.3:1, respectively. The 4-nitro derivative (entry h), howChen et al.

ever, gave only the intermolecular addition product due to strong electron-withdrawing capacity of nitro group. In contrast, 4-methyl derivative (entry i) gave exclusively the intramolecular cyclization product due to the electron-donating capacity of the methyl group.

Except for entries b and i, all the above competitive reactions are in favor of intermolecular Friedel-Crafts addition in which benzene functions as a nucleophilic moiety. The next question was, if benzene was replaced with a less nucleophilic solvent such as chlorobenzene, will the intermolecular addition still predominate? Thus, 3a was treated with AlCl₃ / chlorobenzene at 120 °C, 3-(4-chlorophenyl)-propionanilide (6a) and 3-(2-chlorophenyl)-propionanilide (7a) were obtained in a ratio of 2 to 1 indicating that only the intermolecular addition occurred (Table 2, entry a). Again, the intramolecular cyclization product of 5b was obtained by treating 3b with AlCl₃ / chlorobenzene. Although treatment of 3c with AlCl₃ / chlorobenzene gave a mixture of addition and cyclization products in favor of intermolecular addition reaction, both 3d and 3e proceeded via the intramolecular cyclization pathway and gave exclusively cyclization products of 5d and 5e, respectively. However, 3g gave a mixture of 6g and 5g in a ratio of 1:7.6 due to the electron-withdrawing effect of the 4-chloro substituent. Accordingly, 4-nitro derivative 3h gave exclusively the intermolecular addition product of 6h while the 4-methyl derivative 3i gave exclusively the intramolecular cyclization product of 5i.

By comparison of entries *b* and *c* from Tables 1 and 2, the methoxy substituent tends to decrease the competitive capability of the intramolecular Friedel-Crafts cyclization. This is unusual because the methoxy group is considered as an activator and therefore, should enhance the nucleophilic capability of the N-phenyl aromatic ring. To further confirm the influence of methoxy substituent with respect to the intermolecular addition vs intramolecular cyclization, a typical Friedel-Crafts alkylation was initiated by treating N-phenyl-3chloropropanamide 8a and its derivatives (8c-f)¹⁴⁻¹⁷ with AlCl₃ / chlorobenzene (Table 3). The results indicated that when 8a was treated with AlCl₃ / chlorobenzene, both cyclization (11a) and addition (9a and 10a) products were obtained in favor of the intramolecular cyclization. Introduction of a methoxy substituent at N-phenyl (8c-e) did not enhance the competitive capability of the intramolecular cyclization. In contrast, it decreased the competition of the N-phenyl and therefore, the intermolecular addition of chlorobenzene became predominate (Table 3, entries c-e). This unusual result could be due to AlCl₃-catalyzed demethylation to form the ArOAlCl₂ complex which decreased the availability of the π -electron in the N-phenyl aromatic system. Treatment of

Table 3. Friedel-Crafts Reaction of N-Phenyl-3-chloropropanamide in Aluminium Chloride / Chloroenzene

R1 8		AlCl ₃				$ \begin{array}{c} R_{4} \\ R_{4} \\ R_{4} \end{array} $
Entry	R_1	R ₂	R ₃	R ₄	Yeild (%)	Ratio (9/10/11)
a	Η	Η	Η	Η	86	1/1.8/4.3
c	2-OMe	2-OH	2- OH	-	79	1/1.9/0
d	3-OMe	3 - OH	3-OH	7 - OH	76	9/9/1
e	4-OMe	4- OH	4- OH	6 - OH	89	11/11/1
f	4-Me	4-Me	4-Me	6-Me	90	1/1.4/7.6

N-(4-methylphenyl)-3-chloropropanamide **8f** with AlCl₃ / chlorobenzene gave both addition products (**9f** and **10f**) and cyclization product **11f** in favor of the latter, indicating the electron-donating methyl substituent which was free of complex formation does improve the nucleophilic capability of the *N*-phenyl aromatic ring and therefore, the intramolecular cyclization product **11f** became predominant (Table 3, entry *f*).

EXPERIMENTAL SECTION

TLC: precoated (0.2 mm) silica gel 60 F-254 plates from EM Laboratories, Inc.; detection by UV light (254 nm). Mp Electrothermal IA-9000 micromelting-point apparatus; uncorrected. ¹H- and ¹³C-NMR spectra: Varian-Gemini-200 spectrometer, δ in ppm with Me₄Si as an internal standard. Elemental analyses were carried out on a Heraeus CHN-O-Rapid elemental analyzer and results were within +/- 0.4% of calculated values.

Acrylanilide (3a)

To a stirred solution of aniline (1.86 g, 20 mmol), K₂CO₃ (4.15 g, 30 mmol), H₂O (40 mL), and acetone (20 mL) was added dropwise acryloyl chloride (2.26 g, 25 mmol) at 0 °C. The mixture was stirred at 0 °C for 1 h (monitored by TLC) and then poured into ice-water (100 mL). The resulting precipitate was collected and crystallized from hexane / Et₂O (1:1) to give **3** (2.80 g, 95 %), mp 103-104 °C, Lit.⁹ mp 101-103 °C; ¹H NMR (CDCl₃): δ 5.71 (dd, *J* = 2.4 and 9.3 Hz, 1H), 6.29 (dd, *J* = 9.3 and 16.9 Hz, 1H), 6.42 (dd, *J* = 2.4 and 16.9 Hz, 1H), 7.07-7.61 (m, 5H), 8.05 (br s, 1H). ¹³C NMR

(CDCl₃): δ 120.22, 124.53, 127.61, 128.94, 131.25, 137.78, 163.93.

General Procedure for the Preparation of *N*-phenyl-3methyl-2-butenamide and *N*-(methoxyphenyl)-3-methyl-2-butenamide (3b-i)

To a stirred solution of aniline (1.86 g, 20 mmol) or methoxyaniline (2.46 g, 20 mmol), K_2CO_3 (4.15 g, 30 mmol), H_2O (40 mL), and acetone (20 mL) was added dropwise 3,3-dimethylacryloyl chloride (2.96 g, 25 mmol) at 0 °C. The mixture was stirred at 0 °C for 1 h (monitored by TLC) and then poured into ice-water (100 mL). The resulting precipitate was collected and crystallized from a specified solvent to give **3b-i**.

N-Phenyl-3-methyl-2-butenamide (3b)

Yield: 92 %; mp 129-130 °C (hexane / Et₂O 10:1), Lit.¹⁰ mp 129-130 °C. ¹H NMR (CDCl₃): δ 1.88 (d, J = 1.1 Hz, 3H), 2.21 (d, J = 1.3 Hz, 3H), 5.72 (m, 1H), 7.03-7.55 (m, 5H), 7.29 (br s, 1H). ¹³C NMR (CDCl₃): δ 19.92, 27.30, 118.64, 119.79, 123.93, 128.87, 138.22, 153.22, 165.11.

N-(2-Methoxyphenyl)-3-methyl-2-butenamide (3c)

Yield: 95 %; mp 63-64 °C (CH₂Cl₂ / Et₂O 1:1), Lit.¹¹ mp 65 °C. ¹H NMR (CDCl₃): δ 1.90 (d, J = 1.3 Hz, 3H), 2.22 (d, J = 1.3 Hz, 3H), 3.87 (s, 3H), 5.76 (m, 1H), 6.84-8.46 (m, 4H), 7.69 (br s, 1H). ¹³C NMR (CDCl₃): δ 19.85, 27.31, 55.62, 109.80, 119.13, 119.61, 121.06, 123.23, 128.06, 147.72, 152.65, 164.85.

N-(3-Methoxyphenyl)-3-methyl-2-butenamide (3d)

Yield: 92 %; mp 112-113 °C (CH₂Cl₂ / Et₂O 1:1), ¹H NMR (CDCl₃): δ 1.88 (d, *J* = 1.3 Hz, 3H), 2.21 (d, *J* = 1.3 Hz, 3H), 3.79 (s, 3H), 5.71 (m, 1H), 6.61-7.23 (m, 4H), 7.34 (br s, 1H). ¹³C NMR (CDCl₃): δ 19.96, 27.36, 55.27, 105.25, 109.97, 111.82, 118.63, 129.55, 139.49, 153.49, 160.11, 165.06. Anal. Calcd for C₁₂H₁₅NO₂: C, 70.22; H, 7.37; N, 6.82; Found: C, 69.90; H, 7.42; N, 6.81.

N-(4-Methoxyphenyl)-3-methyl-2-butenamide (3e)

Yield: 93 %; mp 88-89 °C (CH₂Cl₂/Et₂O 1:1), Lit.¹¹ mp 90 °C. ¹H NMR (CDCl₃): δ 1.87 (d, J = 1.1 Hz, 3H), 2.20 (d, J = 1.2 Hz, 3H), 3.77 (s, 3H), 5.69 (m, 1H), 6.81-7.45 (m, 4H), 7.27 (br s, 1H). ¹³C NMR (CDCl₃): δ 19.87, 27.28, 55.43, 114.04, 118.68, 121.63, 131.34, 152.60, 156.15, 164.99 (C=O).

N-(4-Hydroxyphenyl)-3-methyl-2-butenamide (3f)

Yield: 42 %; mp 194-195 °C (CH₂Cl₂ / Et₂O 1:1), Lit.¹²

mp 194-197 °C; ¹H NMR (DMSO-d₆): δ 1.84 (s, 3H), 2.13 (s, 3H), 5.81 (m, 1H), 6.65-7.41 (m, 4H), 9.15 (s, 1H), 9.65 (s, 1H). ¹³C NMR (DMSO-d₆): δ 19.38, 26.97, 115.01, 119.38, 120.79, 131.20, 149.97, 153.07, 164.12 (C=O).

N-(4-Chlorophenyl)-3-methyl-2-butenamide (3g)

Yield: 87 %; mp 121-122 °C (CH₂Cl₂ / Et₂O 1:1), Lit.¹¹ mp 122 °C; ¹H NMR (CDCl₃): δ 1.89 (d, J = 1.2 Hz, 3H), 2.21 (d, J = 1.2 Hz, 3H), 5.69 (m, 1H), 7.23-7.49 (m, 4H), 7.27 (br s, 1H). ¹³C NMR (CDCl₃): δ 19.98, 27.39, 118.29, 120.94, 121.32, 128.88, 136.80, 154.13, 164.94 (C=O).

N-(4-Nitrophenyl)-3-methyl-2-butenamide (3h)

Yield: 70 %; mp 129-130 °C (CH₂Cl₂ / Et₂O 1:1), ¹H NMR (CDCl₃): δ 1.94 (d, *J* = 1.3 Hz, 3H), 2.25 (d, *J* = 1.3 Hz, 3H), 5.76 (m, 1H), 7.72-8.22 (m, 4H), 7.57 (br s, 1H). ¹³C NMR (CDCl₃): δ 20.20, 27.61, 117.80, 118.80, 125.06, 143.14, 144.36, 156.66, 164.91 (C=O). Anal. Calcd for C₁₁H₁₂N₂O₃: C, 59.99; H, 5.49; N, 12.72; Found: C, 59.69; H, 5.49; N, 12.58.

N-(4-Methyphenyl)-3-methyl-2-butenamide (3i)

Yield: 79 %; mp 106-107 °C (CH₂Cl₂ / Et₂O 1:1), Lit.¹³ mp 106-107 °C; ¹H NMR (CDCl₃): δ 1.88 (s, 3H), 2.21(d, J = 1.6 Hz, 3H), 2.30 (d, J = 1.6 Hz, 3H), 5.70 (m, 1H), 7.09-7.42 (m, 4H), 7.15 (br s, 1H). 13C NMR (CDCl₃): d 19.90, 20.81, 27.30, 118.73, 119.80, 129.38, 133.52, 135.63, 152.88, 164.95 (C=O).

3-Phenylpropionanilide (4a)

AlCl₃ (6.4 g, 48 mmol) was added portionwise to a suspension of **3a** (1.18 g, 8 mmol) in benzene (50 mL) at 0 °C. The reaction mixture was gradually warmed to 80 °C and then stirred for 6h (monitored by TLC). The mixture was poured into ice-water (100 mL) and extracted with CH₂Cl₂ (3 × 60 mL). The CH₂Cl₂ extracts were combined and washed with water, dried (Na₂SO₄), and evaporated to give a residual solid which was purified by column chromatography on silica gel with hexane / CH₂Cl₂ (1:1) as an eluent and then crystallized from hexane / Et₂O (1:1) to give **4a** (1.60 g, 89 %). mp 96-97 °C. Lit.¹⁸ mp 98 °C. ¹H NMR (CDCl₃): δ 2.64 (t, *J* = 8.0 Hz, 2H), 3.04 (t, *J* = 8.0 Hz, 2H), 7.08-7.45 (m, 10H). ¹³C NMR (CDCl₃): δ 31.53, 39.40, 119.93, 124.27, 126.35, 128.36, 128.60, 128.92, 137.69, 140.59, 170.40.

The same procedures were used to convert each of the compounds **3b-i** to the respective **4b-i** and/or **5b-i**.

3,4-Dihydro-4,4-dimethyl-2(1*H*)-quinolinone (5b)

Yield: 94 %; m.p. 114-115°C (hexane / Et₂O 1:1), Lit.¹⁹ m.p. 116°C; ¹H NMR (CDCl₃): δ 1.34 (s, 6H), 2.50 (s, 2H), 6.87-7.30 (m, 4H), 9.44 (br s, 1H); ¹³C NMR (CDCl₃): δ 27.64, 33.87, 45.23, 115.89, 123.55, 124.36, 127.46, 132.38, 135.80, 171.45.

N-(2-Hydroxyphenyl)-3-methyl-3-phenylbutanamide (4c) and 3,4-Dihydro-8-hydroxy-4,4-dimethyl-2(1*H*)-quinolinone (5c)

4c: 48 % yield; mp 118-119 °C (CH₂Cl₂). ¹H NMR (DMSO-d₆): δ 1.43 (s, 6H), 2.72 (s, 2H), 6.70-7.57 (m, 9H), 9.06 (br s, 1H), 9.62 (br s, 1H). ¹³C NMR (DMSO-d₆): δ 28.61, 37.27, 49.23, 115.90, 118.88, 122.19, 124.59, 125.47, 125.56, 126.27, 127.94, 147.83, 148.96, 169.98. Anal. Calcd for C₁₇H₁₉NO₂: C, 75.81; H, 7.11; N, 5.20; Found: C, 75.85; H, 7.11; N, 5.12.

5c: 18 % yield; mp 174-175 °C (CH₂Cl₂). ¹H NMR (DMSO-d₆): δ 1.20 (s, 6H), 2.33 (s, 2H), 6.69-6.83 (m, 3H), 8.76 (br s, 1H), 9.69 (br s, 1H). ¹³C NMR (DMSO-d₆): δ 27.19, 33.69, 45.08, 113.44, 114.62, 122.55, 124.48, 133.33, 143.89, 168.61. Anal. Calcd for C₁₁H₁₃NO₂: C, 69.09; H, 6.85; N, 7.32; Found: C, 68.99; H, 6.94; N, 7.23.

N-(3-Hydroxyphenyl)-3-methyl-3-phenylbutanamide (4d) and 3,4-Dihydro-7-hydroxy-4,4-dimethyl-2(1*H*)-quinolinone (5d)

4d: 67 % yield; mp 183-184 °C (CH₂Cl₂). ¹H NMR (DMSO-d₆): δ 1.41 (s, 6H), 2.59 (s, 2H), 6.39-7.43 (m, 9H), 9.28 (br s, 1H), 9.58 (br s, 1H). ¹³C NMR (DMSO-d₆): δ 28.55, 37.26, 49.56, 106.35, 109.92, 110.11, 125.41, 125.55, 127.94, 129.17, 140.13, 149.20, 157.47, 169.24. Anal. Calcd for C₁₇H₁₉NO₂: C, 75.81; H, 7.11; N, 5.20; Found: C, 75.70; H, 7.12; N, 5.11.

5d: 26 % yield; mp 224-225 °C (CH₂Cl₂). ¹H NMR (DMSO-d₆): δ 1.16 (s, 6H), 2.27 (s, 2H), 6.32-7.05 (m, 3H), 9.30 (br s, 1H), 9.98 (br s, 1H). ¹³C NMR (DMSO-d₆): δ 27.67, 32.90, 45.46, 102.55, 109.33, 122.73, 125.02, 137.73, 156.43, 169.71. Anal. Caled for C₁₁H₁₃NO₂: C, 69.09; H, 6.85; N, 7.32; Found: C, 68.81; H, 6.92; N, 7.29.

N-(4-Hydroxyphenyl)-3-methyl-3-phenylbutanamide (4e)

Yield: 90 %; mp 200-201 °C (CH₂Cl₂). ¹H NMR (DMSO-d₆): δ 1.41 (s, 6H), 2.54 (s, 2H), 6.62-7.44 (m, 9H), 9.15 (br s, 1H), 9.45 (br s, 1H). ¹³C NMR (DMSO-d₆): δ 28.59, 37.28, 49.47, 114.93, 121.11, 125.45, 125.56, 127.96, 130.80, 149.29, 153.20, 168.70. Anal. Calcd for C₁₇H₁₉NO₂: C, 75.81; H, 7.11; N, 5.20; Found: C, 75.64; H, 7.11; N, 5.25.

3,4-Dihydro-6-hydroxy-4,4-dimethyl-2(1*H*)-quinolinone (5f)

Yield: 19%; mp 223-224 °C (Et₂O). ¹H NMR (DMSOd₆): δ 1.18 (s, 6H), 2.27 (s, 2H), 6.52-6.70 (m, 3H), 9.04 (br s, 1H), 9.86 (br s, 1H). 13 C NMR (DMSO-d₆): δ 27.20, 33.52, 44.93, 111.06, 113.46, 116.28, 128.87, 133.38, 152.85, 168.72. Anal. Calcd for C₁₁H₁₃NO₂: C, 69.09; H, 6.85; N, 7.32; Found: C, 69.09; H, 6.87; N, 7.21.

N-(4-Chlorophenyl)-3-methyl-3-phenylbutanamide (4g) and 6-Chloro-3,4-dihydro-4,4-dimethyl-2(1*H*)-quinolinone (5g)

4g: 56 % yield; mp 148-149 °C (Et₂O). ¹H NMR (CDCl₃): δ 1.49 (s, 6H), 2.67 (s, 2H), 6.95-7.48 (m, 9H), 6.24 (s, 1H); ¹³C NMR (CDCl₃): δ 28.74, 37.75, 53.13, 120.71, 125.85, 126.69, 128.71, 128.97, 136.04, 147.51, 169.16. Anal. Calcd for C₁₇H₁₈ClNO: C, 70.86; H, 6.30; N, 4.87; Found: C, 70.86; H, 6.29; N, 4.83.

5g: 43 % yield; mp 187-188 °C (Et₂O). ¹H NMR (DMSO-d₆): δ 1.22 (s, 6H), 2.35 (s, 2H), 6.87-7.30 (m, 3H), 10.24 (br s, 1H); ¹³C NMR (DMSO-d₆): d 26.94, 33.76, 44.38, 116.94, 124.29, 126.17, 126.98, 134.27, 135.93, 169.11. Anal. Calcd for C₁₁H₁₂ClNO: C, 63.01; H, 5.77; N, 6.68; Found: C, 62.92; H, 5.81; N, 6.62.

N-(4-Notrophenyl)-3-methyl-3-phenylbutanamide (4h)

Yield: 93 %; mp 105-106 °C (hexane). ¹H NMR (CDCl₃): δ 1.51 (s, 6H), 2.74 (s, 2H), 7.14-8.09 (m, 9H), 6.49 (s, 1H). ¹³C NMR (CDCl₃): δ 28.73, 37.85, 53.38, 118.66, 124.86, 125.87, 126.96, 129.17, 143.21, 147.20, 169.56. Anal. Calcd for C₁₇H₁₈N₂O₃: C, 68.44; H, 6.08; N, 9.39; Found: C, 68.07; H, 6.00; N, 9.46.

3,4-Dihydro-4,4,6-trimethyl-2(1H)-quinolinone (5i)

Yield: 82 %; mp 160-161 °C (Et₂O), Lit.¹⁹ m.p. 157 °C (H₂O); ¹H NMR (DMSO-d₆): δ 1.20 (s, 6H), 2.24 (s, 3H), 2.30 (s, 2H), 6.73-7.08 (m, 3H), 10.03 (br s, 1H). ¹³C NMR (DMSO-d₆): δ 20.63, 27.29, 33.45, 45.05, 115.32, 124.71, 127.47, 131.22, 131.97, 134.44, 169.17. Anal. Calcd for C₁₂H₁₅NO: C, 76.16; H, 7.99; N, 7.40; Found: C, 76.15; H, 8.01; N, 7.38.

3-(4-Chlorophenyl)-propionanilide (6a) and 3-(2-Chlorophenyl)-propionanilide (7a)

AlCl₃ (6.4 g, 48 mmol) was added portionwise to a suspension of **3a** (1.18 g, 8 mmol) in chlorobenzene (50 mL) at 0 °C. The reaction mixture was gradually warmed to 120 °C and then stirred for 6h (monitored by TLC). The mixture was poured into ice-water (100 mL) and extracted with CH₂Cl₂ (3 × 60 mL). The dichloromethane extracts were combined and washed with water, dried (Na₂SO₄), and evaporated to give a residual solid which was purified by column chromatography on silica gel with hexane / CH₂Cl₂ (1:1) as an eluent and then crystallized from hexane / Et₂O (1:1) to give **6a** (0.92 g, 44 %)

and **7a** (0.45 g, 22 %). **6a**: mp 158-159 °C. ¹H NMR (CDCl₃): δ 2.61 (t, J = 7.9 Hz, 2H), 3.00 (t, J = 7.8 Hz, 2H), 7.12-7.42 (m, 9H). ¹³C NMR (CDCl₃): δ 30.74, 39.13, 119.95, 124.42, 128.67, 128.98, 129.74, 132.10, 137.59, 139.08, 170.00. Anal. Calcd for C₁₅H₁₄ClNO: C, 69.37; H, 5.43; N, 5.39; Found: C, 69.23; H, 5.51; N, 5.39.

7a: mp 102-103 °C. Lit.²⁰ mp 99-101 °C. ¹H NMR (CDCl₃): δ 2.66 (t, J = 8.1 Hz, 2H), 3.15 (t, J = 8.0 Hz, 2H), 7.08-7.47 (m, 9H). ¹³C NMR (CDCl₃): δ 29.47, 37.26, 119.97, 124.30, 127.02, 127.91, 128.92, 129.53, 130.77, 133.78, 137.68, 138.11, 170.12.

The same procedures were used to convert each of the compounds **3b-i** to the respective **6b-i**, **7b-i**, and/or **5b-i**.

N-(2-Hydroxyphenyl)-3-(4-chlorophenyl)-3-methylbutana mide (6c)

Yield: 63 %; mp 128-129 °C (hexane / EtOAc: 10/1). ¹H NMR (CDCl₃): δ 1.49 (s, 6H), 2.69 (s, 2H), 6.44-7.41 (m, 8H), 6.90 (s, 1H), 8.63 (s, 1H). ¹³C NMR (CDCl₃): δ 28.75, 37.73, 51.65, 119.73, 120.36, 121.89, 125.26, 127.18, 127.24, 128.95, 132.56, 145.77, 148.61, 171.15. Anal. Calcd for C₁₇H₁₈ClNO₂: C, 67.22; H, 5.97; N, 4.61; Found: C, 67.21; H, 6.06; N, 4.65.

3,4-Dihydro-6-hydroxy-4,4-dimethyl-2(1*H*)-quinolinone (5e)

Yield: 84 %; mp 220-221 °C (CH₂Cl₂). ¹H NMR (DMSO-d₆): δ 1.17 (s, 6H), 2.26 (s, 2H), 6.51-6.70 (m, 3H), 9.07 (br s, 1H), 9.86 (br s, 1H). ¹³C NMR (DMSO-d₆): δ 27.25, 33.58, 44.97, 111.14, 113.53, 116.36, 128.90, 133.48, 152.92, 168.86. Anal. Calcd for C₁₁H₁₃NO₂ 0.125 H₂O: C, 68.29; H, 6.90; N, 7.24; Found: C, 68.31; H, 6.88; N, 7.24.

N-(4-Chlorophenyl)-3-(4-chlorophenyl)-3-methylbutanami de (6g), *N*-(4-Chlorophenyl)-3-(2-chlorophenyl)-3-methylbutanamide (7g) and 6-Chloro-3,4-Dihydro-4,4-dimethyl-2(1*H*)-quinolinone (5g)

6g and **7g** (0.35 g, 11 % yield). ¹H NMR (CDCl₃): δ 1.48 (s, 6H), 1.49 (s, 6H), 2.62 (s, 4H), 7.08-7.41 (m, 16H), 6.44 (s, 1H), 6.48 (s, 1H). ¹³C NMR (CDCl₃): δ 28.62, 28.74, 37.55, 37.88, 52.49, 52.58, 120.91, 121.00, 123.98, 126.21, 126.72, 127.24, 128.80, 128.87, 129.20, 130.00, 132.39, 134.79, 135.90, 135.95, 146.26, 150.05, 168.82. Anal. Calcd for C₁₇H₁₇Cl₂NO: C, 63.37; H, 5.32; N, 4.35; Found: C, 63.33; H, 5.31; N, 4.30. **5g** (1.76 g, 84 % yield).

N-(2-Nitrophenyl)-3-(4-chlorophenyl)-3-methylbutanamide (6h)

Yield: 76 %; mp 146-147 °C (hexane). ¹H NMR (CDCl₃): δ 1.50 (s, 6H), 2.69 (s, 2H), 7.27-8.14 (m, 8H), 6.74

(s, 1H). ¹³C NMR (CDCl₃): δ 28.73, 37.63, 52.72, 118.79, 124.96, 127.21, 128.94, 132.60, 143.17, 143.40, 145.93, 169.21. Anal. Calcd for C₁₇H₁₇ClN₂O₃: C, 61.36; H, 5.15; N, 8.42; Found: C, 61.23; H, 5.04; N, 8.31.

General Procedure for the preparation of *N*-Phenyl-3chloropropanamide (8a), *N*-(Methoxyphenyl)-3-chloropropanamide (8c-e) and *N*-(Methyphenyl)-3-chloropropanamide (8f)

To a stirred solution of aniline (1.86 g, 20 mmol) or methoxyaniline (2.46 g, 20 mmol) or 4-methylaniline (2.14 g, 20 mmol), K₂CO₃ (4.15 g, 30 mmol), H₂O (40 mL), and acetone (20 mL) was added dropwise 3-chloropropioyl chloride (3.18 g, 25 mmol) at 0 °C. The mixture was stirred at 0 °C for 1 h (monitored by TLC) and then poured into ice-water (100 mL). The resulting precipitate was collected and crystallized from CH₂Cl₂ / Et₂O 1:1 to give **8a-f. 8a**: 98 % yield. mp 115-116 °C. Lit.⁹ mp 115-117 °C. ¹H NMR (CDCl³): δ 2.79 (t, J = 6.4 Hz, 2H), 3.85 (t, J = 6.4 Hz, 2H), 7.07-7.53 (m, 5H), 7.76 (br s, NH). ¹³C NMR (CDCl₃): δ 39.88, 40.36, 120.23, 124.69, 128.99, 137.41, 167.98.

8c: 94 % yield; mp 68-69 °C. Lit.¹⁴ mp 68 °C. ¹H NMR (CDCl₃): δ 2.85 (t, J = 6.6 Hz, 2H), 3.88 (t, J = 6.6 Hz, 2H), 3.88 (s, 3H), 6.85-8.39 (m, 4H), 7.88 (br s, NH). ¹³C NMR (CDCl₃): δ 39.78, 40.74, 55.67, 109.94, 119.86, 121.06, 123.96, 127.27, 147.74, 167.35.

8d: 95 % yield; mp 91-92 °C. Lit.¹⁵ mp 95 °C. ¹H NMR (CDCl₃): δ 2.80 (t, J = 6.4 Hz, 2H), 3.87 (t, J = 6.4 Hz, 2H), 3.79 (s, 3H), 6.66-7.29 (m, 4H), 7.54 (br s, NH). ¹³C NMR (CDCl₃): δ 39.79, 40.50, 55.29, 105.81, 110.52, 112.13, 129.69, 138.62, 160.15, 167.80.

8e: 95 % yield; mp 120-121 °C. Lit.¹⁶ mp 121-122 °C. ¹H NMR (CDCl₃): δ 2.77 (t, J = 6.4 Hz, 2H), 3.86 (t, J = 6.4 Hz, 2H), 3.78 (s, 3H), 6.82-7.42 (m, 4H), 7.61 (br s, NH); ¹³C NMR (CDCl₃): δ 40.01, 40.20, 55.44, 114.11, 122.16, 130.46, 156.65, 167.76.

8f: 95 % yield; mp 118-119 °C, Lit.¹⁷ mp 120 °C; ¹H NMR (CDCl₃): δ 2.31 (s, 3H), 2.78 (t, J = 6.4 Hz, 2H), 3.86 (t, J = 6.4 Hz, 2H), 7.09-7.41 (m, 4H), 7.50 (s, NH). ¹³C NMR (CDCl₃): δ 20.84, 39.94, 40.41, 120.24, 129.49, 134.36, 134.84, 167.69. Anal. Calcd for C₁₀H₁₂CINO: C, 60.77; H, 6.12; N, 7.09; Found: C, 61.00; H, 6.22; N, 7.12.

3-(4-Chlorophenyl)propionanilide (9a = 6a), 3-(2-Chlorophenyl)propionanilide (10a = 7a), and 3,4-Dihydro-2(1H)-quinolinone (11a)

AlCl₃ (4.0 g, 30 mmol) was added portionwise to a suspension of **8a** (0.92 g, 5 mmol) in chlorobenzene (50 mL) at 0 °C. The reaction mixture was gradually warmed to 120 °C and then stirred for 6h (monitored by TLC). The mixture was

poured into ice-water (100 mL) and extracted with CH₂Cl₂ (3 × 60 mL). The CH₂Cl₂ extracts were combined and washed with H₂O, dried (Na₂SO₄), and evaporated to give a residual solid which was purified by column chromatography on silica gel with hexane / EtOAc (1:1) as an eluent and then crystal-lized from hexane / Et2O (1:1) to give **9a** (0.16 g, 12 %), **10a** (0.28 g, 22%), and **11a** (0.39 g, 52%). **11a**: mp 165-166 °C, Lit.²¹ mp 167-168 °C; ¹H NMR (DMSO-d₆): δ 2.43 (t, *J* = 8.2 Hz, 2H), 2.86 (t, *J* = 8.2 Hz, 2H), 6.82-7.17 (m, 4H), 10.05 (br s, 1H); ¹³C NMR (DMSO-d₆): δ 24.77, 30.42, 114.96, 121.87, 123.50, 127.03, 127.68, 138.27, 170.18.

The same procedures were used to convert each of the compounds **8c-f** to the respective **9c-f**, **10c-f** and/or **11c-f**.

N-(2-Hydroxyphenyl)-3-(4-chlorophenyl)propanamide (9c) and *N*-(2-Hydroxyphenyl)-3-(2-chlorophenyl)propanamide (10c)

9c: 27 % yield; mp 135-136 °C, ¹H NMR (DMSO-d₆): δ 2.70 (t, *J* = 7.6 Hz, 2H), 2.90 (t, *J* = 7.6 Hz, 2H), 6.71-7.72 (m, 8H), 9.25 (s, 1H), 9.71 (s, 1H). ¹³C NMR (DMSO-d₆): δ 30.26, 37.21, 115.78, 118.94, 122.28, 124.58, 126.26, 128.16, 130.20, 130.52, 140.19, 147.80 (arom. C), 170.74. Anal. Calcd for C₁₅H₁₄ClNO₂: C, 65.34; H, 5.12; N, 5.08; Found: C, 65.33; H, 5.18; N, 5.03.

10e: 52 % yield; mp 155-156 °C. ¹H NMR (DMSO-d₆): δ 2.73 (t, J = 8.0 Hz, 2H), 3.01 (t, J = 8.0 Hz, 2H), 6.73-7.70 (m, 8H), 9.30 (s, 1H), 9.70 (s, 1H). ¹³C NMR (DMSO-d₆): δ 28.61, 35.46, 115.78, 118.92, 122.38, 124.61, 126.21, 127.22, 127.95, 129.16, 130.50, 132.90, 138.40, 147.85, 170.51. Anal. Calcd for C₁₅H₁₄ClNO₂: C, 65.34; H, 5.12; N, 5.08; Found: C, 64.96; H, 5.32; N, 4.91.

N-(3-Hydroxyphenyl)-3-(4-chlorophenyl)propanamide (9d), *N*-(3-Hydroxyphenyl)-3-(2-chlorophenyl)propanamide (10d) and 3,4-Dihydro-7-hydroxy-2(1*H*)-quinolinone (11d)

9d: 34 % yield; mp 177-178 °C. ¹H NMR (DMSO-d₆): δ 2.59 (t, *J* = 8.0 Hz, 2H), 2.89 (t, *J* = 8.0 Hz, 2H), 6.41-7.34 (m, 8H), 9.34 (s, 1H), 9.76 (s, 1H). ¹³C NMR (DMSO-d₆): δ 30.06, 37.69, 106.26, 109.83, 110.18, 128.18, 129.27, 130.15, 130.52, 140.17, 140.24, 157.54, 170.01. Anal. Calcd for C₁₅H₁₄ClNO₂: C, 65.34; H, 5.12; N, 5.08; Found: C, 64.95; H, 5.17; N, 5.06.

10d: 38 % yield; mp 134-135 °C. ¹H NMR (DMSO-d₆): δ 2.61 (t, J = 8.1 Hz, 2H), 3.00 (t, J = 8.1 Hz, 2H), 6.40-7.45 (m, 8H), 9.33 (s, 1H), 9.79 (s, 1H). ¹³C NMR (DMSO-d₆): δ 28.51, 35.91, 106.26, 109.83, 110.18, 127.25, 127.99, 129.20, 129.26, 130.52, 132.90, 138.46, 140.16, 157.54, 169.78. Anal. Calcd for C₁₅H₁₄ClNO₂: C, 65.34; H, 5.12; N, 5.08; Found: C, 65.60; H, 5.25; N, 5.00. **11d**: 4 % yield; mp 232-233 °C. Lit.²² mp 230 °C. ¹H NMR (DMSO-d₆): δ 2.38 (t, J = 7.2 Hz, 2H), 2.72 (t, J = 7.2 Hz, 2H), 6.28-6.92 (m, 3H), 9.24 (s, 1H), 9.92 (s, 1H). ¹³C NMR (DMSO-d₆): δ 24.01, 30.90, 102.29, 108.77, 113.69, 128.25, 139.01, 156.43, 170.29.

N-(4-Hydroxyphenyl)-3-(4-chlorophenyl)propanamide (9e), *N*-(4-Hydroxyphenyl)-3-(2-chlorophenyl)propanamide (10e) and 3,4-Dihydro-6-hydroxy-2(1*H*)quinolinone (11e)

9e: 43 % yield; mp 179-180 °C. ¹H NMR (DMSO-d₆): δ 2.55 (t, J = 7.6 Hz, 2H), 2.88 (t, J = 7.6 Hz, 2H), 6.66-7.34 (m, 8H), 9.14 (s, 1H), 9.63 (s, 1H). ¹³C NMR (DMSO-d₆): δ 30.19, 37.49, 114.98, 120.89, 128.17, 130.13, 130.50, 130.82, 140.31, 153.17, 169.37. Anal. Calcd for C₁₅H₁₄ClNO₂: C, 65.34; H, 5.12; N, 5.08; Found: C, 65.36; H, 5.20; N, 5.06.

10e: 42 % yield; mp 141-142 °C. ¹H NMR (DMSO-d₆): δ 2.57 (t, J = 8.2 Hz, 2H), 3.00 (t, J = 8.2 Hz, 2H), 6.65-7.41 (m, 8H), 9.14 (s, 1H), 9.66 (s, 1H). ¹³C NMR (DMSO-d₆): δ 28.64, 35.72, 114.97, 120.88, 127.24, 127.96, 129.18, 130.51, 130.80, 132.87, 138.52, 153.16, 169.15. Anal. Calcd for C₁₅H₁₄ClNO₂: C, 65.34; H, 5.12; N, 5.08; Found: C, 65.34; H, 5.24; N, 5.06.

11e: 4 % yield; mp 233-234 °C. Lit.²⁰ mp 237-238 °C. ¹H NMR (DMSO-d₆): δ 2.36 (t, J = 7.9 Hz, 2H), 2.76 (t, J = 7.9 Hz, 2H), 6.50-6.68 (m, 3H), 9.00 (s, 1H), 9.79 (s, 1H). ¹³C NMR (DMSO-d₆): δ 25.07, 30.44, 113.40, 114.53, 115.79, 124.72, 130.25, 152.32, 169.60.

N-(4-Methylphenyl)-3-(4-chlorophenyl)propanamide (9f), N-(4-Methylphenyl)-3-(2-chlorophenyl)propanamide (10f) and 3,4-Dihydro-6-methyl-2(*1H*)-quinolinone (11f)

9f: 11 % yield; mp 130-131 °C. ¹H NMR (CDCl₃): δ 2.30 (s, 3H), 2.60 (t, *J* = 7.3 Hz, 2H), 3.00 (t, *J* = 7.3 Hz, 2H), 7.07-7.34 (m, 8H), 7.26 (s, 1H). ¹³C NMR (CDCl₃): δ 20.83, 30.82, 39.13, 120.10, 128.65, 129.46, 129.76, 132.07, 134.09, 135.02, 139.16, 169.92. Anal. Calcd for C₁₆H₁₆ClNO: C, 70.20; H, 5.89; N, 5.12; Found: C, 69.90; H, 5.96; N, 5.16.

10f: 8 % yield; mp 141-142 °C. ¹H NMR (CDCl₃): δ 2.30 (s, 3H), 2.65 (t, J = 7.2 Hz, 2H), 3.16 (t, J = 7.2 Hz, 2H), 7.08-7.36 (m, 8H), 7.34 (s, 1H). ¹³C NMR (CDCl₃): δ 20.82, 29.55, 37.29, 120.06, 127.04, 127.91, 129.43, 129.55, 130.83, 133.80, 133.97, 135.10, 138.19, 169.94. Anal. Calcd for C₁₆H₁₆ClNO: C, 70.20; H, 5.89; N, 5.12; Found: C, 70.12; H, 5.85; N, 5.13.

11f: 61 % yield; mp 133-134 °C. Lit.²³ mp 136-136.5 °C; ¹H NMR (DMSO-d₆): δ 2.21 (s, 3H), 2.41 (t, *J* = 7.2 Hz, 2H), 2.81 (t, *J* = 7.2 Hz, 2H), 6.72-6.96 (m, 3H), 9.97 (s, 1H). ¹³C NMR (DMSO-d₆): δ 20.30, 24.79, 30.48, 114.85, 123.39, 127.37, 128.24, 130.68, 135.81, 170.06. Anal. Calcd for C₁₀H₁₁NO: C, 74.51; H, 6.88; N, 8.69; Found: C, 74.51; H, 6.94; N, 8.64.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support from the National Science Council of the Republic of China.

Received October 15, 1999

Key Words

Intermolecular Friedel-Crafts addition; Intramolecular Friedel-Crafts cyclization; 3-Phenylpropionanilide; 3-Chloropropanamide.

REFERENCES

- 1. Posner, G. H. Org. React. 1972, 19, 3-54.
- Baldwin, J. E.; Dupont, W. A. Tetrahedron Lett. 1980, 21, 1881-1882.
- Alexakis, A.; Berlan, J.; Besace, Y. *Tetrahedron Lett.* 1986, 27, 1047-1050.
- Wang, T. C.; Chen, Y. L.; Lee, K. H.; Tzeng, C. C. *Tetrahe*dron Lett. **1996**, *37*, 6369-6370.
- Tzeng, C. C.; Wang, T. C.; Chen, Y. L.; Wang, C. J.; Chang, Y. L.; Teng, C. M. *Helv. Chim. Acta*. **1997**, *80*, 1161-1168.
- Wang, T. C.; Chen, Y. L.; Lee, K. H.; Tzeng, C. C. Synthesis, 1997, 87-90.
- Wang, T. C.; Chen, Y. L.; Liou, S. S.; Tzeng, W. F.; Chang, Y. L.; Teng, C. M.; Tzeng, C. C. *Helv. Chim. Acta.* **1998**, *81*, 1038-1047.
- Liao, C. H.; Tzeng, C. C.; Teng, C. M. Eur. J. Pharmacol. 1998, 349, 107-114.
- Okawara, T.; Matsuda, T.; Furukawa, M. Chem. Pharm. Bull. 1982, 30, 1225-1233.
- 10. Nagata, W.; Kamata, S. J. Chem. Soc. C 1970, 540-550.
- Wiley, R. H.; deSilva, C. L. J. Am. Chem. Soc. 1956, 78, 4683-4689.
- 12. D'Alo, F; Masserini, A. Farmaco Ed. Sci. 1964, 19, 822-828.
- 13. Wagner, R. B. J. Am. Chem. Soc. 1949, 71, 3214-3218.
- 14. Loudon, J. D.; Ogg, J. J. Chem. Soc. 1955, 739-744.
- Meth-Cohn, O.; Rhouati, S.; Tarnowski, B.; Robinson, A. J. Chem. Soc. Perkin Trans. 1. 1981, 1537-1543.
- Pohloudek-Fabini, R.; Schroepl, E. *Pharmazie* 1968, 23, 561-566.
- 17. Wolffenstein, R.; Rolle, J. Chem. Ber. 1908, 41, 733-740.

- 19. Colonge, J.; Chambard, R. Bull. Soc. Chim. Fr. 1953, 982-983.
- 20. Konig, H.; Huisgen, R. Chem. Ber. 1959, 92, 429-444.
- 21. Venkov, A. P.; Statkova-Abeghe, S. M. Tetrahedron, 1996,

52, 1451-1460.

- 22. Mayer, F.; van Zutphen, L.; Philipps, H. Chem. Ber. 1927, 60, 858-864.
- 23. Kodera, Y.; Watanabe, S.; Imada, Y.; Murahashi, S. I. *Bull. Chem. Soc. Jpn.* **1994**, *67*, 2542-2549.