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Novel betaines/mesoionic compounds via a simple and convenient 

MCR in aqueous micellar system: Synthesis of thiazolo[2,3-

a]isoquinolin-4-ium derivatives 

Arindam Maity, Debanjana Chakraborty, Abhijit Hazra, Yogesh P. Bharitkar, Sandip Kundu,                                                                                                                    

                                            Prakas R. Maulik, Nirup B. Mondal* 

Department of Chemistry, Indian Institute of Chemical Biology, Council of Scientific and 

Industrial Research, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata  700 032, India. 

 

Abstract:  An inexpensive one-pot green methodology has been developed for the synthesis of 

thiazolo[2,3-a]isoquinolin-4-ium derivatives by the reaction of different derivatives of 

isoquinoline and 2-bromoacetophenone/ bromoacetonitrile with benzoyl isothiocyanate in 

aqueous micellar medium.  

Keywords: Multicomponent reaction; 1,3-dipolar cycloaddition; thiazolo[2,3-a]isoquinolin-4-

ium; benzoyl isothiocyanate; mesoionic; aqueous micellar system. 

 

Mesoionic compounds (MICs) are mesomeric betaines in which both positive and negative 

charges are delocalized and have been known for more than a century.1,2 MICs  have always 

remained the centre of attraction to the  chemists because of the bonding aspects associated with 

their unusual structure. These are also regarded as mesomeric heterocyclic betaines, strongly 

stabilized by π-electron delocalization and having large dipole moments.3 Among the various 

synthetic approaches to mesoionic heterocycles, the 1,3 dipolar cycloaddition reactions were 

widely employed and most of  those are concerned with the formation of  münchnones (1,3- 
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oxazolium-5-olates) and the newer isomünchnones (1,3-oxazolium-4-olates). Some research 

involving the mesoionic sydnones (1,2,3-oxadiazolium-5-olates),  thiomünchnones (1,3-

oxathiolium-5-olates), and thioisomünchnones (1,3-thiazolium-4-olates) have also appeared in 

the literature.4 In recent years, the related fused ring system of thiazolo[2,3-a]isoquinolin-4-ium  

has received much attention, as the derivatives display various applications,5 but surprisingly, 

work concerning the synthesis of this ring system exists scantily.6 However, preparative methods 

involving cyclo-condensation reactions of 3,4-dihydroisoquinoline / 3,4-dihydroiso-

thiocarbostyril or N-thioacylated phenyl ethylamine derivatives with α-mercapto-acids / esters,7 

β-mercaptoacid halides,8 ethylene sulfide9,10 or α-haloacids / acid halides11-13 respectively have 

been reported for partially hydrogenated racemic compounds. Kroehnke and coworkers have 

prepared similar ring system by treatment of N-arylmethyl- and N-acylmethyl isoquinolinium 

salts with carbon disulfide and alkali.14 An asymmetric synthesis of thiazolo[2,3-a]isoquinoline 

derivatives involving the reaction of 6,7-dimethoxy-3,4-dihydroisoquinoline and (−)-methyl 

thioglycolate also appeared in the literature.15  

We felt that an eco- friendly, flexible and efficient synthetic protocol needed to be established for 

this type of compounds as the current trend in organic chemistry is to establish methods of ring 

formation from simple starting materials in fewer steps and using environmentally benign 

conditions. In this regard, water16 is being preferred as solvent because it is abundant in nature, 

has virtually no cost, and is safest among all available solvents, thus leading to environmentally 

benign chemical processes.17 But the solubility of organic compounds in water is very poor 

because of its hydrophobicity. Through the introduction of micelles18 as the reaction media, 

which work both by solubilization due to hydrophobic effect and by counter ion binding due to 
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electrostatic forces, this problem of hydrophobicity has been minimized. The solubilization of 

water-insoluble reactants and products inside the micelles results not only in high concentration 

due to the small volume, but also in different orientations of the soluble molecules that influence 

the reaction mechanism, resulting in remarkable differences in reaction rate and selectivity than 

would be observed in a homogeneous system.19 It has also been established that chemical 

reaction in aqueous micellar condition rather than in organic solvents results in better yield 

because  the insolubility of the final product in water allows easy isolation of the compound in 

most of the cases. In continuation of our search in the area of 1,3-dipolar cycloaddition mostly 

exploiting this approach,20 we herein report an efficient and environment-friendly methodology 

for the synthesis of 3-benzoyl-2-(benzoylamido)-thiazolo[2,3-a]isoquinolin-4-ium [4a]  (Figure 

1) employing an isoquinolinium ylide (generated in situ from isoquinoline and phenacyl 

bromide)  and an activated dienophile (benzoyl isothiocyanate) in micellar solution at ambient 

temperature (Scheme 1). 
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Figure 1. 3-benzoyl-2-(benzoylamido)-thiazolo[2,3-a]isoquinolin-4-ium [4a]. 
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Scheme1. Synthesis of 4(a-p) in aqueous micellar medium  
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At the outset, we chose isoquinoline (1a), phenacyl bromide (2a) and benzoyl isothiocyanate (3) 

as model reactants in presence of a base, Amberlite IRA 402(OH), for the synthesis of the 

thiazolo[2,3-a]isoquinolin-4-ium 4a. These were reacted in water at room temperature for 

different time periods to evaluate the effect of various conditions. We also investigated the 

reactions systematically in aqueous solutions of cationic, anionic, and nonionic surfactants well 

above their critical micellar concentrations (CMC) in order to study the effect of surfactant 

solutions (Table-1).  

The results revealed that reactions carried out without a surfactant were ineffective (Table 1, 

entry 1); no reaction occurred even after prolonged time period. Gratifyingly, adding the 

surfactant cetyl trimethyl ammonium bromide (CTAB: cmc value 0.92 mM) 21 to the system at a 

concentration of 40 mM furnished 20% (entry 2) of the desired product 4a after 1.5 h of reaction. 

Raising the concentration of CTAB to 60 mM further enhanced the yield to 55% (entry 3), but 

the best result (yield 90%) was obtained when the concentration was raised to 80 mM (entry 4). 

        Table 1. Reaction monitored by using different surfactants 

                   Entrya        Surfactant             Concentrationb (mM)      Yieldc of 4a 

                      1                       None     -   NRd 
          2           CTAB   40   20 

                      3           CTAB   60   55 
                      4           CTAB   80   90 
                      5           CTAB   90   90 
                      6           CTAB   100   90 
                      7           TTAB   50   40 
                      8                      TTAB   80                                75 
                      9           Triton X-114  80   55                       
                      10            SDS   80   50 

aReaction performed using 1a, 2a, and 3 in water at room temperature for 1.5 h in presence of
 Amberlite IRA 402(OH) 

bConcentrations of different surfactants (CTAB, SDS, TTAB and Triton-X). 
cYield of isolated product. 
dNo reaction. 
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No significant improvement in the yield was observed on further increase in the concentration to 

90 mM (entry 5) or 100 mM (entry 6). We also used another surfactant tetradecyltrimethyl-

ammonium bromide (TTAB: cmc value 3.8 mM) 22 at concentrations of 50 mM and 80 mM, but 

the yields that resulted were not satisfactory enough (40% for entry 7, 75% for entry 8). Use of 

the nonionic surfactant Triton X-114 (cmc 0.28 mM) 23 and the anionic surfactant sodium 

dodecylsulfate (SDS: cmc value 8.1 mM) 24 at 80 mM concentration also proved unsatisfactory, 

furnishing the product to the extent of 55% (Table 1, entry 9) and 50% (Table 1, entry 10). 

Using CTAB, reactions were then performed in the presence of different bases like DBU, NEt3, 

DABCO, DMAP, piperidine, K2CO3, and Amberlite IRA-402(OH) resin. The Amberlite IRA-

402(OH) resin (Table 2, entries 1–8) was found to be the most effective base. It produced no side 

reaction, gave maximum yield of the product repeatedly even when reused, and was cost 

effective. But for other bases there were different side reactions and various colour formations 

which also affected in lowering the yield of the product. 

Table 2. Reaction monitored by using different bases 

                   Entrya            Base                                      Time (h)                 Yieldb of 4a 

                      1                       DBU       4   65 
          2            NEt3                4   70 

                      3            DABCO               3   65 
                      4            DMAP                 3   60 
                      5            Piperidine                          9   70 
                      6            K2CO3                5   50 
                      7           Amberlite IRA-402(OH)  4   90 

          8           Amberlite IRA-402(OH)  1.5   90 
 

aReaction performed using 1a, 2a, and 3 in water in presence of CTAB at room temperature. 
bYield refers to pure products after crystallization. 
 

After work-up of the reaction, the resin was recovered by filtration and thoroughly washed with 

ethanol followed by alkaline water. It was then dried at 80 °C under reduced pressure for 2 h and 
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reused for subsequent runs. It was observed that after five-time use of the resin, there is a slight 

decrease in the yield (91–67%) of the fused quinolinium products (Figure 2). Though the 

mechanism is not yet established, the plausible pathway of the reaction is depicted in Scheme 2.  

 
 

Figure 2.  Reusability of the Amberlite IRA 402 (OH) resin. The reactions were performed with 
1a (1 mmol), 2a (1 mmol) and 3 (1 mmol) successively using 350 mg Amberlite IRA 402 (OH) 
resin at room temperature for 1.5 h.  
 
To establish the generality and scope of this green MCR, we employed different derivatives of 

isoquinoline and phenacyl bromide to carry out reactions with benzoyl isothiocyanate under the 

optimized condition. We extend the number of derivatives by replacing phenacyl bromide to 

bromo acetonitrile in two derivatives. The results are summarized in Table 3.  
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Scheme 2. Mechanistic pathway for Amberlite IRA 402 (OH) mediated 3-benzoyl 

2(benzoylamido)-thiazolo[2,3-a]isoquinolin-4-ium [4a] formation. 
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The structures of compounds 4(a–r) were deduced from their mass, 1H NMR and 13C NMR 

spectral data.25 The mass spectra of these compounds displayed molecular ion peaks at the 

expected m/z values. Finally, the crystal structure of one of the products (4i) was conclusively 

proved through X-ray diffraction analysis (Figure 3). 

Table 3: Synthesis of thiazolo[2,3-a]isoquinolin-4-ium derivatives  
 
Entrya N heterocycle Phenacyl bromide     benzoyl isothiocyanate           Yieldb(%) 
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1 1a (R1 = H) 2a (R2=R3= H)   3  4a (R1=R2=R3=H)  85  

2 1a  2b (R2 = CH3, R
3= H) 3  4b (R1=R3=H, R2=CH3)  90 

3 1a                2c (R2 = F, R3= H) 3  4c (R1=R3=H, R2=F)  87 

4 1a                2d (R2 = Cl, R3= H) 3  4d (R1=R3=H, R2=Cl)  91 

5 1a                         2e (R2 = R3= Cl)  3  4e (R1=H, R2= R3= Cl)  90 

6 1a                         2f (R2 = NO2, R
3= H)    3  4f (R1= R3= H, R2=NO2)  82               

7 1b (R1 = 4-Br) 2a      3  4g (R1=Br, R2=R3=H)  86 

8 1b  2b   3  4h (R1=Br, R2=CH3, R
3=H)  90 

9 1b                2c    3  4i (R1=Br, R2= F, R3=H)  83 

10 1b                2d    3  4j (R1=Br, R2=Cl, R3= H)  80 

11 1b                         2e    3  4k (R1=Br, R2=R3=Cl)  90 

12 1b                         2f (R2 = NO2, R
3= H)        3  4l (R1=Br, R2=NO2, R

3= H)              84 

13 1c (R1 = 5-Br)  2a      3  4m (R1=Br, R2=R3=H)  85 

14 1c   2b   3  4n (R1=Br, R2=CH3, R
3=H) 87 

15 1c                 2c    3  4o (R1=Br, R2= F, R3=H)  82 

16 1c                 2d    3  4p (R1=Br, R2=Cl, R3= H)  86 
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17 1a    2g       3  4q (R1=H)   85 

18 1b   2g       3  4r (R1=Br)              80 

aReaction condition: isoquinoline (1 mmol), phenacyl bromide (1 mmol), benzoyl isothiocyanate (1 mmol), CTAB 
(4 mmol) and water (50 ml), in air for 1.5 h at room temperature.  
bYield of isolated pure product. 

 

Figure 3. ORTEP diagram showing the molecular structure of 4i at 30% probability level with 

atomic numbering scheme of the non-hydrogen atoms 

In summary, we have demonstrated a simple, convenient, and efficient one step methodology for 

an environment friendly synthesis of thiazolo[2,3-a]isoquinolin-4-ium, a new group of mesoionic 

compounds. The notable features are moderate reaction conditions, greater selectivity, and 

operational simplicity that make it an attractive and useful process for the synthesis of newer 

heteroaromatics of various applications.  
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Yield: 82% ; 1H-NMR (600 MHz, CDCl3) δ 7.50 (m, 2H), 7.81 (d, 1H, J =7.8 Hz), 7.89 (m, 

3H), 7.98 (m, 1H), 8.31 (m, 1H), 8.42 (m, 2H), 8.55 (d, 1H, J =7.2 Hz); 13C-NMR (150 

MHz, CDCl3) δ 96.7 (C), 106.9 (C), 111.9 (C), 121.6 (CH), 124.1 (CH), 125.1 (C), 128.2 

(2xCH), 129.5 (2xCH), 130.0 (C), 131.4 (CH), 131.8 (CH), 132.4 (CH), 136.1 (CH), 139.3 

(CH), 145.8 (C), 159.3 (C), 175.0 (C); MS (ESI) m/z: 330 [M+H]+, 352[M+Na]+. 

Spectral data of Compound 4r: 

Yield: 82% ; 1H-NMR (600 MHz, CDCl3) δ 7.50 (m, 2H), 7.73 (m, 1H), 7.87 (m, 1H), 8.10 

(m, 1H), 8.27 (m, 2H), 8.40 (m, 2H), 8.61 (d, 1H, J =7.2 Hz); 13C-NMR (150 MHz, CDCl3) 

δ 105.4 (CH), 111.6 (C), 120.8 (CH), 123.4 (C), 124.3(CH), 124.9 (CH), 126.4 (C), 128.2 

(CH),  128.2 (C), 129.5 (CH), 131.8 (CH), 132.0 (CH), 135.8 CH), 136.6 (CH), 137.3 (C), 

140.9 (C), 145.1 (C), 159.5 (C), 175.3 (C); MS (ESI) m/z:408 [M+H]+, 410 [M+H+2]+. 

 


