Ruthenium-Catalyzed C6-Propenylation Reactions of Substituted Pyridine Derivatives: Directed and Direct C-H Activation

Yogesh Goriya and Chepuri V. Ramana^{*[a]}

Dedicated to Professor Gautam R. Desiraju on the occasion of his 60th birthday

C-C Bond formation through transition-metal catalyzed functionalization of aryl/heteroaryl C-H bonds has recently attracted attention because these reactions provide more desirable step- and atom economy than those reactions where prefunctionalization of aryl/heteroaryl rings is required.^[1,2] Pyridine derivatives are interesting in this regard. On one hand, the pyridine moiety is one of the conventional functional groups employed as a ligand for directed catalytic functionalizations of aryl C-H bonds.² On the other hand, catalytic C-H activation reactions that lead to functionalization of the pyridine moiety are important because the pyridine moiety is a privileged substructure of biologically active small molecules, functional organic materials, and ligands.^[3] Generally, the direct C alkylation of pyridine moieties require the nitrogen atom to be electron deficient to increase the acidity of C-H bond at the C2 position; this requirement can be achieved by using N-oxides, N-iminopyridinium ylides, and pyridine compounds in the presence of Lewis acids.^[4,5] Conversely, in the case of directed alkylations, the pyridine moiety needs to be electron rich because the catalytic cycle involves the coordination of the nitrogen atom with a metal complex.^[2] Therefore, the direct functionalization of pyridine moieties and pyridine-directed C-H activation reactions have, in general, been approached separately by using various transition-metal complexes, which are usually complexes of palladium, rhodium, ruthenium, and nickel.^[1] Herein, we describe an unexpected direct propenylation of pyridine rings using ruthenium catalysts that are generally employed for directed C-H activation reactions. Building on this unexpected reaction, the feasibility of a one-pot one-catalyst directed ortho-arylation reaction, as well as a direct C6-propenylation reaction of 2-phenylpyridine was also investigated.

We have been interested in developing a one-pot sequential Ru-catalyzed directed propenylation^[6] and arylation of

[a] Y. Goriya, Dr. C. V. Ramana Division of Organic Chemistry CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411 008 (India) Fax: (+91)20-25902629 E-mail: vr.chepuri@ncl.res.in

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201202379.

2-aryl pyridine derivatives. The possibility of a directed propenylation reaction under the arylation conditions reported by the research group of Ackermann was explored in this regard (Scheme 1).^[7] The propenylation reaction was carried

Scheme 1. Previous work on the propenylation/allylation of pyridine derivatives.

out using allyl bromide, K₂CO₃ (2.0 equiv), adamantane-1carboxylic acid (AdCO₂H, 0.3 equiv), and [{Ru(p-cymene)Cl₂]₂] (A; 2.5 mol%) in either toluene or NMP (Nmethyl-2-pyrrolidone) at 120°C in a screw-capped sealed tube and gave product 2a, which was isolated in 67% and 63% yield, respectively (Scheme 2). The spectral data of 2a suggested the presence of an *E*-configured 2-propenyl group next to the nitrogen atom of the pyridine moiety. This result was in contrast to earlier reports on the Ru-catalyzed propenylation of 1a, reactions that involved C-H activation at the ortho position of the phenyl ring.^[6]

The use of other allyl halides in the C6-propenylation reaction of 1a was examined. The reaction was sluggish with allyl chloride and there was no reaction with crotyl bromide. When allyl iodide was employed, although complete consumption of 1a was observed, the product 2a was isolated in poor yield (Scheme 2). Interestingly, the reaction with allyl acetate led to the isolation of a mixture of products resulting from mono- and diallylation of the phenyl ring, together with propenylation products derived from migration of the double bond of the allyl group in these initial products. The identity and distribution of the mono- and diallylation products was established by subjecting the crude mixture to

Chem. Eur. J. 2012, 00, 0-0

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

🕅 WILEY 师

These are not the final page numbers! 77

CHEMISTRY

A EUROPEAN JOURNAL

olefin hydrogenation and subsequently characterizing the separable mono- and dialkylation products, **3b** and **3c**, respectively.

The use of other ruthenium complexes in this reaction was examined under similar reactions conditions but the results were not encouraging (for details, see the Supporting Information and Table S1). Control experiments revealed that the presence of the base leads to better yields. When the reaction was carried out in the absence of ruthenium complex A under otherwise similar reaction conditions, the formation of 2a was negligible (see the Supporting Information and Table S1). This result indicated that ruthenium complex A is essential for the reaction. The proposal of a comprehensive mechanism is, at this stage, difficult. However, the different reactivity of allyl bromide and allyl acetate suggests that the reaction might be proceeding through the N allylation of pyridine in the case of allyl bromide, a transformation that would increase the acidity of the C-H bond at the C2 position. The results obtained from a control experiment using the allyl bromide salt of **1a** (Scheme 3) as a substrate supports this argument. Further investigations are

currently underway to understand the detailed mechanism (see the Supporting Information, Scheme SI.1 for a tentative proposal).

The scope of the present reaction was investigated (Table 1). Diverse 2-aryl pyridine derivatives, as well as 2and 3-alkyl pyridine derivatives gave the corresponding 2substituted-6-(1E-prop-1-enyl)-pyridine derivatives in good to excellent yields. The propenylation of 2-aryl pyridine derivatives $(aryl=4-MeC_6H_4 \ \mathbf{1b}, \ 4-AcC_6H_4 \ \mathbf{1c}, \ and \ 3,4 (MeO)_2C_6H_3$ 1d) proceeded smoothly and afforded the products (2b-2d) in 60-70% yields. The reaction of 2-(3,4dichlorophenyl)pyridine (1e) needs special mention. For this case, the double C_{sp^2} -H activation product (2e) was obtained exclusively in 61% yield (Table 1, entry 5). Surprisingly, the reaction of 2-(2,3-dimethoxyphenyl)pyridine under the above reaction conditions gave the ortho-O-desmethyl compound **4** as the major product (isolated in 63% yield) and 2f was obtained in less than 5% yield.^[8] However, the same reaction in the absence of Ad-CO₂H gave the product **2 f** in 62% yield (Table 1, entry 7).

Simple alkyl pyridine derivatives such as 2-picoline (1g), 2-ethyl pyridine (1h), and 3-picoline (1j) are also good substrates for the reaction, thus giving exclusively the C_{sp^2} -H propenylation products 2g, 2h, and 2j, respectively, with complete regio- and stereoselectivity (Table 1, entries 8, 9, and 11).^[9] However, pyridine 1i, which has a 2-benzyloxvethyl group gave the required corresponding product 2i in poor yield (Table 1, entry 10). The reactions of disubstituted pyridine derivatives having either nitro or methoxy groups gave poor results (Table 1, entries 12 and 14). For example, when subjected to the standard reaction conditions, 3-nitro-2-methoxypyridine (1k) and 2-methoxy-4-methylpyridine (11) only the starting compounds were isolated. Whereas 3nitro-2-phenypyridine (1m) did not react under these reaction conditions, the formation of small amounts of directedpropenylation product 2n was observed when using 5-nitro-2-phenylpyridine (1n; see the Supporting Information for a ¹H NMR spectrum). Next, we examined the possibility of direct propenylation of quinoline and 1-methyl-isoquinoline. Surprisingly, quinoline (10) decomposed under the standard reaction conditions and 1-methyl-isoquinoline (1p) gave the required product in low yields (Table 1, entry 16).

Next, considering that compound 2g has the complete carbon framework of dihydropinidine,^[10] exhaustive hydrogenolysis of compound 2g was carried out using a catalytic amount of PtO₂ in HCl_{aq}/EtOH at 50 bar H₂ pressure and (\pm) -dihydropinidine (**5g**) was obtained in quantitative yield (Scheme 4) with complete selectivity for the 1,6-*cis*-disubstituted product.^[11] Similarly, the hydrogenation of compounds **2h** and **2a** afforded fully reduced products **5h** and **5a**, respectively (Scheme 4).

We next investigated whether we could effect sequential direct C–H propenylation and directed C–H arylation reactions of 2-aryl pyridine derivatives in one pot.^[12] Our initial experiments using **1a** as a substrate revealed that the success of the reactions depends upon the order of addition of reactants, that is, whether arylation or propenylation comes

COMMUNICATION

Entry	Substrate	Product	Yield [%] ^[a]	Entry	Substrate	Product	Yield [%] ^[a]
1			67	9	N 1h	N 2h	65
2			63	10	N OBn 1i	N OBn	22
3			66	11	N 1j	N 2j	54
4	Id OMe	2d OMe	62	12	$ \begin{array}{c} $	no reaction	-
5		2e Cl	61	13	NO ₂ N 1m	no reaction	-
6	N MeO 1f OMe		63	14	O ₂ N N 1n		<20
7	N MeO 1f OMe		62 ^[b]	15		starting material decomposed	-
8	N 1g	N 2g	67	16	N 1p	2p N	42

Table 1. The scope of the Ru-catalyzed propenylation reaction of substituted pyridine derivatives.

[a] Yield of isolated product. [b] Reactions without Ad-CO₂H.

Scheme 4. The synthesis of (\pm) -dihydropinidine and related compounds.

first. Carrying out the arylation of the phenyl ring first under the established reactions conditions (120 °C) followed by addition of allyl bromide and heating the reaction mixture at 120 °C for an additional 16 hours gave compound **7aa** in 89% yield (Scheme 5). Surprisingly, when the reaction sequence was changed, that is, when propenylation is followed by arylation, the propenylation product **2a** was obtained exclusively in 69% yield. Even the direct arylation of **2a** under these reaction conditions was found to be unsuccessful. This result might be due to the formation of either a stable *N*-coordinated ruthenacycle^[13] or a related π complex, which can undergo neither C–H bond ruthenation nor oxi-

dative addition across the Ar-X bond. Another possibility might be the steric hindrance around the pyridine nitrogen atom (in 2a, the pyridine moiety is 2,6-disubstituted), a characteristic that may prevent the pyridine nitrogen atom from acting as a directing group. The scope of the one-pot protocol involving two sequential C-H bond activation reactions was explored by employing various 2-aryl pyridine derivatives and aryl halides (Scheme 5). The reaction of substrates 1b, 1c, and 1d gave the diarylation and propenylation products 7ba-7da in 60-70% yields. When 4-methyl-iodobenzene (6b) was employed, the reaction was slow and, even after 40 hours, was incomplete; the reaction gave mono- and diarylation products 8ab (49%) and 7ab (36%), respectively. The reactions with 4-acetylchlorobenzene (6c)with the substrates 1a, 1b, and 1c proceeded smoothly and gave products 7ac-7cc in 70-80% yields.

To conclude, we have shown that the complex, [{ $Ru(p-cymene)Cl_2$ }_2], which is known to effect the directed C–H activation of 2-aryl pyridine derivatives, can also be used to effect direct C6 propenylation of pyridine derivatives. Among the different allyl reagents screened, allyl bromide

Chem.	Eur.	J.	2012,	00,	0 - 0	
-------	------	----	-------	-----	-------	--

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

GaA, Weinheim www.chemeurj.org 3 These are not the final page numbers! 7

Scheme 5. A one-pot sequential arylation and propenylation reaction of arylpyridine derivatives.

was found to be optimum for the direct propenylation. The expected directed allylation/propenylation of the phenyl ring was found to be the predominant pathway with allyl acetate. The complementary directed and direct C–H activation reactions, which are both catalyzed by [{Ru(p-cymene)Cl₂]₂], have been exploited to develop a novel one-pot protocol wherein multiple Ru-mediated C–C bond formations occur through sequential C–H activation reactions. This protocol, which we believe to be the first of its kind, will pave the way for the development of similar reactions by appropriate substrate and catalyst selection. Further investigations to understand the mechanism of this reaction and to extend the scope of this reaction to include other heterocyclic substrates are in progress.

Experimental Section

A) Representative procedure for direct propenylation: [$[Ru(p-cyme-ne)Cl_2]_2$] (94 mg, 0.154 mmol) was added to a suspension of 2-phenylpyridine (1 g, 6.44 mmol), K₂CO₃ (1.79 g, 12.89 mmol), 1-AdCO₂H (348 mg, 1.93 mmol) in dry toluene (15 mL). The reaction mixture was degassed with argon for 10 min and allyl bromide (2.79 mL, 32.22 mmol) was added and the resulting solution was stirred at 120 °C for 18–20 h. The re-

action mixture was poured into a mixture of diethyl ether and ice-cold water. The organic layer was separated and the aqueous layer was extracted ($3 \times 15 \text{ mL}$) with diethyl ether. The combined organic layers were dried (Na_2SO_4) and concentrated under reduced pressure. The crude material was purified using column chromatography through silica gel ($5 \rightarrow 7\%$ ethyl acetate in petroleum ether) to afford compound **2a** (921 mg, 73\%) as a yellow liquid.

B) Representative procedure for sequential directed and direct C–H activations: To a suspension of 2-phenylpyridine (1 g, 6.44 mmol), K_2CO_3 (1.79 g, 12.89 mmol), and 1-AdCO₂H (348 mg, 1.93 mmol) in dry toluene (15 mL), [{Ru(*p*-cymene)Cl₂]₂] (94 mg, 0.154 mmol) was added and the reaction mixture was flushed with argon for 10 min. To this mixture, bromobenzene (1.69 mL, 16.11 mmol) was added and the resulting mixture was heated at 120 °C for 18 h. To this mixture, allyl bromide (1.41 mL, 16.27 mmol) was added and the resulting mixture was heated at 120 °C for an additional 15–18 h. The reaction mixture was diluted with diethyl ether and water. The organic layer was separated and the aqueous layer was extracted (3 times) with diethyl ether. The combined organic layers were dried (Na₂SO₄) and solvent was removed under reduced pressure. The crude material was purified using column chromatography through silica gel (8 \rightarrow 9% ethyl acetate in pet ether) to afford compound **7aa** (1.86 g, 83%) as a white solid.

Acknowledgements

CVR thank the Ministry of Science and Technology for funding through the Department of Science and Technology [Grant numbers: SR/S5/GC-20/2007 and SR/S5/OBP-66A/2008(G)]. Financial support from the CSIR (New Delhi) in the form of a research fellowship to YG is gratefully acknowledged. We thank Dr. Yogesh S. Vikhe for conducting some of the early experiments.

Keywords: alkenylation • C–H activation • nitrogen heterocycles • pyridine derivatives • ruthenium

- [1] For selected recent reviews on directed C-H activation, see: a) A. E. Shilov, G. B. Shul'pin, Chem. Rev. 1997, 97, 2879-2932; b) P. Thansandote, M. Lautens, Chem. Eur. J. 2009, 15, 5874-5883; c) L. Ackermann, R. Vicente, A. R. Kapdi, Angew. Chem. 2009, 121, 9976-10011; Angew. Chem. Int. Ed. 2009, 48, 9792-9826; d) F. Bellina, R. Rossi, Tetrahedron 2009, 65, 10269-10310; e) T. Satoh, M. Miura, Synthesis 2010, 3395-3409; f) D. A. Colby, R. G. Bergman, J. A. Ellman, Chem. Rev. 2010, 110, 624-655; g) T. W. Lyons, M. S. Sanford, Chem. Rev. 2010, 110, 1147-1169; h) S. Messaoudi, J.-D. Brion, M. Alami, Eur. J. Org. Chem. 2010, 6495-6516; i) A. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew. Chem. 2011, 123, 11256-11283; Angew. Chem. Int. Ed. 2011, 50, 11062-11087; j) S. H. Cho, J. Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068-5083; k) L. Ackermann, Chem. Rev. 2011, 111, 1315-1345; l) C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293-1314; m) T. C. Boorman, I. Larrosa, Chem. Soc. Rev. 2011, 40, 1910-1925.
- [2] For ruthenium-catalyzed pyridine-directed C-H activation, see: a) S. Murai, J. Synth. Org. Chem. Jpn. 1994, 52, 992-1001; b) N. Chatani, Y. Ie, F. Kakiuchi, S. Murai, J. Org. Chem. 1997, 62, 2604-2610; c) N. Chatani, Y. Ishii, Y. Ie, F. Kakiuchi, S. Murai, J. Org. Chem. 1998, 63, 5129-5136; d) S. Oi, S. Fukita, N. Hirata, N. Watanuki, S. Miyano, Y. Inoue, Org. Lett. 2001, 3, 2579-2581; e) L. Ackermann, A. Althammer, R. Born, Angew. Chem. 2006, 118, 2681-2685; Angew. Chem. Int. Ed. 2006, 45, 2619-2622; f) L. Ackermann, M. Mulzer, Org. Lett. 2008, 10, 5043-5045; g) F. Požgan, P. H. Dixneuf, Adv. Synth. Catal. 2009, 351, 1737-1743; h) P. B. Arockiam, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Angew. Chem. 2010, 122, 6779-6782; Angew. Chem. Int. Ed. 2010, 49, 6629-6632; i) H. Pro-

www.chemeurj.org © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim These are not the final page numbers!

kopcová, S. D. Bergman, K. Aelvoet, V. Smout, W. Herrebout, B. Van der Veken, L. Meerpoel, B. U. W. Maes, Chem. Eur. J. 2010, 16, 13063-13067; j) L. Ackermann, R. Vicente, H. K. Potukuchi, V. Pirovano, Org. Lett. 2010, 12, 5032-5035; k) W. Li, P. B. Arockiam, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Green Chem. 2011, 13, 2315-2319; 1) H. Li, W. Wei, Y. Xu, C. Zhang, X. Wan, Chem. Commun. 2011, 47, 1497-1499; m) E. Ferrer Flegeau, C. Bruneau, P. H. Dixneuf, A. Jutand, J. Am. Chem. Soc. 2011, 133, 10161-10170.

- [3] a) B. J. Holliday, C. A. Mirkin, Angew. Chem. 2001, 113, 2076-2097; Angew. Chem. Int. Ed. 2001, 40, 2022-2043; b) G. Desimoni, G. Faita, P. Quadrelli, Chem. Rev. 2003, 103, 3119-3154; c) G. D. Henry, Tetrahedron 2004, 60, 6043-6061; d) D. G. Kurth, M. Higuchi, Soft Matter 2006, 2, 915-927; e) V. C. Gibson, C. Redshaw, G. A. Solan, Chem. Rev. 2007, 107, 1745-1776; f) C. Bianchini, G. Giambastiani, L. Luconi, A. Meli, Coord. Chem. Rev. 2010, 254, 431-455.
- [4] For C-H activation of the C2 position of pyridine derivatives, see: a) R. F. Jordan, D. F. Taylor, J. Am. Chem. Soc. 1989, 111, 778-779; b) E. J. Moore, W. R. Pretzer, T. J. Oconnell, J. Harris, L. Labounty, L. Chou, S. S. Grimmer, J. Am. Chem. Soc. 1992, 114, 5888-5890; c) R. Grigg, V. Savic, Tetrahedron Lett. 1997, 38, 5737-5740; d) M. Murakami, S. Hori, J. Am. Chem. Soc. 2003, 125, 4720-4721; e) K. Godula, B. Sezen, D. Sames, J. Am. Chem. Soc. 2005, 127, 3648-3649; f) J. C. Lewis, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2007, 129, 5332-5333; g) A. M. Berman, J. C. Lewis, R. G. Bergman, J. A. Ellman, J. Am. Chem. Soc. 2008, 130, 14926-14927; h) Y. Nakao, K. S. Kanyiva, T. Hiyama, J. Am. Chem. Soc. 2008, 130, 2448-2449; i) S. Yotphan, R. G. Bergman, J. A. Ellman, Org. Lett. 2010, 12, 2978-2981. Review: j) Y. Nakao, Synthesis 2011, 3209-3219; k) B.-T. Guan, Z. Hou, J. Am. Chem. Soc. 2011, 133, 18086-18089
- [5] a) L.-C. Campeau, S. Rousseaux, K. Fagnou, J. Am. Chem. Soc. 2005, 127, 18020-18021; b) K. S. Kanyiva, Y. Nakao, T. Hiyama, Angew. Chem. 2007, 119, 9028-9030; Angew. Chem. Int. Ed. 2007, 46, 8872-8874; c) A. Larivée, J. J. Mousseau, A. B. Charette, J. Am. Chem. Soc. 2008, 130, 52-54; d) S. H. Cho, S. J. Hwang, S. Chang, J. Am. Chem. Soc. 2008, 130, 9254-9256; e) L.-C. Campeau, D. J. Schipper, K. Fagnou, J. Am. Chem. Soc. 2008, 130, 3266-3267; f) J. J. Mousseau, A. Lariv'ee, A. e. B. Charette, Org. Lett. 2008, 10, 1641-1643; g) J. J. Mousseau, A. L. Fortier, A. B. Charette, Org. Lett. 2010, 12, 516-519; h) H.-Y. Sun, S. I. Gorelsky, D. R. Stuart, L.-C. Campeau, K. Fagnou, J. Org. Chem. 2010, 75, 8180-8189; i) S. Duric, C. C. Tzschucke, Org. Lett. 2011, 13, 2310-2313; j) W. P. Mai, J. W. Yuan, Z. C. Li, G. C. Sun, L. B. Qu, Synlett 2012, 145-149.

COMMUNICATION

- [6] a) S. Oi, Y. Tanaka, Y. Inoue, Organometallics 2006, 25, 4773-4778; b) K. Cheng, B. Yao, J. Zhao, Y. Zhang, Org. Lett. 2008, 10, 5309-5312.
- [7] a) L. Ackermann, P. Novák, R. Vicente, N. Hofmann, Angew. Chem. 2009, 121, 6161-6164; Angew. Chem. Int. Ed. 2009, 48, 6045-6048; b) P. Arockiam, V. Poirier, C. Fischmeister, C. Bruneau, P. H. Dixneuf, Green Chem. 2009, 11, 1871-1875; c) L. Ackermann, Chem. Commun. 2010, 46, 4866-4877; d) L. Ackermann, A. V. Lygin, Org. Lett. 2011, 13, 3332-3335; e) L. Ackermann, N. Hofmann, R. Vicente, Org. Lett. 2011, 13, 1875-1877.
- [8] C.-C. Lee, W.-Y. Chu, Y.-H. Liu, S.-M. Peng, S.-T. Liu, Eur. J. Inorg. Chem. 2011, 4801-4806.
- [9] Selected examples of C_{sp^3} -H activation of 2-alkyl pyridine derivatives: a) B. M. Trost, D. A. Thaisrivongs, J. Am. Chem. Soc. 2009, 131, 12056-12057; b) B. Qian, S. M. Guo, J. P. Shao, Q. M. Zhu, L. Yang, C. G. Xia, H. M. Huang, J. Am. Chem. Soc. 2010, 132, 3650-3651; c) G. Song, Y. Su, X. Gong, K. Han, X. Li, Org. Lett. 2011, 13, 1968-1971; d) B. Qian, P. Xie, Y. J. Xie, H. M. Huang, Org. Lett. 2011, 13, 2580-2583; e) O. Baudoin, Chem. Soc. Rev. 2011, 40, 4902-4911.
- [10] For selected total syntheses of dihydropinidine, see: a) Y. Watanabe, H. Iida, C. Kibayashi, J. Org. Chem. 1989, 54, 4088-4097; b) Z. H. Lu, W. S. Zhou, J. Chem. Soc. Perkin Trans. 1 1993, 593-596; c) C. Eriksson, K. S. Din, F. Schlyterb, H.-E. Högberga, Tetrahedron: Asymmetry 2006, 17, 1074-1080; d) M. Kavala, F. Mathia, J. Kozisek, P. Szolcsanyi, J. Nat. Prod. 2011, 74, 803-808; e) R. C. Simon, B. Grischek, F. Zepeck, A. Steinreiber, F. Belaj, W. Kroutil, Angew. Chem. 2012, 124, 6817-6820; Angew. Chem. Int. Ed. 2012, 51, 6713-6716.
- [11] For the hydrogenolysis of pyridine derivatives, see: a) T. S. Hamilton, R. Adams, J. Am. Chem. Soc. 1928, 50, 2260-2263; b) A. Solladié-Cavallo, M. Roje, A. Baram, V. Sunjic, Tetrahedron Lett. 2003, 44.8501-8503.
- [12] For one-pot ruthenium-mediated sequential direct arylation and hydrosilylation, see: a) L. Ackermann, R. Born, P. Álvarez-Bercedo, Angew. Chem. 2007, 119, 6482-6485; Angew. Chem. Int. Ed. 2007, 46, 6364-6367; b) B. Li, C. B. Bheeter, C. Darcel, P. H. Dixneuf, ACS Catal. 2011, 1, 1221–1224.
- [13] a) L. Zhang, L. Dang, T. B. Wen, H. H. Y. Sung, I. D. Williams, Z. Lin, G. Jia, Organometallics 2007, 26, 2849-2860; b) M. Albrecht, Chem. Rev. 2010, 110, 576-623.

Received: July 4, 2012 Published online:

CHEMISTRY

A EUROPEAN JOURNAL

C-H Activation —

Ruthenium-Catalyzed C6-Propenylation Reactions of Substituted Pyridine Derivatives: Directed and Direct C-H Activation

One stone, two birds: Aryl pyridine derivatives in the presence of allyl bromide and a catalytic amount of $[{Ru(p$ $cymene)Cl_2}_2]$ undergo an unexpected direct C6-propenylation reaction of the pyridine moiety. A one-pot one-catalyst three-component *reaction* involving sequential and selective direct and directed C–H activation reactions was also developed (see scheme).