

A Very Simple Synthesis of Annelated λ^3 - and λ^5 -Phosphanaphthalenes

Lujun Zhang, Feichao Yang, Guanyu Tao, LiqiQiu, Zheng Duan*, François Mathey*

College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China. E-mail: <u>duanzheng@zzu.edu.cn; frmathey@yahoo.fr</u>

Ortho-phosphino-benzonitriles (or thieno, pyridinoanalogs) react with dimethyl acetylene dicarboxylate between – 78 °C and room temperature to give annelated λ^5 -phosphanaphthalenes. Interesting variations of the fluorescence properties are observed when the R substituents at P are alkyl or aryl. When R = *t*-Bu, the thermolysis of the product affords the corresponding trivalent phosphanaphthalene.

Introduction

Phosphorus containing π -conjugated systems are currently receiving special attention, owing to their potential applications in materials, such as liquid crystals¹, organogels², fibers³, probes⁴, sensors⁴, n-type organic semiconductors⁵, light-emitting diodes (OLEDs/PLEDs)⁶ and photovoltaic cells⁷.Compared with the well-known five-membered arene-fused phospholes⁶, the research with the annelated six-membered phosphacycles is restricted by the lack of synthetic methods. Very recently, Matveeva's group developed a photochemical heterocyclization of mixed phosphonium–iodoniumylids with acetylenes to give annelated λ^5 -phosphinines⁸. Romero-Nieto's group described a new non-catalyzed synthetic protocol to prepare phosphaphenalenes⁹. Here, we would like to report a facile method to synthesize a new type of functional six-membered phosphanaphthalenes (phosphinolines) from tertiary phosphines and dimethyl acetylenedicarboxylate (DMAD).

Phosphine catalyzed or mediated Michael addition is a powerful tool in modern organic synthesis¹⁰. Nucleophilic attacks of the phosphorus atom on electron-deficient multiple bonds create reactive zwitterionic carbenoid species, which emerged as versatile intermediates for various transformations. Some of these reactions provided a direct access to stable phosphorus-ylids containing conjugated heterocycles¹¹. This led us to investigate the intramolecular nucleophilic reactivity between this type of zwitterionic carbenoid species and the cyanide group.

Results and discussion

After optimization of the reaction conditions (temperature, solvent), 2-diphenylphosphinobenzonitrile**1a** was reacted with DMAD at -78 °C in anhydrous toluene for 30 min (Scheme 1). Then, the reaction mixture was stirred at r.t. and monitored by ³¹P NMR spectroscopy. The reaction was quite clean and a new product was isolated with a ³¹P resonance at 13.2 ppm. Its structure was established by crystallographic analysis. It appeared that this reaction provides a facile access to annelated six-membered phosphacycle**2a** from readily accessible starting materials. Various α-phosphino benzonitriles reacted smoothly with DMAD to give the annelated phosphacycles. Both aryl-, alkyl- and even amino-substituted phosphines could be used (**2a-2d, 2l**). α-Phosphinobenzonitriles substituted by electron donating groups gavehigher yields (**2e-f**) than those with electron withdrawing groups, such as CN (**2g**), F (**2h**) and Cl (**2i**). Hetero-arene fused phosphacyclescould also be obtained using this new method (**2j-k**). It is interesting to note that all the solutions of alkyl-substituted phosphacycles (**2c, 2d**, and **2k**) could be excited by UV light and yields yellow emission, whereas this phenomenon was not observed with all the aryl-substituted derivatives (Figure 1).

Scheme 1 Reactions of $\alpha\text{-}phosphinobenzonitriles with DMAD$

Figure 1UV-vis absorption and fluorescence spectra (inset) of 2a, 2c, 2d and 2e in CH₂Cl₂(10⁻⁵ M) at r.t.Photographs of 2a, 2c, 2d and 2e under irradiation with black light at 365 nm areshown in the inset.

Crystallographic studies were carried out on **2a** and **2c** (Figures 2 and 3). The intracyclic C(5)-P(1) bond lengths are 1.753(3) Å (**2a**) and 1.763(2) Å (**2c**), respectively, which are consistent with their ylidic structure¹². The phosphorus ring of **2c** is nearly planar (\angle C5-P1-C9-C14 = 3.07°) whereas the ring of **2a** is significantly distorted (\angle C5-P1-C9-C14 = 26.31°). This suggests a higher electronic delocalization within the phosphorus ring of **2c** when compared to **2a**.

Figure 2 ORTEP drawing of 2a (50% thermal ellipsoids). Main distances (Å) and angles (deg.): P1-C5 1.753(3), P1-C4 1.796(3), P1-C9 1.803(3), P1-C18 1.823(3), C5-C6 1.425(4), C6-C15 1.372(4), C14-C15 1.450(4), C9-C14 1.417(4); C4-P1-C9 109.34(14), C4-P1-C18 107.50(13), C5-P1-C4 113.67(14), C5-P1-C9 107.58(13), C5-P1-C18 112.30(13), C9-P1-C18 106.17(13); C5-P1-C9-C14 = 26.31°.

Figure 3 ORTEP drawing of 2c(50% thermal ellipsoids). Main distances (Å) and angles (deg.): P1-C5 1.762(2), P1-C4 1.8273(19), P1-C9 1.806(2), P1-C18 1.837(2), C5-C6 1.421(3), C6-C15 1.356(3), C14-C15 1.433(3), C9-C14 1.414(3); C4-P1-C9 105.65(9), C4-P1-C18 108.50(10), C5-P1-C4 115.34(9), C5-P1-C9 106.52(10), C5-P1-C18 111.66(10), C9-P1-C18 108.83(9); C5-P1-C9-C14 = 3.07°.

From a purely synthetic standpoint, this method appears to be quite general. Indeed it is possible to extend its use to the synthesis of annelatedphosphinines (Scheme 2).

In another vein, when the substituents at phosphorus are *t*-Bu (**2d**), it is possible to convert a λ^{5-} into a λ^{3-} phosphanaphthalene by thermolysis (Scheme 3).

The phosphanaphthalene **6** has been detected by ^{31}P MNR (^{31}P 190 ppm), but, due to its high reactivity, we trapped it by reaction with 2,3-dimethylbutadiene and sulfur (compound **7**) as shown in Scheme 3. Compound **7** has been characterized by X-ray crystal structure analysis (Figure 4).

Figure 4 ORTEP drawing of 7 (30% thermal ellipsoids). Main distances (Å) and angles (deg.): P1-C1 1.811(2), P1-C11 1.852(2), P1-C15 1.814(3), P1-S1 1.9421(9), C1-C6 1.411(3), C6-C7 1.466(3), C7-C8 1.340(3), C8-C11 1.496(3); C1-P1-C11 105.13(11), C1-P1-C15 104.44(12), C1-P1-S1 113.85(8), C11-P1-S1 114.96(8), C15-P1-C11 100.73(11), C15-P1-S1 116.17(10).

Scheme 4 Proposed mechanism

On the basis of the known reaction of phosphines and DMAD, we propose the following mechanism (Scheme 4) involving a sequence of nucleophilic addition of phosphines $\mathbf{1}$ to DMAD to form zwitterionic intermediates, followed by an intramolecular cascade nucleophilic attack of CN⁻ on the carbonyl groups.

Conclusion

In conclusion, we have developed a very simple one-step synthesis of annelated λ^5 -phosphanaphthalenes whose fluorescence properties vary with the substitution at phosphorus. Further studies will describe more in depth the optoelectronic properties of this new class of conjugated materials. The same scheme can also afford annelated phosphinines and trivalent phosphanaphthalenes.

Experimental section

All reactions were performed under nitrogen using solvents dried by standard methods. ¹H, ¹³C and ³¹P NMR spectra were recorded on Bruker 300 and 400 MHz spectrometer. Chemical shifts are expressed in ppm from internal TMS (¹H and¹³C). All coupling constants (*J* values) are reported in hertz (Hz). HRMS spectra were obtained on a Water Q-Tof Premier MS. Element analytic data were obtained on a Thermo Electron Corporation flash EA 1112 element spectrometer. Silica gel (230-400 mesh)

was used for the chromatographic separations. The UV-VIS spectra were recorded on a Varian Cary 5000 UV-Vis-NIR Spectrophotometer at room temperature. The emission spectra were recorded on a HITACHI F-4600 Fluorescence Spectrophotometer at room temperature. **2a**: $\lambda_{abs}^{max} = 351 \text{ nm}$ ($\epsilon = 7916 \text{ mol}^{-1} \text{ L cm}^{-1}$), **2c**: $\lambda_{abs}^{max} = 368 \text{ nm}$ ($\epsilon = 7835 \text{ mol}^{-1} \text{ L cm}^{-1}$), **2d**: $\lambda_{abs}^{max} = 366 \text{ nm}$ ($\epsilon = 6009 \text{ mol}^{-1} \text{ L cm}^{-1}$), **2e**: $\lambda_{abs}^{max} = 342 \text{ nm}$ ($\epsilon = 10865 \text{ mol}^{-1} \text{ L cm}^{-1}$). **1g**, **1j**, **1m** and **1n** were prepared according to literature methods. Ph(Et₂N)PCI was made by the reaction of PhPCl₂ with HNEt₂ in anhydrous Et₂O. Commercially available reagents were used without further purification.

Synthesis of the starting phosphines

Procedure A for the Synthesis of Compounds 1a-1b, 1e-1f, 1h-1j:

To a solution of *ortho*-bromoaryl nitriles or 2-bromothiophen-3-carbonitrile (15 mmol) in anhydrous THF (60 mL) (for **1a**, **1b**, **1e** and **1f**) or Et₂O (60 mL) (for **1j**) or THF/Et₂O (30 /30 mL) (for **1h** and **1i**), kept in an oven-dried 100 mL-Schlenk flask under an atmosphere of dry nitrogen, was added dropwise a 1.6 M solution of *n*-BuLi in hexane (9.4 mL, 15 mmol) at -78 °C over a period of 5 min. After stirring at -78 °C for 1 h, Ar₂PCl (15 mmol) in anhydrous THF (10 mL) was added dropwise. The mixture was kept at -78 °C for 1 h and then warmed to room temperature. After 1h, the reaction was monitored by ³¹P NMR spectroscopy. The mixture was diluted with diethyl ether, the organic phase washed with water, brine and dried over anhydrous MgSO₄. The solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography on silica gel (petroleum ether/ dichloromethane).

Procedure B for the Synthesis of Compound 1g:

To a solution of 1,3-dicyanobenzene (2.56 g, 20 mmol) in anhydrous THF (50 mL), kept in an oven-dried 100 mL-Schlenk flask under an atmosphere of dry nitrogen, was added dropwise LDA (22 mmol) (which was prepared by the reaction of *n*-BuLi and $HN(i-Pr)_2$) in THF at -78 °C over a period of 10 min. After stirring at -78 °C for 1 h, Ph₂PCl (4.42 g, 20 mmol) in anhydrous THF (10 mL) was added dropwise. The mixture was kept at -78 °C for 1 h and then warmed to room temperature. After 1h, the reaction was monitored by ³¹P NMR spectroscopy. The mixture was diluted with diethyl ether, the organic phase washed with water, brine and dried over anhydrous MgSO₄. The solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography on silica gel (petroleum ether/ dichloromethane).

Procedure C for the Synthesis of Compounds 1c(O)-1d(O), 1k(O)-1l(O):

To a solution of 2-bromobenzonitrile or 2-bromopyridine-3-carbonitrile (9.6 mmol) in anhydrous THF (40 mL) (for **1c**, **1d**, and **1l**) or THF/Et₂O (20/20 mL) (for **1k**), kept in an oven-dried 100 mL-Schlenk flask under an atmosphere of dry nitrogen, was added dropwise a 1.6 M solution of *n*-BuLi in hexane (6.0 mL, 9.6 mmol) at -78 °C over a period of 5 min. After stirring at -78 °C for 1 h, RR'PCI (9.6 mmol) in anhydrous THF (10 mL) was added dropwise. The mixture was kept at -78 °C for 1 h and then warmed to room temperature. After 3 h, the reaction was monitored by ³¹P NMR spectroscopy. The solvents were removed under reduced pressure and dichloromethane was added to the reaction mixture. After the residue was dissolved, the mixture was filtered to remove salt. H₂O₂ (ca. 30 %, a few drops) was added to the filtrate while stirring. After 10 min, the mixture was diluted with dichloromethane, the organic phase washed with water, brine and dried over anhydrous MgSO₄. The solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography on silica gel (petroleum ether/ diethyl ether).

Procedure D for the Synthesis of the Compound **1m(O)**:

To a solution of 1-bromocyclohexene-2-carbonitrile (1190 mg, 6.4 mmol) in anhydrous THF/Et₂O (20/20 mL), kept in an ovendried 100 mL-Schlenk flask under an atmosphere of dry nitrogen, was added dropwise a 1.6 M solution of *n*-BuLi in hexane (4.0 mL, 6.4 mmol) at -78 °C over a period of 5 min. After stirring at -78 °C for 1 h, Ph₂PCl (1412 mg, 6.4 mmol) in anhydrous THF (10 mL) was added dropwise. The mixture was kept at -78 °C for 1 h and then warmed to room temperature. After 3 h, the reaction was monitored by ³¹P NMR spectroscopy. The solvents were removed under reduced pressure and dichloromethane was added to the reaction mixture. After the residue was dissolved, the mixture was filtered to remove salt. H₂O₂ (ca. 30 %, a few drops) was added to the filtrate while stirring. After 10 min, the mixture was diluted with dichloromethane, the organic phase washed with water, brine and dried over anhydrous MgSO₄. The solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography on silica gel (petroleum ether/ diethyl ether).

Phosphine 1a

White solid, 3.28 g, 76 % yield. ³¹P NMR (121 MHz, CDCl₃): δ -8.3 ppm; ¹H NMR (300 MHz, CDCl₃): δ 7.06-7.10 (m, 1H), 7.27-7.51 (m, 12H), 7.70-7.74 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 117.66 (d, J_{CP} = 3.8 Hz, CN), 117.93 (d, J_{CP} = 33.0 Hz, C), 128.88 (d, J_{CP} = 7.5 Hz, 4CH), 128.93 (s, CH), 129.48 (s, 2CH), 132.47 (s, CH), 133.45 (s, CH), 133.76 (d, J_{CP} = 4.5 Hz, CH), 134.05 (d, J_{CP} = 20.3 Hz, 4CH), 134.70 (d, J_{CP} = 10.5 Hz, 2C), 143.03 (d, J_{CP} = 20.3 Hz, C). HRMS: m/z calcd. for C₁₉H₁₅NP [M+H]⁺: 288.0942; found : 288.0945.

Phosphine 1b

White solid, 2.93 g, 62 % yield. ³¹P NMR (121 MHz, CDCl₃): δ -10.7 ppm; ¹H NMR (300 MHz, CDCl₃): δ 2.38 (s, 6H, 2Me), 7.04-7.08 (m, 1H), 7.19-7.27 (m, 8H), 7.37-7.50 (m, 2H), 7.68-7.72 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 21.42 (s, 2CH₃), 117.62 (d, J_{CP} = 32.3 Hz, C), 117.74(d, J_{CP} = 3.8 Hz, CN), 128.64 (s, CH), 129.67 (d, J_{CP} = 7.5 Hz, 4CH), 131.27 (d, J_{CP} = 8.3 Hz, 2C), 132.34 (s, CH), 133.20 (s, CH), 133.69 (d, J_{CP} = 4.5 Hz, CH), 134.07 (d, J_{CP} = 21.0 Hz, 4CH), 139.50 (s, 2C), 143.82 (d, J_{CP} = 19.5 Hz, C). HRMS: m/z calcd for C₂₁H₁₉NP [M+H]⁺: 316.1255; found : 316.1259.

Phosphine oxide1c(O)

White solid, 2.39 g, 79% yield. ³¹P NMR (121 MHz, CDCl₃): δ 46.4 ppm; ¹H NMR (300 MHz, CDCl₃): δ 1.08-1.52 (m, 12H), 1.64-1.84 (m, 6H), 2.07-2.11 (m, 2H), 2.34-2.44 (m, 2H), 7.60 (t, J = 7.8 Hz, 1H), 7.71-7.79 (m, 2H), 8.16-8.22 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 25.48 (d, J_{CP} = 3.8 Hz, 2CH₂), 25.65 (d, J_{CP} = 0.8 Hz, 2CH₂), 25.98 (d, J_{CP} = 3.8 Hz, 2CH₂), 26.07 (s, CH₂), 26.22 (d, J_{CP} = 3.0 Hz, 2CH₂), 26.38 (s, CH₂), 36.19 (d, J_{CP} = 66.0 Hz, 2CH), 112.74 (d, J_{CP} = 6.0 Hz, C), 118.72 (d, J_{CP} = 3.0 Hz, CN), 131.30 (d, J_{CP} = 2.3 Hz, CH), 132.64 (d, J_{CP} = 9.0 Hz, CH), 134.24 (d, J_{CP} = 6.8 Hz, CH), 135.39 (d, J_{CP} = 72.8 Hz, C), 135.52 (d, J_{CP} = 4.5 Hz, CH). HRMS: m/z calcd for C₁₉H₂₇NOP [M+H]⁺: 316.1830; found : 316.1829.

Phosphine oxide 1d(O)

³¹P NMR (121 MHz, CDCl₃): δ 53.7 ppm. HRMS: m/z calcd for C₁₅H₂₃NOP [M+H]⁺: 264.1517; found : 264.1516.

Phosphine 1e

White solid, 2.53 g, 53 % yield. ³¹P NMR (121 MHz, CDCl₃): δ -7.9 ppm; ¹H NMR (300 MHz, CDCl₃): δ 3.69 (s, 3H, MeO), 6.52 (t, *J* = 3.0 Hz, 1H), 6.90 (dd, *J* = 2.4, 8.4 Hz, 1H), 7.27-7.41 (m, 10H), 7.66 (dd, *J* = 3.3, 8.7 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 55.4 (s, CH₃O), 109.3 (d, *J*_{CP} = 31.5 Hz, C), 113.9 (s, CH), 118.03 (d, *J*_{CP} = 3.8 Hz, CN), 119.7 (s, CH), 128.9 (d, *J*_{CP} = 7.5 Hz, 4CH), 129.5 (s, 2CH), 134.1 (d, *J*_{CP} = 20.3 Hz, 4CH), 134.5 (d, *J*_{CP} = 10.5 Hz, 2C), 135.6 (d, *J*_{CP} = 5.3 Hz, CH), 145.2 (d, *J*_{CP} = 20.3 Hz, C), 162.4 (s. C). HRMS: m/z calcd for C₂₀H₁₇NOP [M+H]⁺: 318.1048; found : 318.1049.

Phosphine 1f

White solid, 3.96 g, 88 % yield. ³¹P NMR (121 MHz, CDCl₃): δ -9.9 ppm; ¹H NMR (300 MHz, CDCl₃): δ 2.39 (s, 3H, Me), 6.97 (d, J = 7.8 Hz, 1H), 7.27-7.39 (m, 11H), 7.54 (s, H); ¹³C NMR (75 MHz, CDCl₃): δ 20.97 (s, CH₃), 117.87 (d, $J_{CP} = 4.5$ Hz, CN), 117.96 (d, $J_{CP} = 33.8$ Hz, C), 128.80 (d, $J_{CP} = 7.5$ Hz, 4CH), 129.32 (s, 2CH), 133.50 (s, CH), 133.62 (s, CH), 133.91 (d, $J_{CP} = 20.3$ Hz, 4CH), 134.21 (d, $J_{CP} = 4.5$ Hz, CH), 135.07 (d, $J_{CP} = 10.5$ Hz, 2C), 139.25 (d, $J_{CP} = 18.0$ Hz, C), 139.48 (s. C). HRMS: m/z calcd for C₂₀H₁₇NP [M+H]⁺: 302.1099; found : 302.1101.

Phosphine 1g

White solid, 4.50 g, 72% yield. ³¹P NMR (121 MHz, CDCl₃): δ -2.4 ppm; ¹H NMR (300 MHz, CDCl₃): δ 7.43-7.53 (m, 10H), 7.60 (t, *J* = 7.8 Hz, 1H), 7.91 (dd, *J* = 1.2, 7.8 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 116.14 (d, *J*_{CP} = 2.3 Hz, 2CN), 120.58 (d, *J*_{CP} = 19.5 Hz, 2C), 129.10 (d, *J*_{CP} = 6.8 Hz, 4CH), 130.01 (s, 2CH), 130.18 (s, CH), 132.25 (d, *J*_{CP} = 9.8 Hz, 2C), 133.62 (d, *J*_{CP} = 20.3 Hz, 4CH), 138.50 (d, *J*_{CP} = 2.3 Hz, 2CH), 145.73 (d, *J*_{CP} = 35.3 Hz, C). HRMS: m/z calcd for C₂₀H₁₄N₂P [M+H]⁺: 313.0895; found : 313.0891.

Phosphine 1h

White solid, 2.25 g, 49 % yield. ³¹P NMR (121 MHz, CDCl₃): δ -9.6 ppm; ¹H NMR (300 MHz, CDCl₃): δ 6.70-6.75 (m, 1H), 7.07-7.14 (m, 1H), 7.31-7.44 (m, 10H), 7.70-7.75 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 113.64 (dd, *J* = 3.0, 30.8 Hz, C), 116.49 (d, *J* = 22.5 Hz, CH), 116.92 (d, *J* = 3.0 Hz, CN), 120.57 (d, *J* = 22.5 Hz, CH), 129.08 (d, *J* = 7.5 Hz, 4CH), 129.86 (s, 2CH), 133.83 (d, *J* = 9.8 Hz, 2C), 134.12 (d, *J* = 20.3 Hz, 4CH), 136.15 (dd, *J* = 4.5, 9.0 Hz, CH), 147.58 (dd, *J* = 6.0, 23.3 Hz, C), 164.71 (d, *J* = 257.3 Hz, C). HRMS: m/z calcd for C₁₉H₁₄FNP [M+H]⁺: 306.0848; found : 306.0845.

Phosphine 1i

White solid, 2.70 g, 56 % yield. ³¹P NMR (121 MHz, CDCl₃): δ -9.4 ppm; ¹H NMR (300 MHz, CDCl₃): δ 7.02 (dd, J = 2.7, 8.4 Hz, 1H), 7.27-7.48 (m, 11H), 7.70 (s, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 116.39 (d, J_{CP} = 3.0 Hz, CN), 119.26 (d, J_{CP} = 34.5 Hz, C), 129.03 (d, J_{CP} = 7.5 Hz, 4CH), 129.72 (s, 2CH), 132.82 (s, CH), 133.30 (d, J_{CP} = 4.5 Hz, CH), 134.02 (d, J_{CP} = 20.3 Hz, 4CH), 134.15 (s, C), 134.73 (d, J_{CP} = 67.5 Hz, 2C), 134.79 (s, CH), 141.85 (d, J_{CP} = 21.8 Hz, C). HRMS: m/z calcd for C₁₉H₁₄CINP [M+H]⁺: 322.0552; found : 322.0554.

Phosphine 1j

Yellow solid, 3.39 g, 77% yield. ³¹P NMR (121 MHz, CDCl₃): δ -20.9 ppm; ¹H NMR (300 MHz, CDCl₃): δ 7.36-7.43 (m, 11H), 7.55-7.57 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 114. 69 (d, J_{CP} = 1.5 Hz, CN), 117.46 (d, J_{CP} = 27.8 Hz, C), 128.84 (d, J_{CP} = 7.5 Hz, 4CH), 129.77 (s, 2CH), 130.88 (d, J_{CP} = 3.0 Hz, CH), 131.97 (s, CH), 133.35 (d, J_{CP} = 20.3 Hz, 4CH), 135.25 (d, J_{CP} = 9.0 Hz, 2C), 151.57 (d, J_{CP} = 39.8 Hz, C). HRMS: m/z calcd for C₁₇H₁₃NPS [M+H]⁺: 294.0506; found : 294.0511.

Phosphine oxide1k(O)

White solid, 2.43 g, 80% yield. ³¹P NMR (121 MHz, CDCl₃): δ 51.1 ppm; ¹H NMR (300 MHz, CDCl₃): δ 1.10-1.47 (m, 14H), 1.64-1.73 (m, 3H), 1.81-1.83 (m, 1H), 2.12-2.16 (m, 2H), 2.28-2.40 (m, 2H), 7.54-7.59 (m, 1H), 8.12-8.16 (m, 1H), 8.89-8.91 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 24.59 (d, J_{CP} = 3.0 Hz, 2CH₂), 25.27 (d, J_{CP} = 3.8 Hz, 2CH₂), 25.65 (s, 2CH₂), 26.10 (s, 2CH₂), 26.27 (s, 2CH₂), 35.32 (d, J_{CP} = 66.0 Hz, 2CH), 115.66 (s, CN), 115.85 (d, J_{CP} = 12.0 Hz, C), 124.52 (d, J_{CP} = 3.0 Hz, CH), 142.21 (d, J_{CP} = 5.3 Hz, CH), 151.67 (d, J_{CP} = 15.8 Hz, CH), 157.91 (d, J_{CP} = 102.8 Hz, C). HRMS: m/z calcd for C₁₈H₂₆N₂OP [M+H]⁺: 317.1816; found : 317.1815.

Phosphine oxide11(0)

White solid, 2.4 g, 84% yield. ³¹P NMR (121 MHz, CDCl₃): δ 26.2 ppm; ¹H NMR (300 MHz, CDCl₃): δ 1.07 (t, *J* = 6.9 Hz, 6H), 3.02-3.12 (m, 4H), 7.32-7.59 (m, 5H), 7.67-7.71 (m, 1H), 7.85-7.93 (m, 2H), 8.06-8.13 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 13.60 (d, *J*_{CP} = 3.8 Hz, 2CH₃), 39.49 (d, *J*_{CP} = 3.0 Hz, 2CH₂), 114.37 (d, *J*_{CP} = 4.5 Hz, C), 118.23 (d, *J*_{CP} = 4.5 Hz, CN), 128.59 (d, *J*_{CP} = 12.8 Hz, 2CH), 130.84 (d, *J*_{CP} = 130.5 Hz, C), 131.66 (d, *J*_{CP} = 2.3 Hz, CH), 132.19 (d, *J*_{CP} = 2.3 Hz, CH), 132.20 (d, *J*_{CP} = 9.8 Hz, 2CH), 132.52(d, *J*_{CP} = 11.3 Hz, CH), 135.15 (d, *J*_{CP} = 8.3 Hz, CH), 136.59 (d, *J*_{CP} = 122.3 Hz, C). HRMS: m/z calcd for C₁₇H₂₀N₂OP [M+H]*: 299.1313; found : 299.1313.

Phosphine oxide1m(O)

White solid, 1.57 g, 80 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 27.0 ppm; ¹H NMR (300 MHz, CDCl₃): δ 1.63-1.65 (m, 4H), 2.28-2.31 (m, 2H), 2.41-2.43 (m, 2H), 7.44-7.58 (m, 6H), 7.67-7.74 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 20.93 (s, CH₂), 21.08 (d, J_{CP} = 7.5 Hz, CH₂), 27.99 (d, J_{CP} = 7.5 Hz, CH₂), 31.14 (d, J_{CP} = 9.0 Hz, CH₂), 116.58 (d, J_{CP} = 10.5 Hz, CN), 122.75 (s, C), 128.79 (d, J_{CP} = 12.8 Hz, 4CH), 130.35 (d, J_{CP} = 104.3 Hz, 2C), 131.94 (d, J_{CP} = 9.8 Hz, 4CH), 132.65 (d, J_{CP} = 3.0 Hz, 2CH), 148.91 (d, J_{CP} = 87.0 Hz, C). HRMS: m/z calcd for C₁₉H₁₉NOP [M+H]⁺: 308.1204; found : 308.1202.

Procedure E for the Synthesis of Compounds 2a-2b, 2e-2f, 2g-2j:

To a solution of phosphines **(1a-1b, 1e-1f, 1g-1j)** (1 mmol) in anhydrous toluene (20 mL) was added DMAD (136 μ l, 1.1 mmol) at -78 °C under N₂ atmosphere. The mixture was kept at -78 °C for 30 min and then warmed to room temperature. After 2h, the ³¹P NMR spectrum showed that the reaction was completed. The solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography on silica gel (dichloromethane/ diethyl ether).

Procedure F for the Synthesis of Compounds 2c-2d, 2k-2l:

To a solution of 2-bromobenzonitrile or 2-bromopyridine-3-carbonitrile (3.2 mmol) in anhydrous THF (30 mL) (for **2c**, **2d**, and **2l**) or THF/Et₂O (15/15 mL) (for **2k**), kept in an oven-dried 50 mL-Schlenk flask under an atmosphere of dry nitrogen, was added dropwise a 1.6 M solution of *n*-BuLi in hexane (2.0 mL, 3.2 mmol) at -78 °C over a period of 5 min. After stirring at -78 °C for 1 h, RR' PCI (3.2 mmol, except for *t*-Bu₂PCI 1.6 mmol) was added dropwise. The mixture was kept at -78 °C for 1 h and then warmed to room temperature. After 3 h, the ³¹P NMR spectrum showed that the reaction was completed. The solvents were removed under reduced pressure and toluene was added to the reaction mixture. After the residue was dissolved, the mixture was filtered under an atmosphere of dry nitrogen to remove the inorganic salt. At -78 °C DMAD (431 µl, 3.5 mmol) was added to the filtrate while stirring. After 30 min, the mixture was warmed to room temperature. After 2 h, the reaction was complete according to the ³¹P NMR spectrum. Then the solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography on silica gel (dichloromethane / diethyl ether).

Procedure G for the Synthesis of the Compound **2m**:

To a solution of 1-bromocyclohexene-2-carbonitrile (1190 mg, 6.4 mmol) in anhydrous THF/Et₂O (20/20 mL), kept in an ovendried 100 mL-Schlenk flask under an atmosphere of dry nitrogen, was added dropwise a 1.6 M solution of *n*-BuLi in hexane (4.0 mL, 6.4 mmol) at –78 °C over a period of 5 min. After stirring at –78 °C for 1 h, Ph₂PCl (1412 mg, 6.4 mmol) was added dropwise. The mixture was kept at –78 °C for 1 h and then warmed to room temperature. After 3 h, the ³¹P NMR spectrum showed that the reaction was completed. The solvents were removed under reduced pressure and toluene was added to the reaction mixture. After the residue was dissolved, DMAD (788 µl, 6.4 mmol) was added to the mixture at –78 °C while stirring. After 30 min, the mixture was warmed to room temperature. After 2 h, the reaction was complete according to the ³¹P NMR spectrum. Then the solvents were removed under reduced product, which was purified by column chromatography on silica gel (dichloromethane / diethyl ether).

Procedure H for the Synthesis of the Compound **2n**:

To a solution of phosphine **1a** (288 mg, 1 mmol) in anhydrous toluene (20 mL) was added the alkyne (121 mg, 1.1 mmol) at -78 °C under N₂ atmosphere. The mixture was kept at -78 °C for 30 min and then warmed to room temperature. After 2h, the ³¹P NMR spectrum showed that the reaction was complete. The solvents were removed under reduced pressure to give a crude product, which was purified by column chromatography on silica gel (dichloromethane/ diethyl ether).

Phosphanaphthalene2a

Yellow solid, 200 mg, 47 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 13.2 ppm; ¹H NMR (300 MHz, CDCl₃): δ 3.61 (br s, 3H, OMe), 4.12 (s, 3H, OMe), 6.98-7.03 (m, 1H), 7.24-7.31 (m, 1H), 7.45-7.56 (m, 7H), 7.68-7.84 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ 45.54 (d, J_{CP} = 119.3 Hz, P=C), 50.45 (s, CH₃, OMe), 57.84 (s, CH₃, OMe), 108.28 (d, J_{CP} = 88.5 Hz, C), 116.24 (d, J_{CP} = 7.5 Hz, C), 121.32 (d, J_{CP} = 8.3 Hz, CH), 123.03 (d, J_{CP} = 12.8 Hz, CH), 127.38 (d, J_{CP} = 92.3 Hz, 2C), 128.63 (d, J_{CP} = 12.8 Hz, 4CH), 131.96 (d, J_{CP} = 3.0 Hz, 2CH), 132.22 (d, J_{CP} = 2.3 Hz, CH), 132.68 (d, J_{CP} = 8.3 Hz, CH), 133.13 (d, J_{CP} = 11.3 Hz, 4CH), 136.35 (d, J_{CP} = 6.0 Hz, C), 145.73 (d, J_{CP} = 23.3 Hz, C), 159.25 (s, C), 166.01 (b, CO₂). HRMS calcd for C₂₅H₂₁NO₄P [M+H]⁺: 430.1203; found : 430.1196. Anal. Calcd for C₂₅H₂₀NO₄P: C 69.93, H 4.69, N 3.26; found: C 69.78, H 4.63, N 3.15.

Phosphanaphthalene2b

Yellow solid, 244 mg, 53 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 12.7 ppm; ¹H NMR (300 MHz, CDCl₃): δ 2.38 (s, 6H, 2Me), 3.60 (br s, 3H, OMe), 4.10 (s, 3H, OMe), 6.95-7.00 (m, 1H), 7.23-7.29 (m, 5H), 7.44 (m, 1H), 7.59 (dd, *J* = 8.4, 13.2 Hz, 4H), 7.79 (dd, *J* = 4.5, 7.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 21.55 (d, *J*_{CP} = 0.8 Hz, 2CH₃), 45.91 (d, *J*_{CP} = 120.8 Hz, P=C), 50.40 (br s, CH₃, OMe), 57.78 (s, CH₃, OMe), 109.00 (d, *J*_{CP} = 91.5 Hz, C), 116.13 (s, C), 121.19 (d, *J*_{CP} = 7.5 Hz, CH), 122.92 (d, *J*_{CP} = 12.8 Hz, CH), 124.25 (d, *J*_{CP} = 96.0 Hz, 2C), 129.40 (d, *J*_{CP} = 13.5 Hz, 4CH), 132.06 (s, CH), 132.65 (d, *J*_{CP} = 8.3 Hz, CH), 133.15 (d, *J*_{CP} = 11.3 Hz, 4CH), 136.26 (d, *J*_{CP} = 6.0 Hz, 2C), 142.57 (d, *J*_{CP} = 3.0 Hz, C), 145.88 (d, *J*_{CP} = 24.8 Hz, C), 159.19 (s, C), 165.89 (b, CO₂). HRMS calcd for C₂₇H₂₅NO₄P [M+H]⁺: 458.1516; found : 458.1509.

Phosphanaphthalene2c

Yellow solid, 470 mg, 33 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 27.2 ppm; ¹H NMR (300 MHz, CDCl₃): δ 1.13-1.54 (m, 10H), 1.66-1.77 (m, 8H), 2.03 (m, 2H), 2.83 (d, *J* = 11.1 Hz, 2H), 3.74 (s, CH₃, OMe), 4.06 (s, CH₃, OMe), 7.02 (m, 1H), 7.45-7.53 (m, 2H), 7.67 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 25.81 (s, 2CH₂), 26.67 (d, *J*_{CP} = 3.0 Hz, 2CH₂), 26.85 (d, *J*_{CP} = 3.0 Hz, 2CH₂), 27.04 (d, *J*_{CP} = 3.0 Hz, 2CH₂), 27.54 (d, *J*_{CP} = 2.3 Hz, 2CH₂), 36.1 (d, *J*_{CP} = 51.0 Hz, 2CH), 41.19 (d, *J*_{CP} = 108.8 Hz, P=C), 50.43 (s, CH₃, OMe), 57.62 (s, CH₃, OMe), 106.80 (d, *J*_{CP} = 76.5 Hz, C), 115.14 (d, *J*_{CP} = 3.8 Hz, C), 121.27 (d, *J*_{CP} = 6.8 Hz, CH), 122.14 (d, *J*_{CP} = 11.3 Hz, CH), 130.90 (d, *J*_{CP} = 8.3 Hz, CH), 132.14 (s, CH), 138.23 (s, C), 146.76 (d, *J*_{CP} = 18.0 Hz, C), 158.70 (s, C), 166.82 (b, CO₂). HRMS calcd for C₂₅H₃₃NO₄P [M+H]⁺: 442.2142; found : 442.2125. Anal. Calcd for C₂₅H₃₂NO₄P: C 68.01, H 7.31, N 3.17; found: C 67.85, H 7.32, N 3.10.

Phosphanaphthalene2d

Yellow solid, 374 mg, 30 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 40.1 ppm; ¹H NMR (300 MHz, CDCl₃): δ 1.45 (d, J = 15.6 Hz, 18H, 6CH₃), 3.75 (s, 3H, OMe), 4.07 (s, 3H, OMe), 6.96 (t, J = 6.9 Hz, 1H), 7.40-7.45 (m, 1H), 7.71-7.77 (m, 2H); ¹³C NMR (75 MHz, CDCl₃): δ 29.36 (d, J_{CP} = 2.3 Hz, 6 CH₃), 42.96 (d, J_{CP} = 40.5 Hz, 2C), 46.32 (d, J_{CP} = 102.8 Hz, P=C), 50.53 (s, CH₃, OMe), 57.57 (s, CH₃, OMe), 107.76 (d, J_{CP} = 70.5 Hz, C), 115.14 (s, C), 120.58 (d, J_{CP} = 11.3 Hz, CH), 121.59 (d, J_{CP} = 6.8 Hz, CH), 131.79 (s, CH), 134.09 (d, J_{CP} = 7.5 Hz, CH), 138.17 (s, C), 147.43 (d, J_{CP} = 18.0 Hz, C), 158.64 (s, C), 167.67 (d, J_{CP} = 14.3 Hz, CO₂). HRMS calcd for C₂₁H₂₉NO₄P [M+H]⁺: 390.1829; found : 390.1809. Anal. Calcd for C₂₁H₂₈NO₄P: C 64.77, H 7.25, N 3.60; found: C 64.89, H 7.45, N 3.33.

Phosphanaphthalene2e

Red solid, 265 mg, 58 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 13.5 ppm; ¹H NMR (300 MHz, CDCl₃): δ 3.61 (br s, 3 H, OMe), 3.68 (s, 3H, Ph-OMe), 4.11 (s, 3H, OMe), 6.75 (dd, *J* = 2.7, 13.8 Hz, 1H), 7.12 (d, *J* = 9.0 Hz, 1H), 7.38-7.61 (m, 6H), 7.69-7.76 (m, 5H);¹³C NMR (101 MHz, CDCl₃): δ 44.46 (d, *J*_{CP} = 12.2 Hz, P=C), 50.37 (s, CH₃, OMe), 55.48 (s, CH₃, Ph-OMe), 57.75 (s, CH₃, OMe), 109.50 (d, *J*_{CP} = 88.9 Hz, C), 116.26 (s, C), 116.81 (d, *J*_{CP} = 9.1 Hz, CH), 119.35 (s, CH), 123.12 (d, *J*_{CP} = 9.1 Hz, CH), 127.24 (d, *J*_{CP} = 93.9 Hz, 2C), 128.62 (d, *J*_{CP} = 12.1 Hz, 4CH), 130.42 (s, C), 131.95 (d, *J*_{CP} = 2.0 Hz, 2CH), 133.10 (d, *J*_{CP} = 11.1 Hz, 4CH), 143.79 (d, *J*_{CP} = 24.2 Hz, C), 155.59 (d, *J*_{CP} = 14.1 Hz, C), 159.22 (s, C), 166.00 (b, CO₂). HRMS calcd for C₂₆H₂₃NO₅P [M+H]⁺: 460.1308; found : 460.1297. Anal. Calcd for C₂₆H₂₂NO₅P: C 67.97, H 4.83, N 3.05; found: C 67.91, H 4.97, N 2.88.

Phosphanaphthalene2f

Yellow solid, 300 mg, 68 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 13.1 ppm; ¹H NMR (300 MHz, CDCl₃): δ 2.39 (s, 3H, Me), 3.61 (br s, 3H, OMe), 4.12 (s, 3H, OMe), 6.85 (td, *J* = 1.8, 8.1 Hz, 1H), 7.17 (dd, *J* = 8.1, 12.6 Hz, 1H), 7.44-7.57 (m, 6H), 7.63-7.75 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ 21.72 (s, CH₃), 45.57 (d, *J*_{CP} = 114.0 Hz, P=C), 50.42 (s, CH₃, OMe), 57.81 (s, CH₃, OMe), 105.46 (d, *J*_{CP} = 92.3 Hz, C), 116.14 (d, *J*_{CP} = 7.5 Hz, C), 121.40 (d, *J*_{CP} = 8.3 Hz, CH), 124.53 (d, *J*_{CP} = 12.8 Hz, CH), 127.58 (d, *J*_{CP} = 95.3 Hz, 2C), 128.59 (d, *J*_{CP} = 12.8 Hz, 4CH), 131.89 (d, *J*_{CP} = 3.8 Hz, 2CH), 132.68 (d, *J*_{CP} = 9.0 Hz, CH), 133.14 (d, *J*_{CP} = 10.5 Hz, 4CH), 136.32 (d, *J*_{CP} = 6.8 Hz, C), 142.98 (d, *J*_{CP} = 2.3 Hz, C), 145.80 (d, *J*_{CP} = 21.8 Hz, C), 166.13 (b, CO₂). HRMS calcd for C₂₆H₂₃NO₄P [M+H]⁺: 444.1359; found : 444.1353.

Phosphanaphthalene2g

Red solid, 150 mg,33% yield). ³¹P NMR (121 MHz, CDCl₃): δ 13.6 ppm; ¹H NMR (300 MHz, CDCl₃): δ 3.55 (br s, 3H, OMe), 4.13 (s, 3H, OMe), 7.33-7.36 (m, 1H), 7.48-7.63 (m, 7H), 7.89-7.96 (m, 4H), 8.07-8.11 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 48.86 (d, J_{CP} = 121.5 Hz, P=C), 50.61 (br s, CH₃, OMe), 58.00 (s, CH₃, OMe), 107.21 (d, J_{CP} = 87.8 Hz, C), 115.32 (d, J_{CP} = 6.0 Hz, C), 115.57 (d, J_{CP} = 5.3 Hz, C), 117.51 (d, J_{CP} = 6.0 Hz, C), 126.14 (d, J_{CP} = 93.0 Hz, 2C), 126.22 (d, J_{CP} = 6.8 Hz, CH), 128.75 (d, J_{CP} = 1.5 Hz, 4CH), 130.75 (d, J_{CP} = 8.3 Hz, CH), 131.50 (d, J_{CP} = 1.5 Hz, CH), 132.57 (d, J_{CP} = 3.0 Hz, 2CH), 133.64 (d, J_{CP} = 11.3 Hz, 4CH), 137.44 (d, J_{CP} = 4.5 Hz, C), 147.21 (d, J_{CP} = 21.8 Hz, C), 159.28 (s, C), 165.32 (b, CO₂). HRMS calcd for C₂₆H₂₀N₂O₄P [M+H]⁺: 455.1155; found : 455.1155

Phosphanaphthalene2h

Yellow solid, 184 mg, 41 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 13.6 ppm; ¹H NMR (300 MHz, CDCl₃): δ 3.60 (br s, 3H, OMe), 4.11 (s, 3H, OMe), 6.90-6.98 (m, 1H), 7.18-7.27 (m, 1H), 7.48-7.85 (m, 11H); ¹³C NMR (75 MHz, CDCl₃): δ 44.67 (d, J_{CP} = 120.8 Hz, P=C), 50.51 (s, CH₃, OMe), 57.84 (s, CH₃, OMe), 109.39 (d, J_{CP} = 88.5 Hz, C), 115.82 (s, C), 118.02 (dd, J = 9.8, 23.5 Hz, CH), 120.52 (dd, J = 2.3, 22.5 Hz, CH), 123.56 (dd, J = 7.5, 9.8 Hz, CH), 126.83 (d, J_{CP} = 94.5 Hz, 2C), 128.78 (d, J_{CP} = 13.5 Hz, 4CH), 132.21 (d, J_{CP} = 3.0 Hz, 2CH), 133.07 (d, J_{CP} = 11.3 Hz, 4CH), 144.94 (d, J_{CP} = 21.8 Hz, C), 158.60 (dd, J = 16.5, 243.8 Hz, C), 159.29 (s, C), 165.85 (b, CO₂). One carbon is missing. HRMS: m/z calcd for C₂₅H₂₀FNO₄P [M+H]⁺: 448.1114; found : 448.1113.

Phosphanaphthalene2i

Yellow solid, 225 mg, 49 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 13.4 ppm; ¹H NMR (300 MHz, CDCl₃): δ 3.60 (br s, 3H, OMe), 4.11 (s, 3H, OMe), 6.94 (dt, *J* = 2.1, 8.4 Hz, 1H), 7.14-7.21 (m, 1H), 7.46-7.58 (m, 6H), 7.66-7.80 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ 46.09 (d, *J*_{CP} = 120.0 Hz, P=C), 50.58 (s, CH₃, OMe), 57.95 (s, CH₃, OMe), 106.15 (d, *J*_{CP} = 91.5 Hz, C), 115.53 (d, *J*_{CP} = 5.3 Hz, C), 120.77 (d, *J*_{CP} = 9.0 Hz, CH), 123.06 (d, *J*_{CP} = 12.8 Hz, CH), 127.05 (d, *J*_{CP} = 93.8 Hz, 2C), 128.77 (d, *J*_{CP} = 12.8 Hz, 4CH), 138.20 (d, *J*_{CP} = 3.0 Hz, 2CH), 133.07 (d, *J*_{CP} = 10.5 Hz, 4CH), 134.08 (d, *J*_{CP} = 9.0 Hz, CH), 137.54 (d, *J*_{CP} = 6.8 Hz, C), 139.12 (d, *J*_{CP} = 3.0 Hz, C), 146.88 (d, *J*_{CP} = 23.3 Hz, C), 159.31 (s, C), 165.72 (b, CO₂). HRMS calcd for C₂₅H₂₀ClNO₄P [M+H]⁺: 464.0813; found : 464.0806.

Thienophosphinine2j

Yellow solid, 96 mg, 22 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 10.3 ppm; ¹H NMR (300 MHz, CDCl₃): δ 3.64 (br s, 3H, OMe), 4.12 (s, 3H, OMe), 7.44-7.55 (m, 7H), 7.67-7.74 (m, 5H); ¹³C NMR (75 MHz, CDCl₃): δ 46.20 (d, J_{CP} = 125.3 Hz, P=C), 50.65 (s, CH₃, OMe), 57.87 (s, CH₃, OMe), 99.40 (d, J_{CP} = 102.0 Hz, C), 115.32 (d, J_{CP} = 3.8 Hz, C), 122.93 (d, J_{CP} = 10.5 Hz, CH), 127.23 (d, J_{CP} = 96.0 Hz, 2C), 128.38 (d, J_{CP} = 13.5 Hz, 4CH), 131.87 (d, J_{CP} = 3.0 Hz, 2CH), 132.84 (d, J_{CP} = 11.3 Hz, 4CH), 135.24 (d, J_{CP} = 6.8 Hz, CH), 144.65 (d, J_{CP} = 6.8 Hz, C), 146.71 (d, J_{CP} = 24.0 Hz, C), 159.00 (s, C), 166.49 (b, CO₂). HRMS calcd for C₂₃H₁₉NO₄PS [M+H]⁺: 436.0767; found : 436.0769.

Phosphaquinoline**2k**

Yellow solid, 95 mg, 7 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 24.9 ppm; ¹H NMR (300 MHz, CDCl₃): δ 1.13-1.42 (m, 9H), 1.65-1.77 (m, 9H), 2.04 (m, 2H), 2.97 (d, J_{HP} = 11.4 Hz, 2H), 3.76 (s, 3H, OMe), 4.06 (s, 3H, OMe), 7.25-7.29 (m, 1H), 7.82-7.86 (m, 1H), 8.30 (d, J = 3.9 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 25.82 (d, J_{CP} = 0.8 Hz, 2CH₂), 26.64 (s, 2CH₂), 26.67 (d, J_{CP} = 22.5 Hz, 2CH₂), 26.69 (s, 2CH₂), 27.34 (d, J_{CP} = 2.3 Hz, 2CH₂), 35.25 (d, J_{CP} = 51.0 Hz, 2CH), 43.08 (d, J_{CP} = 104.3 Hz, P=C), 50.48 (s, CH₃, OMe), 57.68 (s, CH₃, OMe), 112.78 (s, C), 125.54 (d, J_{CP} = 2.3 Hz, CH), 126.95 (d, J_{CP} = 6.0 Hz, CH), 133.01 (d, J_{CP} = 105.0 Hz, C), 135.68 (d, J_{CP} = 13.5 Hz, C), 144.19 (d, J_{CP} = 17.3 Hz, CH), 147.75 (d, J_{CP} = 18.8 Hz, C), 159.03 (s, C), 166.89 (s, CO₂). HRMS calcd for C₂₄H₃₂N₂O₄P [M+H]⁺: 443.2094; found : 443.1833. Anal. Calcd for C₂₄H₃₁N₂O₄P: C 65.14, H 7.06, N 6.33; found: C 64.76, H 7.21, N 6.52.

Phosphanaphthalene21

Yellow solid, 435 mg, 32 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 35.0 ppm; ¹H NMR (300 MHz, CDCl₃): δ 1.02 (t, *J* = 7.2 Hz, 6H, 2CH₃), 3.00-3.17 (m, 4H, 2CH₂), 3.65 (s, 3H, OMe), 4.12 (s, 3H, OMe), 7.03-7.09 (m, 1H), 7.44-7.50 (m, 4H), 7.53-7.59 (m, 1H), 7.75-7.84 (m, 3H); ¹³C NMR (75 MHz, CDCl₃): δ 13.30 (d, *J*_{CP} = 4.5 Hz, 2CH₃), 39.99 (d, *J*_{CP} = 3.8 Hz, 2CH₂), 50.31 (s, CH₃, OMe), 52.69 (d, *J*_{CP} = 123.8 Hz, P=C), 57.76 (s, CH₃, OMe), 111.47 (d, *J*_{CP} = 105.8 Hz, C), 116.16 (d, *J*_{CP} = 6.8 Hz, C), 121.39 (d, *J*_{CP} = 9.0 Hz, CH), 122.52 (d, *J*_{CP} = 12.0 Hz, CH), 127.62 (d, *J*_{CP} = 10.5 Hz, C), 128.54 (d, *J*_{CP} = 13.5 Hz, 2CH), 131.20 (d, *J*_{CP} = 6.8 Hz, CH), 131.67 (d, *J*_{CP} = 4.5 Hz, CH), 131.68 (s, CH), 132.93 (d, *J*_{CP} = 10.5 Hz, 2CH), 135.74 (d, *J*_{CP} = 7.5 Hz, C), 146.11 (d, *J*_{CP} = 24.0 Hz, C), 159.31 (s, C), 166.36 (d, *J*_{CP} = 6.8 Hz, CO₂). HRMS calcd for C₂₃H₂₆N₂O₄P [M+H]⁺: 425.1625; found : 425.1621.

Phosphinine**2m**

Yellow solid, 860 mg, 31 % yield. ³¹P NMR (121 MHz, CDCl₃): δ 14.8 ppm; ¹H NMR (300 MHz, CDCl₃): δ 1.67-1.74 (m, CH2, 4H), 1.94-1.96 (m, CH2, 2H), 2.77-2.79 (m, CH2, 2H), 3.55 (s, 3H, OMe), 4.04 (s, 3H, OMe), 7.45-7.54 (m, 6H), 7.64-7.72 (m, 4H); ¹³C NMR (75 MHz, CDCl₃): δ 21.73 (s, CH₂), 22.83 (d, J_{CP} = 9.0 Hz, CH₂), 24.72 (d, J_{CP} = 9.0 Hz, CH₂), 27.06 (d, J_{CP} = 10.5 Hz, CH₂), 49.21 (d, J_{CP} = 115.5 Hz, P=C), 50.36 (s, CH₃, OMe), 57.70 (s, CH₃, OMe), 91.89 (d, J_{CP} = 86.3 Hz, C), 117.60 (d, J_{CP} = 11.3 Hz, C), 125.62 (d, J_{CP} = 92.3 Hz, 2C), 128.29 (d, J_{CP} = 12.8 Hz, 4CH), 131.29 (d, J_{CP} = 3.0 Hz, 2CH), 133.07 (d, J_{CP} = 10.5 Hz, 4CH), 145.77 (d, J_{CP} = 4.5 Hz, C), 147.19 (d, J_{CP} = 23.3 Hz, C), 158.18 (s, C), 165.97 (b, CO₂). HRMS calcd for C₂₅H₂₅NO₄P [M+H]⁺: 434.1516; found : 434.1478. Anal. Calcd for C₂₅H₂₄NO₄P: C 69.28, H 5.58, N 3.23; found: C 68.93, H 5.64, N 2.96.

Phosphanaphthalene2n

Yellow solid, 131 mg, 33 % yield). ³¹P NMR (121 MHz, CDCl₃): δ 9.5 ppm; ¹H NMR (300 MHz, CDCl₃): δ 2.48 (s, 3H, Me), 2.55 (s, 3H, Me), 7.04 (t, *J* = 7.2 Hz, 1H), 7.26-7.32 (m, 1H), 7.44-7.52 (m, 7H), 7.72-7.79 (m, 4H), 7.93(dd, *J* = 4.2, 7.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 14.11 (s, CH₃), 28.35 (d, *J*_{CP} = 9.0 Hz, OMe), 64.32 (d, *J*_{CP} = 110.3 Hz, P=C), 110.37 (d, *J*_{CP} = 84.8 Hz, C), 118.22 (d, *J*_{CP} = 5.3 Hz, C), 121.67 (d, *J*_{CP} = 8.3 Hz, CH), 123.73 (d, *J*_{CP} = 12.8 Hz, CH), 126.56 (d, *J*_{CP} = 95.3 Hz, 2C), 128.57 (d, *J*_{CP} = 13.5 Hz, 4CH), 131.77 (d, *J*_{CP} = 3.0 Hz, 2CH), 132.27 (d, *J*_{CP} = 1.5 Hz, CH), 133.12 (d, *J*_{CP} = 11.3 Hz, 4CH), 133.20 (d, *J*_{CP} = 8.3 Hz, CH), 136.46 (d, *J*_{CP} = 6.0 Hz, 200 Hz, 200 Hz) (d, *J*_{CP} = 1.5 Hz, CH), 132.12 (d, *J*_{CP} = 1.5 Hz, 4CH), 133.12 (d, *J*_{CP} = 1.5 Hz, 4CH), 133.20 (d, *J*_{CP} = 8.3 Hz, CH), 136.46 (d, *J*_{CP} = 6.0 Hz), 136.46 (d, *J*_{CP} = 6.0 Hz)

C), 148.96 (d, $J_{CP} = 25.5 \text{ Hz}$, C), 155.87 (s, C), 188.56 (s, CO). HRMS calcd for $C_{25}H_{21}NO_2P$ [M+H]⁺: 398.1304; found : 398.1304. Anal. Calcd for $C_{25}H_{20}NO_2P$: C 75.56, H 5.07, N 3.52; found: C 75.92, H 5.12, N 3.39.

Tervalentphosphanaphthalene6 and its cycloadduct7

The compound **2d** (500 mg, 1.28 mmol) was heated at 260 °C in anhydrous toluene for 2h. After the disappearance of **2d** (monitored by ³¹P NMR), 2,3-dimethyl-1,3-butadiene (260 µl, 2.2 mmol) was added and the mixture was stirred for another 1 h at room temperature . Then S₈ was added, the reaction mixture was stirred for another 2 h at 60 °C. After evaporation of the solvent, the crude mixture was chromatographed on silica gel with petroleum ether/ethyl acetate (4:1) as eluent to give **7** (Yellow solid, 120 mg, 24 % yield). ³¹P NMR (121 MHz, CDCl₃): δ 34.6 ppm; ¹H NMR (300 MHz, CDCl₃): δ 1.64 (s, CH₃), 1.77 (s, CH₃), 2.54 (t, *J*= 16.5 Hz, 1H), 2.90-3.05 (m, 2H), 3.28-3.37 (m, 1H), 3.56(s, 3H), 3.62(s, 3H), 7.47-7.51 (m, 1H), 7.58-7.60 (m, 2H), 8.16-8.23 (m, 1H); ¹³C NMR (75 MHz, CDCl₃): δ 20.47 (d, *J*_{CP} = 1.5 Hz, Me), 21.19 (d, *J*_{CP} = 11.3 Hz, Me), 31.27 (d, *J*_{CP} = 3.8 Hz, CH₂), 31.86 (s, Me), 39.2 (d, *J*_{CP} = 53.3 Hz, CH₂), 47.2 (d, *J*_{CP} = 44.3 Hz, C), 53.43 (s, OMe), 120.68 (d, *J*_{CP} = 6.8 Hz, C), 121.90 (d, *J*_{CP} = 7.5 Hz, CH), 124.00 (d, *J*_{CP} = 9.8 Hz, C), 125.93 (d, *J*_{CP} = 10.5 Hz, C), 126.70 (d, *J*_{CP} = 75.8 Hz, C), 126.97 (d, *J*_{CP} = 3.8 Hz, C), 128.81 (d, *J*_{CP} = 13.5 Hz, CH), 132.59 (d, *J*_{CP} = 3.0 Hz, CH), 133.34 (s, C), 133.90 (d, *J*_{CP} = 10.5 Hz, CH), 155.12 (s, C),166.86 (d, *J*_{CP} = 5.3 Hz, C). HRMS calcd for C₁₉H₂₁NO₄PS [M+H]⁺: 390.0923; found : 390.0932. Anal. Calcd for C₂₅H₂₀NO₄P: C 69.93, H 4.69, N 3.26; found: C 69.779, H 4.625, N 3.149. Anal. Calcd for C₁₉H₂₀NO₄PS: C 58.60, H 5.18, N 3.60; found: C 58.46, H 5.31, N 3.39.

Supplementary information available:

X-ray data for **2a**: CCDC no 1450169, **2c**: CCDC no 1471158 and **7**: CCDC no 1511014. UV-vis absorption and fluorescence spectra of **2a-2e** and NMR spectra of all compounds.

Acknowledgements

This work was supported by the National Natural Science Foundation (21672193, 21272218), Specialized Research Fund for the Doctoral Program of Higher Education (20134101110004) and Zhengzhou University of China.

References

1 (a) X. He, J.-B. Lin, W. H. Kan, S. Trudel and T. Baumgartner, *Org. Lett.*, 2014, **16**, 1366-1369; (b) X. He, J.-B. Lin, W. H. Kan, P. Dong, S. Trudel and T. Baumgartner, *Adv. Funct. Mater.*, 2014, **24**, 897-906; (c) Y. Ren, W. H. Kan, M. A. Henderson, P. G. Bomben, C. P. Berlinguette, V. Thangadurai and T. Baumgartner, *J. Am. Chem. Soc.*, 2011, **133**, 17014-17026; (d) L.-J. Qian, J.-G. Zhi, B. Tong, J.-B. Shi, F. Yang and Y.-P. Dong, *Polymer*, 2009, **50**, 4813-4820; (e) M. Yang, L. Chen, C.-S. Zhao, H.-Z. Huang, J.-S. Wang and Y.-Z. Wang, *Polym. Adv. Technol.*, 2009, **20**, 378-383; (f) E. Duran, D. Velasco, F. Lopez-Calahorra and H. Finkelmann, *Mol. Cryst. Liq. Cryst.*, 2002, **381**, 43-57.

2C. Romero-Nieto, M. Marcos, S. Merino, J. Barbera, T. Baumgartner and J. Rodriguez-Lopez, *Adv. Funct. Mater.*, 2011, **21**, 4088-4099.

3 Y. Ren, F. Biegger and T. Baumgartner, J. Phys. Chem. C,2013, 117, 4748-4758.

4 P. Gong, K. Ye, J. Sun, P. Chen, P. Xue, H. Yang and R. Lu, RSC Adv., 2015, 5, 94990-94996.

5 (a) T. Umeyama and H. Imahori, *J. Mater. Chem. A*, 2014, **2**, 11545-11560; (b) Y. Dienes, M. Eggenstein, T. Karpati, T. C. Sutherland, L. Nyulaszi and T. Baumgartner, *Chem. Eur. J.*, 2008, **14**, 9878-9889.

6 (a) D. Joly, P.-A. Bouit and M. Hissler, *J. Mater. Chem. C*, 2016, **4**, 3686-3698; (b) J. Crassous and R. Réau, *Dalton Trans.*,2008, 6865-6876; (c) H. C. Su, O. Fadhel, C. J. Yang, T. Y. Cho, C. Fave, M. Hissler, C. C. Wu and R. Réau, *J. Am. Chem. Soc.*,2006, **128**, 983-995; (d) M. G. Hobbs and T. Baumgartner, *Eur. J. Inorg. Chem.*, 2007, 3611-3628; (e) M. Hissler, P. W. Dyer and R. Réau, *Coord. Chem. Rev.*, 2003, **244**, 1-44.

7 Y. Matano, Y. Hayashi, H. Nakano and H. Imahori, Heteroat. Chem., 2014, 25, 533-547.

8 E. D. Matveeva, D. S. Vinogradov, T. A. Podrugina, T. D. Nekipelova, A. V. Mironov, R. Gleiter and N. S. Zefirov, *Eur. J. Org. Chem.*, 2015, 7324-7333.

9 C. Romero-Nieto, A. López-Andarias, C. Egler-Lucas, F. Gebert, J.-P. Neus and O. Pilgram, Angew. Chem. Int. Ed., 2015, 54, 15872-15875.

10 X. Y. Lu, C. M. Zhang and Z. R. Xu, Acc. Chem. Res., 2001, 34, 535-544.

11 (a) Y. Nishimura, Y. Kawamura, Y. Watanabe and M. Hayashi, *J. Org. Chem.*,2010, **75**, 3875-3877; (b) J. Li, Y. Li, I. Purushothaman, S. De, B. Li, H. Zhu, P. Parameswaran, Q. Ye and W. Liu, *Organometallics*, 2015, **34**, 4209-4217. 12 J. J. Daly, *J. Chem. Soc. A*,1970, 1832-1836.

R=alkyl, aryl, amino 12 examples