1-R-2-[(1*E*,3*E*)-4-Aminobuta-1,3-dien-1-yl]-1*H*-benzimidazoles. Synthesis and some transformations

A. V. Varlamov,^a A. I. Komarova,^a A. N. Levov,^a E. V. Savitkina,^a A. P. Krapivko,^{a†} V. N. Khrustalev,^b E. A. Sorokina,^a L. N. Kulikova,^a E. V. Nikitina,^a V. P. Zaytsev,^a and F. I. Zubkov^{a*}

^aPeoples' Friendship University of Russia, 6 ul. Miklukho-Maklaya, 117198 Moscow, Russian Federation. Fax: +7 (495) 955 0779. E-mail: fzubkov@sci.pfu.edu.ru ^bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 119991 Moscow, Russian Federation. E-mail: vkh@xray.ineos.ac.ru

7-Nitropyridobenzimidazolium salts are cleaved with secondary amines to form 2-[(E,E)-4-aminobuta-1,3-dienyl]-1H-benzimidazoles. The latter react with dimethyl acetylene-dicarboxylate to yield 4a-[(E,Z,E)-6-amino-4,5-dimethoxycarbonylhexa-1,3,5-trien-1-yl]-1,2,3,4-tetra(methoxycarbonyl)-4a,5-dihydropyrido[1,2-a]benzimidazoles.

Key words: 4-aminobuta-1,3-diene, cleavage of pyridobenzimidazolium salts, 1*H*-benzimidazole, pyrido[1,2-*a*]benzimidazole.

Reactions of 2-aryloxazolo[3,2-a]pyridinium salts with nucleophilic reagents are studied and described in the literature in detail.¹⁻³ It was found that these salts upon the action of secondary amines undergo cleavage of the pyridine ring to give (1E, 3E)-1-amino-4-(oxazolyl-2)buta-1,3-dienes. 1-Methyl-2-p-nitrophenylimidazo-[3,2-a]pyridinium perchlorate undergoes analogous transformation to 1E, 3E-aminobutadienes in the reaction with piperidine in boiling acetonitrile. Its 5-methyl-substituted analog under these conditions undergoes demethylation to imidazo[3,2-a]pyridine.⁴ Earlier,⁵ we have shown that 7-nitropyrido[1,2-a]benzimidazoles with substituted and unsubstituted pyridine ring upon the action of dimethyl acetylenedicarboxylate (DMAD) in excess amount recyclize to 1,2,3,4-tetra(methoxycarbonyl)-8-nitropyrido[1,2-a]benzimidazoles. There is no literature information on the reactions of imidazopyridinium salts fused by the imidazole ring with an electron-withdrawing aromatic fragment.

In the present work, we have studied reactions of 7-nitropyrido[1,2-a]benzimidazolium 1 and 3-methyldiphenylsilyl-7-nitropyrido[1,2-a]benzimidazolium salts 2 with secondary amines. Tertiary salts 3-7 were obtained by the reaction of pyridobenzimidazole 1 (see Ref. 6) with methyl iodide, benzyl chloride in the presence of KI, dibromoethane, allyl bromide, and ethyl 4-bromobutyrate in acetonitrile or DMF, whereas salts 8 and 9, upon the action of methyl iodide or phenacyl bromide on the silyl

[†] Deceased.

substituted pyridobenzimidazole **2** (see Ref. 7) in boiling toluene and ethyl acetate (Scheme 1).

The IR spectrum of salt **9** with phenacyl substituent on the nitrogen atom, in addition to the band for CO at 1696 cm^{-1} , exhibits a broad band for the bound hydroxyl

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 992-999, May, 2010.

1066-5285/10/5905-1014 © 2010 Springer Science+Business Media, Inc.

Scheme 2

R⁻ = Me (25), CH₂COPh (26)

10

11

12

13

14

at 3430 cm⁻¹, which can indicate the presence of an enol form N-CH₂COPh \implies N-CH=C(OH)Ph. Tertiary salts 3-9 are cleaved with secondary amines, viz., dimethyl-, diethyl-, and difurfurylamines, morpholine, piperidine, and N-benzylpiperazine, in boiling acetonitrile to the corresponding 1-R'-2-[(E,E)-4-aminobuta-1,3-dien-1-yl]-6-nitro-1*H*-benzimidazoles **10–26**, the yields of which were 10-75% (Scheme 2).

Cleavage of 3-methyldiphenylsilyl-7-nitropyrido-[1,2-a] benzimidazolium iodide (8) with dimethylamine in boiling acetonitrile is accompanied by elimination of the silicon-containing substituent and leads to diene 10 (R' = R'' = Me). The reaction of dimethylamine with salts 8 and 9 at room temperature allows one to obtain the target 2'-methyldiphenylsilyl-substituted butadienes 25 and 26. Compounds 10-26 are red crystals of various intensities.

It is interesting that other nucleophiles used in this work (sodium cyanide, azide, and phenylacetylide) do not cleave salts 3-9.

The E,E-configuration of the diene fragment in compounds 10-24 is inferred from the spin-spin coupling constant values $J_{H(1'),H(2')} = 14.3 - 14.7$, $J_{H(2'),H(3')} = 11.3 - 12.1$, and $J_{H(3'),H(4')} = 12.5 - 12.8$ Hz in their ¹H NMR spectra. These data are in good agreement with those described for 1-amino-4-(oxazol-2-yl)dienes.^{8,9} The mass spectra of butadienylamines synthesized exhibit peaks of molecular ions of low intensities corresponding to their molecular formulas. A principal direction for the fragmentation of molecular ions [M]^{+•} of compounds 10–24 consists in the elimination of dialkylamine radical NR"2. The intensities of ions $[M - NR''_2]^+$ are 80–100%. These ions further eliminate radicals NO_2^{\bullet} and $R^{\prime \bullet}$ forming fragment ions $[M - NR''_2 - NO_2]^+$ and $[M - NR''_2 - R']^+$. The latter cation apparently has the structure of 8-nitropyrido [1,2-a] benzimidazole with m/z 213 (Table 1).

The spatial structure of compound 17 was studied by X-ray diffraction (Fig. 1).

The X-ray diffraction study confirms unambiguous *E*,*E*-configuration of the diene fragment and reveals virtually planar structure of molecule 17 (except carbon atoms C(9) and C(10) of the allyl substituent on the nitrogen atom N(1)), the deviation of atoms from the meansquare plane of the molecule, excluding carbon atoms

Fig. 1. Molecular structure of compound 17 in representation of atoms by 40% probability ellipsoids of anisotropic displacments.

Com-	Yield (%)	M.p./°C (AcOEt)	Found (%)			Molecular	MS, m/z (I_{rel} (%))				
pound			Ca C	lculated H		formula	[M] ⁺	$[M - NR''_2]^+$	$[M - NR''_2 - NO_2]^+$	$[M - NR''_2 - NR'_2]^+$	
3	66	232—234	40.00	<u>2.75</u>	<u>11.50</u>	C ₁₂ H ₁₀ IN ₃ O ₂		_			
4	59	218-220	40.58 <u>50.05</u>	2.84 <u>3.10</u>	11.83 <u>9.51</u>	C ₁₈ H ₁₄ IN ₃ O ₂	_	_	_	_	
5	62	224—225	50.13 <u>39.10</u>	3.27 <u>2.56</u>	9.74 <u>10.60</u>	$C_{13}H_{11}Br_2N_3O_2$	_	_	_	_	
6	83	234—236	38.93 <u>50.00</u>	2.76 <u>3.67</u>	10.48 <u>12.51</u>	$C_{14}H_{12}BrN_3O_2$	_	_	_	_	
7	60	209-211	50.32 <u>49.76</u>	3.62 <u>4.37</u>	12.57 <u>10.11</u>	C ₁₇ H ₁₈ BrN ₃ O ₄	_	_	_	_	
8	75	233—234	50.01 <u>54.20</u>	4.44 <u>4.40</u>	10.29 <u>7.55</u>	$C_{25}H_{22}IN_3O_2Si$	_	_	_	_	
9	75	230-231	54.45 <u>63.20</u>	4.02 <u>4.40</u>	7.62 <u>7.00</u>	C ₃₂ H ₂₆ BrN ₃ O ₃ Si	_	_	_	_	
10	79	212—214	63.16 <u>61.52</u>	4.31 <u>5.63</u>	6.90 <u>20.11</u>	$C_{14}H_{16}N_4O_2$	272 (10)	228 (99)	182 (67)	213 (25)	
11	60	173—175	61.75 <u>63.52</u>	5.92 <u>6.33</u>	20.58 <u>18.52</u>	$C_{16}H_{20}N_4O_2$	300 (90)	228 (100)	182 (70)	213 (2)	
12	57	214—216	63.98 61.12	6.71 <u>5.33</u> 5.77	18.65 <u>17.52</u> 17.82	$C_{16}H_{18}N_4O_3$	314 (5)	228 (100)	182 (52)	213 (15)	
13	5	110-112	<u>64.89</u> 65.34	<u>4.35</u> 4 98	<u>17.82</u> <u>13.61</u> 13.85	$C_{22}H_{20}N_4O_4$	404 (1)	228 (40)	182 (5)	213 (48)	
14	47	202—204	<u>65.12</u> 65.37	<u>6.35</u> 6.45	<u>17.63</u> 17.94	$C_{17}H_{20}N_4O_2$	312 (4)	228 (100)	182 (51)	_	
15	60	212—214	<u>68.45</u> 68.47	<u>6.02</u> 6.25	<u>17.12</u> 17.36	$C_{23}H_{25}N_5O_2$	403 (1)	228 (20)	182 (38)	213 (3)	
16	75	197—198	<u>68.45</u> 68.95	<u>5.63</u> 5.75	<u>15.69</u> 16.08	$C_{20}H_{20}N_4O_2$	248 (15)	304 (20)	258 (20)	213 (5)	
17	51	129—131	<u>64.35</u> 64.41	<u>6.01</u> 6.08	<u>18.69</u> 18.78	$C_{16}H_{18}N_4O_2$	298 (15)	254 (100)	208 (24)	213 (15)	
18	60	179—181	<u>63.35</u> 63.52	<u>5.41</u> 5.92	<u>16.09</u> 16.46	$C_{18}H_{20}N_4O_3$	340 (3)	254 (94)	208 (24)	213 (8)	
19	65	132—133	<u>67.34</u> 67.44	<u>6.21</u> 6.55	<u>16.09</u> 16.56	$C_{19}H_{22}N_4O_2$	338 (8)	254 (98)	208 (26)	213 (7)	
20	10	107—109	<u>69.24</u> 69.91	<u>6.98</u> 6.34	<u>16.00</u> 16.31	$C_{25}H_{27}N_5O_2$	429 (1)	254 (100)	208 (21)	213 (2)	
21	66	140—142	<u>66.03</u> 66.97	<u>5.13</u> 5.15	<u>12.50</u> 13.02	$C_{24}H_{22}N_4O_4$	430 (2)	254 (89)	208 (0)	213 (22)	
22	10	183 (decomp.)	<u>48.95</u> 49.45	<u>4.23</u> 4.69	<u>15.12</u> 15.38	$\mathrm{C}_{15}\mathrm{H}_{17}\mathrm{BrN}_4\mathrm{O}_2$	364 (4)*	320 (87)	274 (26)	213 (9)	
23	55	172—173	<u>50.51</u> 50.25	<u>4.23</u> 4.70	<u>13.12</u> 13.76	$\mathrm{C}_{17}\mathrm{H}_{19}\mathrm{BrN}_{4}\mathrm{O}_{3}$	406 (5)*	320 (98)	274 (28)	213 (89)	
24	57	151—153	<u>60.90</u> 60.86	<u>6.23</u> 6.30	<u>14.20</u> 13.52	C ₂₁ H ₂₆ N ₄ O ₅	414 (30)	328 (99)	252 (30)	213 (73)	
25 26	59 53	140 (decomp.)	<u>69.30</u> 69.20 71.20	<u>6.00</u> 6.02 5.69	<u>12.02</u> 11.96 9.72	$C_{27}H_{28}N_4O_2Si$	468 572	_	_	_	
20	55	152 (decomp.)	71.30	<u>5.69</u> 5.63	<u>9.72</u> 9.78	C ₃₄ Π ₃₂ Ν ₄ O ₃ SI	512	_	_	_	

Table 1. The yields, physico-chemical and spectral characteristics of 7-nitropyrido[1,2-a]benzimidazolium salts 3-9 and 1-R'-2-[(E,E)-4-aminobuta-1,3-dien-1-yl]-1H-benzimidazoles 10-26

* For ⁷⁹Br.

1017

C(9) and C(10), does not exceed 0.06 Å. The planar structure of the molecule is determined by the elongated system of conjugate bonds. The *S*-*cis*-conformation of the fragment N(3)=C(2)-C(11)=C(12), as well as the torsional angle N(1)-C(8)-C(9)-C(10) (131.5(2)°) value are determined by steric effects of substituents. Based on this, the general structure of compounds **10**-**26** can be represented as a planar conjugated system with partial redistribution of the charge $A^{(\delta-)}-\pi$ -D^(\delta+) (A is an acceptor (NO₂), D is a donor (NMe₂)), which is the one to determine their bright color.

6-Nitrobenzimidazole **12** was reduced to amino derivative **27** with hydrazine in the presence of Raney Ni (Scheme 3).

Morpholino-substituted butadiene **12** upon the action of nitrous acid is transformed to aldehyde **28** in moderate yield. The structure of the latter is in good agreement with the IR and ¹H NMR spectroscopic and mass spectrometric data. The mass spectrum of compound **28** exhibits peak of the molecular ion maximum in intensity with m/z 245 (100%) corresponding to its molecular formula. The IR spectrum contains a band of stretching vibrations of the carbonyl group at 1680 cm⁻¹. The signal for the aldehyde proton is found at δ 9.80 in the ¹H NMR spectrum.

Benzimidazoles **10**—**26** contain two nucleophilic centers for the reactions with activated alkynes: the pyridinetype nitrogen atom of the imidazole ring and the enamine fragment. We studied reactions of azadienes **10** and **16** with DMAD in excess amount in dichloromethane. It turned out that both nucleophilic fragments are involved into the reaction to form 5-R-1,2,3,4-tetra(methoxycarbonyl)-4a-[(1*E*,3*Z*,5*E*)-4,5-di(methoxycarbonyl)-6-dimethylaminohexa-1,3,5-trien-1-yl]-7-nitro-4a,5dihydropyrido[1,2-*a*]benzimidazoles **29** and **30** in low yield (Scheme 4). No other individual products were isolated from the reaction mixture.

i. DMAD, CH₂Cl₂

R' = Me (29, 17%), Bn (30, 18%)

General outline of the process is given in Scheme 5 using the transformation of diene **10** to polycycle **29** as an example. Successive nucleophilic addition of two DMAD molecules to the pyridine nitrogen atom of the imidazole ring and then to dimethyl maleate fragment formed leads to the tetra(methoxycarbonyl)-substituted dihydropyridine ring closure to yield intermediate **A**.¹⁰ The aminodiene fragment is transformed to the aminotriene one, apparently, through the intermediate step of [2+2] cycloaddition. Formation of [2+2] cycloaddition products of alkynes with 1-aminobuta-1,3-dienes is reported in works.^{11,12}

Scheme 5

i. DMAD

The structure of dihydrobenzimidazoles **29** and **30** could not be determined based only on the NMR data. Their ¹H NMR spectra exhibit six signals for the methoxy-carbonyl groups in the region δ 3.28–4.07, a singlet signal at $\delta \sim 7.49$ for the terminal proton of the hexatrienyl fragment, and singlets for the protons of the dimethylamino group at δ 2.87 or δ 2.86, respectively.

The structure of compound **30** (R' = Bn) was unambiguously determined by X-ray diffraction (Fig. 2).

The molecule **30** consists of three substituted fused rings, *viz.*, benzene, dihydroimidazole, and dihydropyridine, and has an asymmetric carbon atom C(4a). The presence of bulky substituents on the carbon atom C(4a) lead to distortion of the planar structure of the nitrobenzimidazole fragment: the atom C(4a) deviates by 0.27(2) Å from the mean-square plane drawn through the rest atoms of this fragment. The dihydropyridine ring adopts the slightly distorted sofa conformation with deviation of the atom C(4a) from the mean-square plane drawn through the rest atoms of this fragment by 0.58(2) Å.

Fig. 2. Molecular structure of compound **30** in representation of atoms by 40% probability ellipsoids anisotropic displacments (H atoms are not shown).

In addition to this, steric effects in the molecule result in the pyramidal configuration of the nitrogen atom N(5)(the sum of bond angles at the atom N(5) is 348.2°), the rest of the nitrogen atoms have planar configuration. Due to the presence of adjacent methoxycarbonyl groups, the triene substituent at position 4a is nonplanar with the trans, gauche-arrangement of the double bonds (the torsional angle C(20)-C(21)-C(22)-C(23) is $-42.8(8)^{\circ}$), the C=C bonds have E,Z,E-configuration, respectively. Due to the steric reasons, only one of four methoxycarbonyl groups on the carbon atom C(2) is placed in the plane of the dihydropyridine ring (the torsional angle C(1)-C(2)-C(12)-O(3) is $-0.1(7)^{\circ}$). The rest of the MeO₂C substituents are significantly turned with respect to this plane (the torsional angles C(2)-C(1)-C(10)-O(1), C(2)-C(3)-C(14)-O(5) and C(3)-C(4)-C(16)-O(7)are 109.1(5), -120.3(5) and -129.3(5)°, respectively). The angle between the planes of nitrobenzimidazole and phenyl fragments is $74.9(2)^{\circ}$.

In conclusion, we found that 7-nitropyrido[1,2-a]benzimidazolium salts upon the action of secondary amines undergo cleavage of the pyridine fragment to be transformed to (E,E)-4-amino-1-(6-nitrobenzimidazol-2-yl)buta-1,3-dienes. The latter by the reaction with excess of DMAD are transformed to hexa-1,3,5-trienylsubstituted pyrido[1,2-a]benzimidazoles through the dipolar 1,3- and [2+2] cycloadditions.

Experimental

Reagents from Acros Organics were used as purchased. IR spectra of compounds **9** and **28** were recorded on a Infralum FT-801 Fourier-spectrometer in KBr pellets. ¹H NMR spectra (δ , *J*/Hz) were recorded on a Bruker WH-400 spectrometer (400.13 MHz for ¹H and 100.6 MHz for ¹³C) in CDCl₃ at 27 °C. Residual signals of the solvent were used as a reference: δ 7.26 (in the¹H NMR spectra) and δ 77.4 (in the ¹³C NMR spectra). Mass spectra (EI, 70 eV) were recorded on a HP MS 5988 mass spectrometer or Finnigan MAT-95-XL GLC-MS spectrometer with direct injection of the sample in the source of ions. Silufol UV-254 plates were used for thin-layer chromatography (visualization with iodine vapors), neutral activated Al₂O₃ (Brockmann II) or Merck silica gel (230S400 mesh) were used for column chromatography.

Melting points, yields, parameters of mass spectra, and elemental analysis data for all the compounds synthesized are given in Table 1.

X-ray diffraction study. Compound **17**. Dark red crystals $(C_{16}H_{18}N_4O_2, M = 298.34)$, triclinic, space group $P\overline{1}$, at T = 293 K a = 8.4565(17) Å, b = 9.3177(19) Å, c = 11.531(2) Å, $\alpha = 68.83(3)^\circ$, $\beta = 85.42(3)^\circ$, $\gamma = 65.58(3)^\circ$, V = 769.0(3) Å³, Z = 2, $d_{calc} = 1.289$ g cm⁻³, F(000) = 316, $\mu = 0.088$ mm⁻¹.

Compound **30**. Orange crystals ($C_{38}H_{38}N_4O_{14}$, M = 774.72), triclinic, space group $P1^-$; at T = 293 K a = 8.9655(18) Å, b = 13.950(3) Å, c = 16.451(3) Å, $\alpha = 83.41(3)^\circ$, $\beta = 79.87(3)^\circ$, $\gamma = 84.06(3)^\circ$, V = 2004.7(7) Å³, Z = 2, $d_{calc} = 1.283$ g cm⁻³, F(000) = 812, $\mu = 0.099$ mm⁻¹.

Parameters of unit cells and intensities of 3973 (17) and 7474 (30) reflections were measured on a Siemens P3/PC automatic four-circle diffractometer (Mo-Ka irradiation, a graphite monochromator, $\theta/2\theta$ -scanning, $\theta_{max} = 28^{\circ}$ (17) and 25° (30)). Structures were solved by the direct method and refined by the least-squares full-matrix method in anisotropic approximation for nonhydrogen atoms. Hydrogen atoms, whose positions were calculated geometrically, were included into the refinement in isotropic approximation with the fixed positional ("riding" model) and thermal parameters. The final divergence factors $R_1 = 0.0543$ for 2344 independent reflections with $I > 2\sigma(I)$ and $wR_2 = 0.1585$ for all the 3724 independent reflections (17) and $R_1 = 0.0827$ for 3095 independent reflections with $I > 2\sigma(I)$ and $wR_2 = 0.1934$ for all the 6980 independent reflections (30). All the calculations were performed using the SHELXTL program package.¹³ Tables of atom coordinates, bond distances, bond and torsional angles, and parameters of anisotropic displacements for compounds 17 and 30 were deposited with the Cambridge Structural Database (CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk).

5-R-7-Nitropyrido[2,1-a]benzimidazolium halides (3-9) (general procedure). Pyridobenzimidazole 1 (1 g, 4.7 mmol) was refluxed with methyl iodide, benzyl chloride (in the presence of equimolar amount of anhydrous KI), dibromoethane, allyl bromide, ethyl 4-bromobutyrate (10-20 mmol) in acetonitrile (50 mL) or heated in DMF (30 mL) at 100 °C; silyl-substituted pyridobenzimidazole 2 (1 g, 2.44 mmol) was refluxed with equimolar amount of methyl iodide or phenacyl bromide in toluene and ethyl acetate, respectively. The reaction course was monitored by TLC ($\sim 6-7$ h is required for the reaction to reach completion). Then the reaction mixture was cooled, a precipitate formed was filtered off and recrystallized from ethanol. When DMF was used as the solvent, water (20 mL) was added to the reaction mixture, a precipitate was filtered off, dried in air, and recrystallized from ethyl acetate. Yellow crystals of the following compounds were obtained: 5-methyl- (3), 5-benzyl-7-nitropyrido[1,2-a]benzimidazolium (4) iodides, 5-bromoethyl- (5), 5-allyl- (6), and 5-(3-ethoxycarbonylpropyl)-7-nitropyrido-[1,2-a]benzimidazolium (7) bromides, 5-methyl-3-methyldiphenylsilyl-7-nitropyrido[1,2-*a*]benzimidazolium iodide (8), 3-methyldiphenylsilyl-5-phenacylpyrido[1,2-a]benzimidazolium bromide (9). The yields, elemental analysis data, and physicochemical constants for quaternary salts **3–9** are given in Table 1.

1-R-2-[(1E.3E)-4-Aminobuta-1.3-dien-1-vl]-1H-benzimidazoles (10-24) (general procedure). A mixture of salts 3-8 (1.4 mmol) and the corresponding secondary amine (4.2 mmol) was refluxed in acetonitrile (20 mL) for 0.5-24 h (TLC monitoring). The mixture was cooled, acetonitrile was evaporated at reduced pressure. Water (40 mL) was added to the residue and organic products were extracted with chloroform (3×50 mL). The extract was dried with magnesium sulfate. Chloroform was evaporated and the residue was subjected to chromatography either on SiO₂ (eluent: AcOEt-hexane, 1:1), or on Al₂O₃ (eluent: AcOEt-hexane, 1:3-1:1). Aminodienes 22-24 were eluted with ethyl acetate. The dienes were recrystallized from AcOEt-hexane solvent mixture. The following products were obtained: 2-[(1E,3E)-4-N,N-dimethylaminobuta-1,3-dien-1-yl]-1-methyl- (10), 2-[(1E,3E)-4-N,N-diethylaminobuta-1,3-dien-1-yl]-1-methyl- (11), 1-methyl-2-[(1E,3E)-4-morpholino- (12), 2-[(1E,3E)-4-N,N-difurfurylaminobuta-1,3-dien-

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Com-	δ (<i>J</i> /Hz)								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	pound	H(4)	H(5) H(7)	NR´	H(1')	H(2´)	H(3')	H(4´)	NR″2	
$ \begin{array}{c} 10 & 7.54 \\ (J=9.2) & 1.00 & $		(d)	(m)		(d)	(dd)	(dd)	(d)	2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			(111)							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	7.54	8.00-8.19	3.71 (s, 2 Me)	5.98	7.71	5.27	6.71	2.90 (s, Me)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(J = 9.2)			(J = 14.3)	(J = 14.3, I = 11.6)	(J = 12.5, I = 11.6)	(J = 12.5)		
$ \begin{array}{c} (J=9.5) \\ (J=9.5) \\ (J=14.4) \\ (J=14$	11	7 53	8 08-8 13	372 (s. 2 Me)	5.95	J = 11.0) 7 71	J = 11.0) 5 33	6 72	$1 \ 18 \ (t \ I = 7 \ 2)$	
$ \begin{array}{cccc} (2, 10) & (2, 10) & (2, 114) & (2, -114) & (3, 10) & (10, 10) & (10, 10) \\ (1 = 8.5) & (2 = 114) & (2 = 116) & (2 = 116) & (2 = 117) & (2 = 116) & (2 = 117) & (2 = 116) & (2 =$		(J = 9.5)	0.00 0.15	5.72 (3, 2 MC)	(J = 14.4)	(J = 14.4)	(J = 12.6.)	(J = 12.6)	3.21 (q, J = 7.2),	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(J = 11.4)	J = 11.4)	(****		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	7.56	8.12-8.16	3.75 (s, 2 Me)	5.98	7.72	5.47	6.60	3.18 (CH ₂ O);	
$ \begin{array}{c} J = 11.5 \\ J = 11.6 \\ J = 12.6 \\ J = 12.8 \\ J = 11.6 \\ J = 11.3 \\ J = 11.2 \\ J =$		(J = 8.5)			(J = 14.3)	(J = 14.3,	(J = 12.5,	(J = 12.5)	3.65 (CH ₂ N)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						J = 11.5)	J = 11.5)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	7.58	8.10-8.15	3.73 (s, 2 Me)	5.97	7.71	5.47	6.65	4.35 (s, NCH ₂); 6.22 (d,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(J = 8.5)			(J = 14.4)	(J = 14.4, I = 11.6)	(J = 12.6, I = 11.6)	(J = 12.6)	J = 2./; 6.38 (dd, $J = 2./$, I = 1.7); 7.25 (d. $I = 1.7$)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	7 56	8 10-8 15	373 (s. 2 Me)	5.96	J = 11.0) 7 74	J = 11.0 5 42	6 68	J = 1.7; 7.55 ($u, J = 1.7$) 1.63 ($s \in H$).	
	14	(J = 9.5)	0.10 0.15	5.75 (S, 2 MC)	(J = 14.4)	(J = 14.4)	(J = 12.8)	(J = 12.8)	3.19 (m, 4 H)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(*))			()	J = 11.6)	J = 11.6)	(* -=-*)	,,	
	15	7.56	8.10-8.16	3.73 (s, 2 Me)	6.01	7.69	5.40	6.62	3.54 (s, CH ₂ Ph); 3.22,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(J = 9.4)			(J = 14.2)	(J = 14.2,	(J = 12.8,	(J = 12.8)	2.49 (both t, $J = 4.7$);	
						J = 11.6)	J = 11.6)		7.28–7.32 (m, Ph)	
	16	7.59	8.09-8.15	4.72 (br.s, CH_2Ph);	5.97	7.76	5.23	6.72	2.89 (s, Me)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		(J = 8.9)		/.10—/.30 (m, Ph)	(J = 14.3)	(J = 14.3, I = 11.2)	(J = 12.5, I = 11.2)	(J = 12.5)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	17	7 57	8 09-8 20	474 (m CH ₂):	5.93	J = 11.3) 7 74	J = 11.3) 5 25	6 71	2.90 (s. Me)	
	17	(J = 8.5)	8.09-8.20	$5.03 (m, CH_2);$	(J = 14.3)	(J = 14.3)	(J = 12.5)	(J = 12.5)	2.90 (3, 1410)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(* 0.5)		5.93 (m, CH_2 =CH); 5.93 (m, CH_2 =CH):	(0 11.5)	J = 11.3	J = 11.3	(0 12.5)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				5.94 (m, $CH_2 = CH$)		,				
	18	7.58	8.10-8.15	4.72 (m, CH ₂);	5.98	7.89	5.42	6.59	3.18 (t, (CH ₂) ₂ O,	
J = 17.1; 5.24 (d, J = 11.2) J = 11.2) (t, (CH2)2N, J = 4.9) CH2=CH, J = 10.3; 5.94 (m, CH2=CH) (J = 8.8) 4.75 (m, CH2); 5.85 7.65 5.25 6.58 1.60 (br.s, 6 H); (J = 8.8) 4.99 (d, CH2=CH, (J = 14.6) (J = 14.6, (J = 12.5, (J = 12.5) 3.19 (br.s, 4 H, J = 17.0); 5.20 (d, J = 11.3) J = 11.3) NCH2) CH2=CH, J = 10.5); 5.90 (m, CH2=CH) 20 7.55 8.03-8.10 4.70 (m, CH2); 4.97 5.85 7.63 5.30 6.56 3.51 (s, CH3Ph); (J = 8.4) (d, CH2=CH, J = 16.3); (J = 14.6) (J = 14.6, (J = 12.6, (J = 12.6) 3.15, 2.42 (bth m, 5.22 (d, CH2=CH, J = 16.6)); (J = 11.6) J = 11.6) NCH2); J = 10.4); J = 17.1; 5.25 (d, J = 11.6) J = 11.6) NCH2); J = 10.4); J = 10.4); J = 17.1; 5.25 (d, J = 11.7) J = 11.7) 6.38 (dd, J = 2.7); J = 17.1; 5.25 (d, J = 11.7) J = 11.7) 6.38 (dd, J = 2.7); J = 17.1; 5.25 (d, J = 11.7) J = 11.7) 6.38 (dd, J = 2.7); J = 17.1; 5.25 (d, J = 11.4) (J = 14.4, (J = 12.9, (J = 12.9) 6.21 (d, J = 2.7); J = 17.1; 5.25 (d, J = 11.7) J = 11.7) 6.38 (dd, J = 2.7); J = 17.1; 5.25 (d, J = 11.6) J = 11.6) J = 11.6) J = 11.7) C.38 (dd, J = 2.7); J = 17.1; 5.25 (d, J = 11.7) J = 11.7) J = 11.7) C.38 (dd, J = 2.7); J = 17.1; 5.25 (d, J = 11.7) J = 11.7) J = 11.7) C.38 (dd, J = 2.7); J = 17.1; 5.25 (d, J = 11.6) J		(J = 8.8)		4.99 (d, C <u>H</u> ₂=CH,	(J = 14.6)	(J = 14.6,	(J = 12.9,	(J = 12.9)	J = 4.9; 3.65	
$\begin{array}{ccccc} CH_2=CH, J=10.3; \\ 5.94 (m, CH_2=CH) \\ \hline 19 & 7.55 & 8.00-8.10 & 4.75 (m, CH_2); \\ (J=8.8) & 4.99 (d, \underline{CH}_2=CH, \\ J=17.0); 5.20 (d, \\ J=11.3) \\ CH_2=CH, J=10.5); \\ 5.90 (m, CH_2=CH) \\ \hline 20 & 7.55 & 8.03-8.10 & 4.70 (m, CH_2); 4.97 & 5.85 & 7.63 \\ (J=8.4) & (d, \underline{CH}_2=CH, \\ J=10.5); \\ (J=8.4) & (d, \underline{CH}_2=CH, \\ J=10.5); \\ J=10.4); \\ S.22 (d, \underline{CH}_2=CH, \\ J=11.6) \\ J=11.6) \\ J=11.6) \\ J=11.6) \\ J=11.7) \\ J=10.4); \\ S.86 (m, CH_2=\underline{CH}) \\ \hline 21 & 7.58 & 8.10-8.15 & 4.72 (m, CH_2); \\ (J=8.5) & (J=8.2) \\ (J=8.5) & (J=12.6); \\ (J=12.6) \\ J=10.4); \\ S.22 (d, \underline{CH}_2=CH, \\ J=10.5); \\ J=17.1); \\ S.25 (d, \\ J=12.6) \\ J=11.7) \\ J=11.6) \\ J=11.6$				J = 17.1; 5.24 (d,		J = 11.2)	J = 11.2)		$(t, (CH_2)_2N, J = 4.9)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				$C_{\underline{H}_2} = CH, J = 10.3);$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	7 55	8 00-8 10	$3.94 (III, CH_2 - CH)$	5.85	7.65	5 25	6 58	1.60 (br s. 6 H):	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19	(J = 8.8)	8.00-8.10	4.99 (d. CH ₂ =CH.	(J = 14.6)	(J = 14.6)	(J = 12.5)	(J = 12.5)	3.19 (br.s. 4 H.	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} CH_2=CH,\ J=10.5);\\ 5.90\ (m,\ CH_2=\underline{CH}) \end{array} \\ \begin{array}{c} \begin{array}{c} 20 \end{array} \\ (J=8.4) \end{array} \\ \begin{array}{c} (J=8.4) \end{array} \\ \begin{array}{c} (J=8.4) \end{array} \\ \begin{array}{c} (J=8.4) \end{array} \\ \begin{array}{c} (J=10.5);\\ (J=8.4) \end{array} \\ \begin{array}{c} (J=10.6) \end{array} \\ (J=10.6) \end{array} \\ \begin{array}{c} (J=10.6) \end{array} \\ (J=11.6) \end{array} \\ \begin{array}{c} J=11.6) \end{array} \\ \begin{array}{c} J=11.7 \end{array} \\ \begin{array}{c} J=11.6 \end{array} \\ \begin{array}{c} J=11.6 \end{array} \\ \begin{array}{c} J=11.7 \end{array} \\ \begin{array}{c} J=11.6 \end{array} \\ \\ \begin{array}{c} J=11.6 \end{array} \\ \begin{array}{c} J=11.6 \end{array} \\ \end{array} $ \\ \begin{array}{c} J=11.6 \end{array} \\ \end{array}		(* 0.0)		J = 17.0): 5.20 (d.	(0 11.0)	J = 11.3	J = 11.3	(0 12.5)	NCH ₂)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				<u>CH</u> ₂ =CH, $J = 10.5$);		,	,		27	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				5.90 (m, CH ₂ = <u>CH</u>)						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	7.55	8.03-8.10	4.70 (m, CH ₂); 4.97	5.85	7.63	5.30	6.56	3.51 (s, CH ₂ Ph);	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(J = 8.4)		$(d, \underline{CH}_2 = CH, J = 16.3);$	(J = 14.6)	(J = 14.6,	(J = 12.6,	(J = 12.6)	3.15, 2.42 (both m,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				5.22 (d, $\underline{CH}_2 = CH$,		J = 11.6)	J = 11.6)		NCH_2 ;	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				J = 10.4); 5.86 (m, CH,=CH)					7.26 (m, Ph)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21	7 58	8 10-8 15	$4.72 (m, CH_2)^{-2}$	6.01	7 76	5 57	6.82	4 32 (s. NCH ₂):	
$J = 17.1); 5.25 \text{ (d)} \qquad J = 11.7) \qquad J = 11.7) \qquad J = 11.7) \qquad 6.38 \text{ (dd, } J = 2.7, \\ \underline{CH_2} = CH, J = 10.5); \qquad J = 11.7) \qquad 6.38 \text{ (dd, } J = 2.7, \\ \underline{CH_2} = CH, J = 10.5); \qquad J = 11.7) \qquad 6.38 \text{ (dd, } J = 2.7, \\ \underline{CH_2} = CH, J = 10.5); \qquad J = 11.7) \qquad 6.38 \text{ (dd, } J = 2.7, \\ J = 1.7); 7.38 \qquad (d, J = 1.6); \qquad J = 11.6); \qquad J = 11.6; \qquad J = 11.6$		(J = 8.5)	0.10 0.12	5.05 (d, CH ₂ =CH,	(J = 14.4)	(J = 14.4.	(J = 12.9)	(J = 12.9)	6.21 (d. $J = 2.7$):	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(J = 17.1; 5.25 (d,	(J = 11.7)	J = 11.7)	(*,	6.38 (dd, $J = 2.7$,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				<u>CH</u> ₂ =CH, $J = 10.5$);					J = 1.7; 7.38	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				5.93 (m, CH ₂ = <u>CH</u>)					(d, J = 1.7)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22	7.57	8.15-8.20	3.71 (m, 2 H, CH ₂ N);	6.01	7.71	5.27	6.73	2.90 (s, Me)	
J = 11.6 $J = 11.6$ $J = 11.6Z3 7.56 8.13 - 8.15 3.75 \text{ (m, 2 H, CH_2N)} 5.91 7.71 5.25 6.71 3.20 \text{ (CH}_2\text{O})(J = 8.5) 4.52 \text{ (m, 2 H, CH}_2\text{Br}) (J = 14.3) (J = 12.5, (J = 12.5) 3.63 \text{ (CH}_2\text{N})J = 11.6 J = 11.6Z4 7.57 8.12 - 8.14 1.16 - 1.28 \text{ (m, 2 H)}; 6.07 7.71 5.44 6.59 3.18 \text{ (CH}_2\text{O})(J = 8.8) 1.34 \text{ (t, Me)}; (J = 14.3) (J = 14.3, (J = 12.1, (J = 12.1) 3.72 \text{ (CH}_2\text{N})4.12 - 4.36 (m, 6 H) J = 11.6 J = 11.6$		(J = 8.9)		4.32 (m, 2 H, CH_2Br)	(J = 14.3)	$(J = 14.3, I_{11})$	(J = 12.1, I)	(J = 12.1)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	23	7 56	813 815	375 (m 2 H CH N)	5.01	J = 11.6) 7 71	J = 11.0) 5.25	6 71	3 20 (CH.O)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	(J = 8.5)	0.13-0.13	$4.52 \text{ (m} 2 \text{ H} \text{ CH}_2\text{N})$	(J = 14.3)	(J = 14.3)	J.23 ($J = 12.5$	(J = 12.5)	$3.20 (CH_2O)$ 3.63 (CH_2N)	
24 7.57 8.12-8.14 1.16-1.28 (m, 2 H); 6.07 7.71 5.44 6.59 3.18 (CH ₂ O) ($J = 8.8$) 1.34 (t, Me); ($J = 14.3$) ($J = 14.3$, ($J = 12.1$, ($J = 12.1$) 3.72 (CH ₂ N) 4.12-4.36 (m, 6 H) $J = 11.6$) $J = 11.6$)		(0.5)			(v 17.J)	J = 11.6	J = 11.6	(* 12.5)	5.65 (011214)	
(J = 8.8) 1.34 (t, Me); $(J = 14.3)$ $(J = 14.3,$ $(J = 12.1, (J = 12.1)$ 3.72 (CH ₂ N) 4.12-4.36 (m, 6 H) $J = 11.6$ $J = 11.6$)	24	7.57	8.12-8.14	1.16–1.28 (m, 2 H);	6.07	7.71	5.44	6.59	3.18 (CH ₂ O)	
4.12-4.36 (m, 6 H) $J = 11.6)$ $J = 11.6)$		(J = 8.8)		1.34 (t, Me);	(J = 14.3)	(J = 14.3,	(J = 12.1,	(J = 12.1)	3.72 (CH ₂ N)	
				4.12-4.36 (m, 6 H)		<i>J</i> = 11.6)	<i>J</i> = 11.6)			

(to be continued)

Com- pound	δ (<i>J</i> /Hz)								
	H(4) (d)	$\frac{\mathrm{H(5)} \mathrm{H(7)}}{\mathrm{(m)}}$	NR′	H(1´) (d)	H(2´) (dd)	H(3') (dd)	H(4´) (d)	NR″2	
25	7.66 (<i>J</i> = 9.5)	8.11-8.12	3.45 (s, Me)	6.68 (<i>J</i> = 13.7)(7.46 d, <i>J</i> = 13.7)	0.88 (s, SiMe); 7.30–7.62 (m, Ph)	5.76 (c)	2.77 (s, Me)	
26	7.72 (<i>J</i> = 8.9)	7.99—8.14	5.20 (s, CH ₂ CO) 7.10—7.84 (m, Ph)	6.65 (<i>J</i> = 13.7)(7.42 d, <i>J</i> = 13.7)	0.81 (s, SiMe); 7.10–7.84 (m. Ph)	5.76 (c)	2.77 (s, Me)	
27	7.41 (<i>J</i> = 8.1)	7.42—7.50	3.60 (s, Me)	6.10 (<i>J</i> = 13.5)	6.60 ($J = 13.5$, J = 11.6)	5.41 (J = 12.0, J = 11.6)	6.43 (<i>J</i> = 12.0)	3.18 (m, (CH ₂) ₂ O); 3.72 (m, (CH ₂) ₂ N)	

Table 2. (continued)

1-yl]-1-methyl- (13), 1-methyl-2-[(1E,3E)-4-piperidino- (14), 2-[(1E,3E)-4-N-benzylpiperazinobuta-1,3-dien-1-yl]-1-methyl-6-nitro-1*H*-benzimidazoles (15); 1-benzyl-2-[(1*E*,3*E*)-4-(*N*,*N*dimethylamino)buta-1,3-dien-1-yl]-6-nitro-1H-benzimidazole (16); 1-allyl-2-[(1E,3E)-4-N,N-dimethylamino- (17), 1-allyl-2-[(1E,3E)-4-morpholino- (18), 1-allyl-2-[(1E,3E)-4-piperidino- (19), 1-allyl-2-[(1E,3E)-4-N-benzylpiperazino- (20), 1-allyl-2-[(1E,3E)-4-N,N-difurfurylaminobuta-1,3-dien-1-yl]-6-nitro-1*H*-benzimidazoles (21); 1-bromoethyl-2-[(1*E*,3*E*)-4-N,N-dimethylamino- (22), 1-bromoethyl-2-[(1E,3E)-4-morpholino-1-bromoethyl-2-[(1E,3E)-4-buta-1,3-dien-1-yl]-6-nitro-1*H*-benzimidazoles (23); 1-(3-ethoxycarbonylpropyl-1)-2-[(1E,3E)-4-morpholinobuta-1,3-dien-1-yl]-6-nitro-1H-benzimidazole (24). The yields, elemental analysis results, and physico-chemical characteristics of aminodienes 10-24 are given in Table 1, the ¹H NMR spectral data, in Table 2.

2-[(1*E*,3*E*)-4-(*N*,*N*-Dimethylamino)-2-methyldiphenylsilylbuta-1,3-dien-1-yl]-1-methyl-6-nitro-1*H*-benzimidazole (25) and 2-[(1*E*,3*E*)-4-(*N*,*N*-dimethylamino)-2-methyldiphenylsilylbuta-1,3-dien-1-yl]-6-nitro-1-phenacyl-1*H*-benzimidazole (26). A 30% aq. dimethylamine (0.5 mL) was added to a solution of salts 8 or 9 (0.36 mmol) in acetonitrile (10 mL) at 20 °C. After 1 h, a precipitate was filtered off, washed with water, dried in air, and recrystallized from AcOEt—hexane solvent mixture to obtain silyl-substituted azadienes 25 and 26. The yields, elemental analysis results, and physico-chemical characteristics of organosilicon derivatives 25 and 26 are given in Table 1, ¹H NMR spectral data, in Table 2.

6-Amino-1-methyl-2-[(1*E***,3***E***)-4-morpholino-1,3-dien-1-yl]-1***H***-benzimidazole (27). Raney nickel (50 mg) was added in portions over 15 min to a stirred solution of diene 12 (0.5 g, 1.8 mmol) and hydrazine hydrate (2 mL) in ethanol (10 mL). Then the reaction mixture was heated for 3 h at ~30 °C (TLC monitoring). The catalyst was filtered off. The alcohol was evaporated** *in vacuo***, water (10 mL) was added to the residue, followed by extraction with chloroform (3×20 mL). The extract was dried with MgSO₄. After evaporation of chloroform, the residue was recrystallized from AcOEt to obtain diene 27 (90 mg, 20%), red crystals, m.p. 184–186 °C (with decomp.). Found (%): C, 67.50; H, 6.84; N, 19.91. C₁₆H₂₀N₄O. Calculated (%): C, 67.58; H, 7.09; N, 19.70. ¹H NMR data are given in Table 2. MS,** *m/z***: 284 [M]⁺.**

(3E)-4-(1-Methyl-6-nitro-1H-benzimidazol-2-yl)but-3-enal (28). Sodium nitrite (0.25 g, 3.62 mmol) was added in five portions over 1.5 h to a stirred solution of diene 12 (0.5 g, 1.59 mmol) in ~15% aq. hydrochloric acid (6 mL) at 20 °C. After the addition was over, the mixture was stirred at room temperature for another 1 h. Then the reaction mixture was poured into water (10 mL) and neutralized with aq. ammonia to pH ~7. A precipitate formed was filtered off and recrystallized from AcOEt to obtain aldehyde 28 (0.15 g, 35%), pale yellow crystals with m.p. 214–216 °C. IR, v/cm^{-1} : 1680 (C=O). Found (%): C, 58.65; H, 4.10; N, 17.03. C₁₂H₁₁N₃O₃. Calculated (%): C, 58.77; H, 4.52; N, 17.13. ¹H NMR (CDCl₃), δ: 3.73 (s, 3 H, NMe); 3.95 (m, 2 H, CH₂CHO); 6.71 (d, 1 H, H(4), J = 14.5 Hz; 7.10 (m, 1 H, H(3)); 7.60 (d, 1 H, H(4'), J = 8.7 Hz); 8.10–8.15 (m, 2 H, H(5'), H(7')); 9.80 (s, 1 H, CHO). MS, m/z: 245 [M]⁺.

1021

4a-[(1E,3Z,5E)-4,5-Di(methoxycarbonyl)-6-dimethylaminohexa-1,3,5-trien-1-yl]-1,2,3,4-tetra(methoxycarbonyl)-5-methyl-7-nitro-4a,5-dihydropyrido[1,2-a]benzimidazole (29). A mixture of 1,3-diene (10) (0.6 g, 2.2 mmol) and DMAD (3 g, 21.1 mmol) was refluxed in dichloromethane (20 mL) for 3 h (TLC monitoring). After evaporation of the solvent, the residue was subjected to chromatography on a column with SiO₂ (eluent: AcOEt-hexane, 1:1) to obtain compound 29 (0.25 g). Recrystallization from ethyl acetate gave brown crystals, the yield was 17%, m.p. 116-118 °C. Found (%): C, 55.38; H, 4.67; N, 8.00. C₃₂H₃₄N₄O₁₄. Calculated (%): C, 55.01; H, 4.91; N, 8.02. ¹H NMR (CDCl₃), δ: 2.86 (s, 6 H, NMe₂); 3.06 (s, 3 H, N(5)Me); 3.62, 3.72, 3.79, 3.80, 3.83, 4.04 (all s, 3 H each, OMe); 5.65 (d, 1 H, H(1'), J = 15.2 Hz); 6.14 (d, 1 H, H(3'), J = 11.2 Hz); 6.63 (d, 1 H, H(9), J = 8.8 Hz); 7.26 (dd, 1 H, H(2'), J = 11.2 Hz, J = 15.2 Hz); 7.36 (d, 1 H, H(6), J = 2.0 Hz; 7.49 (s, 1 H, H(6')); 7.68 (dd, 1 H, H(8), J = 8.8 Hz, J = 2.0 Hz). ¹³C NMR (CDCl₃), δ : 33.5, 43.2 (2 C), 51.0, 51.8, 52.2, 52.5, 52.6, 53.6, 86.8, 96.3, 103.2, 108.2, 108.9, 116.4, 118.0, 127.0, 130.9, 131.9, 132.5, 134.8, 135.4, 137.0, 143.0, 145.0, 151.0, 162.6, 163.0, 163.4, 166.0, 167.7, 169.0. MS, m/z: 698 [M]⁺.

5-Benzyl-4a-[(1*E*,3*Z*,5*E*)-4,5-di(methoxycarbonyl)-6-dimethylaminohexa-1,3,5-trien-1-yl]-1,2,3,4-tetra(methoxycarbonyl)-7-nitro-4a,5-dihydropyrido[1,2-*a*]benzimidazole (30). Compound 30 (60 mg) was obtained similarly to the synthesis of polycycle **29** from butadiene **16** (0.15 g, 0.43 mmol) and DMAD (0.61 g, 4.3 mmol), the yield was 18%, orange crystals, m.p. 181–183 °C (from AcOEt). Found (%): C, 58.75; H, 4.62; N, 7.13. $C_{38}H_{38}N_4O_{14}$. Calculated (%): C, 58.91; H, 4.94; N, 7.23. ¹H NMR (CDCl₃), δ : 2.87 (s, 6 H, NMe₂); 3.28, 3.64, 3.74, 3.77, 3.82, 4.07 (all s, 3 H each, OMe); 4.29 (d, 1 H, NCH₂A, J = 16.8 Hz); 5.08 (d, 1 H, NCH₂B, J = 16.8 Hz); 5.74 (d, 1 H, H(1'), J = 15.3 Hz); 6.17 (d, 1 H, H(3'), J = 11.3 Hz); 6.68 (d, 1 H, H(9), J = 8.9 Hz); 7.01 (d, 1 H, H(6')); 7.69 (dd, 1 H, H(8), J = 8.9 Hz, J = 2.1 Hz). MS, m/z: 774 [M]⁺.

References

- E. V. Babaev, A. V. Efimov, V. B. Rybakov, S. G. Zhukov, *Khim. Geterotsikl. Soedin.*, 1999, 550 [*Chem. Heterocycl. Compd. (Engl. Transl.)*, 1999, **35**, 486].
- E. V. Babaev, A. V. Efimov, V. B. Rybakov, S. G. Zhukov, *Khim. Geterotsikl. Soedin.*, 2000, 401 [*Chem. Heterocycl. Compd.* (*Engl. Transl.*), 2000, **36**, 339].
- E. V. Babaev, Dr. Sci. Thesis (Chem.), Lomonosov MSU, Moscow, 2007, p. 46–126 (in Russian).
- V. B. Rybakov, E. V. Babaev, E. J. Sonneveld, S. G. Zhukov, V. V. Chernyshev, *Acta Crystallogr.*, 2007, E63, o181.

- A. V. Varlamov, E. A. Savitkina, A. I. Chernyshev, A. P. Krapivko, *Khim. Geterotsikl. Soedin.*, 1997, 1137 [*Chem. Heterocycl. Compd. (Engl. Transl.)*, 1997, **33**, 994].
- K. Osterheld, B. Prajsnar, H. J. Hanser, *Chem. Ztg.*, 1979, 103, 190.
- A. P. Krapivko, E. A. Savitkina, Kuanu A. Antares, A. A. Astakhov, A. V. Varlamov, *Khim. Geterotsikl. Soedin.*, 1996, 338 [*Chem. Heterocycl. Compd. (Engl. Transl.*), 1996, **32**, 290].
- D. A. Maiboroda, E. V. Babaev, L. V. Goncharenko, *Khim. Pharm. Zh.*, 1998, **32** (6), 24 [*Pharm. Chem. J. (Engl. Transl.*), 1998, **32**, 310].
- E. V. Babaev, A. V. Efimov, D. A. Maiboroda, Karl Jug, *Eur. J. Org. Chem.*, 1998, 193.
- R. M. Acheson, M. W. Foxton, P. J. Abbot, K. R. Mills, J. Chem. Soc. (C), 1967, 882.
- 11. R. M. Acheson, G. Pagietti, J. Chem. Res. (S), 1981, 306.
- S. Jiang, Z. Janonsek, H. G. Viehe, *Tetrahedron Lett.*, 1994, 35, 1185.
- 13. G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112.

Received May 15, 2009; in revised form January 12, 2010