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Alkynones are important intermediates in organic synthe-
ses,[1] and due to their bifunctional electrophilicity they have
found broad application as three-carbon building blocks in
heterocyclic synthesis. Therefore, efficient, mild, and catalyt-
ic methodologies for their preparation are highly desirable.
Besides catalytic acylations of terminal[2] and silylated[3] al-
kynes the carbonylative alkynylation of aryl iodides follow-
ing the Sonogashira protocol represents an elegant three-
component synthesis of alkynones, which were as well ela-
borated into one-pot syntheses of pharmaceutically relevant
heterocycles such as pyrazoles[4] and pyrimidines.[5]

Carbonylations of aryl halides usually require carbon
monoxide or molybdenum hexacarbonyl as suitable CO
sources. However, the effective concentration of CO in the
reaction medium plays a crucial role for the outcome of car-
bonylative alkynylation. An alternative mode, which also
dispenses the use of aryl halides, could be a decarbonylation
of an a-dicarbonyl compound. Rhodium-mediated decar-
bonylations of aldehydes (Tsuji–Wilkinson reaction) are
well precedented,[6] however, the process becomes catalytic
only at temperatures over 200 8C and most applications in
total syntheses have remained stoichiometric.[7] Decarbony-
lations of acid chlorides are less common.[8] In 2002, iridium-
catalyzed decarbonylative homologizations of aroyl chlor-
ides in boiling xylene were reported.[9] Palladium complexes
are not commonly used for decarbonylations. Besides decar-

bonylative carbostannylations,[10] Gooßen has reported de-
carbonylative Heck reactions with reaction times of 16 h at
160 8C in NMP as a solvent.[11] Just recently, the same group
has introduced Pd/Cu-catalyzed decarboxylative cross-cou-
plings of a-oxocarboxylates with aromatic bromides[12] and
chlorides[13] at high temperatures and long reaction times.
Interestingly, although oxalyl chloride has been applied in
the presence of aluminium chloride as a phosgene surrogate
for Friedel–Crafts acylations[14] or as a source of carbon
monoxide in stoichiometric copper-mediated synthesis of cy-
clopentadienones from organolithium and organozirconium
compounds[15] there is no report of its use in any catalytic
application. In continuation of our program to develop tran-
sition metal catalyzed multicomponent syntheses of hetero-
cycles[16] and functional organic materials,[17] we report our
first findings on consecutive three-component synthesis of
alkynones by decarbonylative Sonogashira coupling starting
from electron-rich heterocycles and oxalyl chloride as a
source of the CO building block via intermediary glyoxylyl
chlorides. Conceptually, this methodology complements the
carbonylative alkynylation of halides of heterocycles with di-
minished electron density.[5]

It has been known for quite some time that many indole
derivatives directly and without Lewis acid activation react
with oxalyl chloride in a Friedel–Crafts acylation to furnish
indole-3-glyoxylyl chlorides 1 in high yields.[18] Due to the
generality and smoothness of this glyoxylation the idea was
now to use the notoriously unstable and reactive indole-3-
glyoxylyl chlorides 1 as synthetic equivalents of acid chlor-
ides in transition metal catalyzed cross-coupling reactions.
Therefore, for establishing a decarbonylative alkynylation
we first tested indole-3-glyoxylyl chlorides 1 without substi-
tution (1 a) and with a benzyl substituent (1 b) on the indole
nitrogen atom in a model reaction with 1-hexyne (2 a) under
modified Sonogashira conditions[19] (Scheme 1, Table 1). Im-
mediately, it was apparent that only the benzyl derivative
1 b can be transformed into the corresponding alkynone 3 b
(entries 3–9).
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Although the desired alkynone 3 b could be immediately
detected by TLC monitoring of the reaction it was only isol-
able if the formation of the non-decarbonylated byproduct
could be suppressed. Therefore, the influence of the ratios
of the substrates, the catalysts and the solvent were studied
qualitatively. Besides spectroscopic and combustion analyti-
cal characterization the structure of compound 3 b was un-
ambiguously corroborated by an X-ray structure analysis
(Figure 1).[20]

The most crucial point for the successful transformation
and high conversion is the well-balanced equimolar ratio of
[PdCl2ACHTUNGTRENNUNG(PPh3)2] and CuI (entries 5, 8, and 9). Dimethoxy-
ethane (DME) and THF are both good solvents. Performing
the reaction under a CO atmosphere to block the decarbon-
ylation resulted in the formation of the ynone (entry 6),
whereas the addition of 2 mol % of PPh3 completely stopped
the conversion (entry 10). Switching the palladium catalyst

precursor to [PdCl2 ACHTUNGTRENNUNG(dppf)] did not result in ynone formation
(entry 12). Therefore, the most favorable conditions for the
development of a sequence with the decarbonylative Sono-
gashira coupling suggest the use of an equimolar ratio of
glyoxylyl chloride 1 b and alkyne 2 a giving a clean reaction
and 70 % isolated yield of alkynone 3 b (entry 9). Hence, the
mechanistic rationale of this new decarbonylative Sonoga-
shira coupling can be rationalized as follows (Scheme 2).

After the oxidative addition of indole-3-glyoxylyl chloride
(1), adduct 4 undergoes a mi-
gratory de-insertion and elimi-
nation of carbon monoxide fur-
nishing the acyl–Pd species 5.
The driving force of this reac-
tion is the apparent relative in-
stability of the dicarbonyl spe-
cies 4 compared with the acyl
species 5. Then, transmetala-
tion of the in situ generated
copper acetylide to 5 gives rise
to the formation of the acyl-al-
kynyl-Pd complex 6, which un-
dergoes reductive elimination
to give the alkynone 3 and the
catalytically active Pd0 species
to start a new catalytic cycle.

Encouraged by these initial
successful experiments we de-
cided to combine the forma-
tion of relatively labile glyoxyl-
yl chloride 1 and the subse-
quent decarbonylative alkyny-
lation to a consecutive three-
component reaction in a one-
pot transformation. Indeed, N-
substituted indoles (X= CH)
and 7-aza-indoles (X= N) 7 or
pyrroles 8 were glyoxylated
with oxalyl chloride in THF or
DME on a 5 mmol scale and

the transient glyoxylyl chlorides 1 were reacted with equi-
molar amounts of the alkynes 2 for 1 h at room temperature

Scheme 1. Optimization of the decarbonylative Sonogashira coupling of
indole-3-glyoxylyl chlorides 1 and 1-hexyne (2 a).

Table 1. Optimization of the decarbonylative Sonogashira coupling of indole-3-glyoxylyl chlorides 1 and
1-hexyne (2a).[a]

Entry Compound 1 Solvent Catalyst system Ynone 3 (isolated yield/%)

1 1a : R1 =H THF 2 mol % [PdCl2 ACHTUNGTRENNUNG(PPh3)2]
4 mol % CuI

3a (–, no reaction)

2[b] 1b : R1 =Bn THF 2 mol % [PdCl2 ACHTUNGTRENNUNG(PPh3)2]
4 mol % CuI

3b (–, no reaction)

3 1b THF 1 mol % [PdCl2 ACHTUNGTRENNUNG(PPh3)2]
2 mol % CuI

3b (n.i.)[c]

4 1b THF 2 mol % [PdCl2 ACHTUNGTRENNUNG(PPh3)2]
4 mol % CuI

3b (n.i.)[c]

5 1b DME 2 mol % [PdCl2 ACHTUNGTRENNUNG(PPh3)2]
2 mol % CuI

3b (61)

6[d,e] 1b DME 5 mol % [PdCl2 ACHTUNGTRENNUNG(PPh3)2]
2 mol % CuI

3b (n.i.)[c]

7 1b CH2Cl2 2 mol % [PdCl2 ACHTUNGTRENNUNG(PPh3)2]
4 mol % CuI

3b (n.i.)[c]

8 1b THF 1 mol % [PdCl2 ACHTUNGTRENNUNG(PPh3)2

1 mol % CuI
3b (80)

9[f] 1b THF 1 mol % [PdCl2 ACHTUNGTRENNUNG(PPh3)2]
1 mol % CuI

3b (70)

10[f,g] 1b THF 1 mol % [PdCl2 ACHTUNGTRENNUNG(PPh3)2]
1 mol % CuI

3b (–, no reaction)

11 1b THF 0.1 mol % [PdCl2 ACHTUNGTRENNUNG(PPh3)2]
1 mol % CuI

3b (–, no reaction)

12 1b THF 1 mol % [PdCl2 ACHTUNGTRENNUNG(dppf)]
1 mol % CuI

3b (–, no reaction)

[a] The reactions were performed in 5 mL of solvent (c(1)=0.2 m) using 1.5 equiv of 2a for 1 h and at room
temperature unless otherwise stated. [b] Reaction performed at 0 8C. [c] TLC indicates coupling without decar-
bonylation and the formation of compound 3b which was not isolated. [d] The reaction time was 48 h. [e] The
reaction was performed under 1 atm of CO. [f] 1.0 equiv of 2a was applied. [g] 2 mol % of PPh3 were added to
the reaction mixture.

Figure 1. Molecular structure of alkynone 3 b (hydrogen atoms were
omitted for clarity).
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for 1–48 h in the presence of two equivalents of triethyl-
amine and catalytic amounts of [PdCl2ACHTUNGTRENNUNG(PPh3)2] and CuI to
give the corresponding alkynones 3 and 9 in moderate to
good yields (Scheme 3, Table 2). The presence of two stoi-
chiometrically necessary equivalents of triethylamine assures
that the hydrogen chloride formed upon glyoxylation is
bound and that the decarbonylative Sonogashira coupling
occurs by scavenging the hydrochloric acid from the catalyt-
ic cycles. Expectedly, as a consequence of the regioselective
glyoxylation of pyrroles in the 2-position the ynones 9 were
obtained by the same protocol, simultaneously illustrating
the methodological potential for the application to electron-
rich p systems.

With this versatile alkynone synthesis in hand, we tested
the application of the products in pyrimidine synthesis. As
previously shown, 4-(indol-3-yl)- and 4-(7-aza-indol-3-yl)-2-
amino pyrimidines, which are structurally related to the
marine natural products class of meridianins, have displayed
a considerable potential as kinase inhibitors.[5] Therefore,

Scheme 2. Mechanistic rationale of the decarbonylative Sonogashira cou-
pling of indole-3-glyoxylyl chlorides 1 and terminal alkynes 2.

Scheme 3. Three-component glyoxylation-decarbonylative alkynylation
synthesis of alkynones 3 and 9.

Table 2. Three-component glyoxylation-decarbonylative alkynylation
synthesis of alkynones 3 and 9.[a]

Entry N-Substituted
indole
or 7-aza-
indole 7

Alkyne 2 Ynone 3
(isolated yield/%)

1
7 a :
X =CH,
R1 =Si ACHTUNGTRENNUNG(iPr)3

2a :
R2 =nBu

3 a
(43)[b]

2
7 b :
X =CH,
R1 =Bn

2a
3 b
(74)

3 7 b
2b :
R2 =CH2OMe

3 c
(66)

4 7 b
2c :
R2 =Ph

3 d
(85)

5 7 b
2d :
R2 =SiMe3

3 e
(76)

6
7 c :
X =CH,
R1 =Me

2d
3 f
(64)

7 7 a 2a
3 g
(45)

8[c]
7 d :
X =N,
R1 =Bn

2a
3 h
(63)

9[c]
7 e :
X =N,
R1 =Me

2c
3 i
(61)

10[d] 8 a :
R1 =Me

2a
9 a
(61)
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upon reacting indolyl (X= CH) and 7-aza-indolyl (X=N)
substituted alkynones 3 or the pyrrolyl ynones 9 with an
excess of guanidinium hydrochloride (10) and potassium car-
bonate in 2-methoxyethanol at 120 8C for 12–24 h the 2-
amino pyrimidines 11 were obtained in good to excellent
yields (Scheme 4, Table 3).

Compounds 11 e and 11 f can be considered as N-alkyl de-
rivatives of the naturally occurring meridianin G.[21] The
structures of the 2-amino pyriminidines 11 were unambigu-
ously supported by NMR spectroscopy and mass spectrome-
try, and later by an X-ray structure analysis of compound
11 b (Figure 2).[20]

In conclusion, we have disclosed a new consecutive three-
component synthesis of alkynones by glyoxylation of very
easily accessible indole, 7-aza-indole, and pyrrole derivatives
with oxalyl chloride and subsequent Pd/Cu-catalyzed decar-
bonylative alkynylation of the heteroaryl glyoxylyl chlorides
with terminal alkynes. This new Sonogashira protocol pro-
ceeds considerably faster than carbonylative alkynylations
of (hetero)aryl iodides with carbon monoxide[5] and a lower
catalyst loading is needed. The mild conditions for decar-
bonylations are unprecedented, and the reagents are only
applied in equimolar quantities with a high tolerance for
various substituents. The application of the alkynones in a
subsequent transformation to pyrimidines also illustrates the

Table 2. (Continued)

Entry N-Substituted
indole
or 7-aza-
indole 7

Alkyne 2 Ynone 3
(isolated yield/%)

11[e] 8 b :
R1 =Bn

2a
9 b
(43)

[a] The sequences were performed in 25 mL of solvent (c(7)=0.2 m) and
in the acylation step the reaction vessel was allowed to come from 0 8C
(external water/ice cooling) to room temperature for 4 h unless otherwise
stated. For the subsequent decarbonylative alkynylation step, 1 mol % of
[PdCl2 ACHTUNGTRENNUNG(PPh3)2], 1 mol % of CuI, 1.0 equiv of alkyne 2 and 2.0 equiv of
triethylamine were added. [b] After addition of 1.1 equiv of TBAF (1 m

in THF) to the reaction mixture and stirring at room temperature the
product 3 a was obtained. [c] The reaction was performed in DME as a
solvent and the acylation step was carried out at 105-110 8C for 2 h.
[d] The decarbonylative alkynylation step was carried out for 2 d. [e] The
decarbonylative alkynylation step was carried out overnight.

Scheme 4. Cyclocondensation of alkynones 3 and 9 to 4-(indol-3-yl)-,
4-(7-aza-indol-3-yl)-, and 4-(pyrrol-2-yl)-2-amino pyrimidines 11.

Table 3. Synthesis of 4-(indol-3-yl)-, 4-(7-aza-indol-3-yl)-, and 4-(pyrrol-
2-yl)-2-amino pyrimidines 11.[a]

Entry Ynone 3 or 9 2-Amino pyimindine 11 (isolated yield/%)

1 3a 11a (81)

2 3b 11b (86)

3 3c 11c (88)

4 3d 11d (82)

5 3e 11e (88)[b]

6 3 f 11 f (68)[b]

7 3g 11a (68)[b]

8 3h 11g (81)
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vast potential to diversity-oriented syntheses of heterocycles.
Studies expanding the scope of this novel access to alky-
nones and their elaboration towards multi-component syn-
theses of heterocycles are currently underway. In addition,
the stage has been set for the methodological expansion to
further decarbonylative cross-couplings that are currently
under investigation.

Experimental Section

General methods and further reactions are given in the Supporting Infor-
mation.

Three-component synthesis of alkynone 3 b : N-Benzyl-1H-indole (7a)
(1.04 g, 5.00 mmol) in dry THF (25 mL) was placed under argon in a
screw-cap vessel with septum, degassed with argon and cooled to 0 8C
(water/ice). Then, oxalyl chloride (0.44 mL, 5.00 mmol) was added to the
reaction mixture at 0 8C. The mixture was allowed to come to room tem-
perature and was stirred for 4 h. Then, [PdCl2ACHTUNGTRENNUNG(PPh3)2] (35 mg,
0.05 mmol), CuI (10 mg, 0.05 mmol), 1-hexyne (2a) (0.59 mL,

5.00 mmol), and dry triethylamine (1.39 mL, 10.0 mmol) were successive-
ly added to the mixture and stirring at room temperature was continued
for 1 h. The evolution of CO can be observed. After complete conversion
(monitored by TLC) saturated brine (25 mL) was added, and the mixture
was extracted with dichloromethane (3 � 25 mL). The combined organic
layers were dried with anhydrous sodium sulfate. After removal of the
solvents in vacuo the residue was absorbed onto Celite and chromato-
graphed on silica gel with hexanes/ethyl acetate to give the alkynone 3 b
(1.17 g, 74%) as a yellow solid. M.p. 84–85 8C; 1H NMR (300 MHz,
CDCl3, 25 8C, TMS): d=8.44–8.38 (m, 1 H), 7.90 (s, 1 H), 7.39–7.13 (m,
8H), 5.35 (s, 2H), 2.44 (t, J =7.5 Hz, 2H), 1.62 (quint, J =8.3 Hz, 2H),
1.47 (sext, J =8.3 Hz, 2H), 0.94 ppm (t, J =7.5 Hz, 3H); 13C NMR
(75 MHz, CDCl3, 25 8C, TMS): d=171.8 (Cquat), 138.1 (CH), 137.3 (Cquat),
135.5 (Cquat), 129.1 (CH), 128.3 (CH), 127.1 (CH), 126.1 (Cquat), 123.8
(CH), 123.0 (CH), 122.6 (CH), 118.9 (Cquat), 110.3 (CH), 91.0 (Cquat), 80.6
(Cquat), 50.9 (CH2), 30.0 (CH2), 22.1 (CH2), 18.7 (CH2), 13.6 ppm (CH3);
EI+MS: m/z (%): 315 (100) [M+], 91 (40) [C7H7

+]; IR (KBr): ñ =730,
752, 771, 827, 1027, 1184, 1237, 1360, 1386, 1440, 1453, 1465, 1486, 1495,
1522, 1576, 1607, 2226, 2870, 2932, 2955 3119 cm�1; elemental analysis
calcd (%) for C22H21NO: C 83.78, H 6.71, N 4.44; found: C 83.64, H 6.71,
N 4.43.

2-Aminopyrimidine 11b : In a screw-cap vessel under argon the alkynone
3b (315 mg, 1.00 mmol) was dissolved in 2-methoxyethanol (5 mL).
Then, potassium carbonate (346 mg, 2.50 mmol), and guanidinium hydro-
chloride (10) (239 mg, 2.50 mmol) were added and the mixture was
stirred at 120 8C over night. Then, after cooling to room temperature sa-
turated brine (20 mL) was added, and the mixture was extracted with di-
chloromethane (5 � 20 mL). The combined organic layers were dried with
anhydrous sodium sulfate. After removal of the solvents in vacuo the res-
idue was absorbed onto Celite and chromatographed on silica gel with di-
chloromethane and dichloromethane/methanol/aqueous ammonia
(100:1:1) to give the 2-amino pyrimidine 11b (305 mg, 86%) as a pale
yellow solid. M.p. 174–175 8C; 1H NMR (300 MHz, CDCl3, 27 8C, TMS):
d=8.40–8.33 (m, 1H), 7.84 (s, 1 H), 7.35–7.18 (m, 6H), 7.18–7.11 (m,
2H), 6.89 (s, 1H), 5.35 (s, 2 H), 5.05 (s, 2H, NH2), 2.60 (t, J=7.5 Hz, 2H),
1.72 (quint, J =7.5 Hz, 2H), 1.42 (sext, J=7.5 Hz, 2 H), 0.95 ppm (t, J=

7.5 Hz, 3 H); 13C NMR (75 MHz, CDCl3, 27 8C, TMS): d=171.4 (Cquat),
163.1 (Cquat), 162.5 (Cquat), 137.4 (Cquat), 136.5 (Cquat), 130.3 (CH), 128.9
(CH), 127.9 (CH), 126.9 (CH), 126.3 (Cquat), 122.6 (CH), 121.7 (CH),
121.2 (CH), 114.8 (Cquat), 110.3 (CH), 106.4 (CH), 50.5 (CH2), 37.8 (CH2),
31.2 (CH2), 22.6 (CH2), 14.0 ppm (CH3); EI+MS: m/z (%): 356 (27) [M+

], 341 (3) [M+�CH3], 268 (7) [M+�C2H5], 314 (100) [M+�C3H6], 223
(5) [M+�C10H13], 91 (14) [C7H7

+]; IR (KBr): ñ=743, 1175, 1385, 1456,
1469, 1521, 1577, 1628, 1645, 2860, 2927, 2956, 3442, 3463 cm�1; elemental
analysis calcd (%) for C23H24N4: C 77.50, H 6.79, N 15.72; found: C
77.45, H 6.75, N 15.77.
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