

Phytochemistry 50 (1999) 849-857

(20R,23E)-Eupha-8,23-diene-3β,25-diol from Tripetalum cymosum

Yuan-Wah Leong, Leslie J. Harrison*

Department of Chemistry, National University of Singapore, 10, Kent Ridge Crescent, Singapore, 119260, Singapore

Received 24 March 1998

Abstract

A new euphane triterpenoid, (20R,23E)-eupha-8,23-diene-3 β ,25-diol, was isolated from the leaves of *Tripetalum cymosum* and its structure was determined by spectral analysis and chemical correlation with euphol. Caryophyllene oxide, friedelin, euphol and putranjivic acid were also obtained from the leaves whilst the bark afforded euphol, glutin-5-en-3 β -ol, butyrospermol and dammara-20,24-dien-3 β -ol. \bigcirc 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Tripetalum cymosum; Guttiferae; Triterpenoids; Euphane; (20R,23E)-eupha-8,23-diene-3β,25-diol

1. Introduction

Members of the Guttiferae are well known sources of aromatic metabolites such as xanthones (Bennett, & Lee, 1989; Peres, & Nagem, 1977) and coumarins (McKee, Fuller, Covington, Cardellina et al., 1996). Whilst many such compounds have been reported from large genera (>100 species) such as Garcinia (Harrison, Leong, Leong, Sia, Sim et al., 1994), Calophyllum (Iinuma, Ito, Tosa, Tanaka et al., 1997), Clusia (Henry, Jacobs, Carrington, McLean, & Reynolds, 1996) and Hypericum (Ishiguro, Nagareya, Suitani, & Fukumoto, 1997), the Guttiferae also contains a number of small genera, e.g., Archytaea (Kubitzki, Lins Mesquita, & Gottlieb, 1978), Pentadesma (Gunasekera, Sivapalan, Sultanbawa, & Ollis, 1977) and Ploiarium (Bennett, Lee, Lowrey, 1990; Bennett, Harrison, Sia, Sim, & Connolly, 1992; Bennett, Harrison, Lim, Sim et al., 1991), which contain fewer than 10 species each (Willis, 1973). One such genus is Tripetalum, the sole member of which, T. cymosum K. Schum., is native to Papua New Guinea where it is cultivated by the natives who use the juice from the fruits to stain their teeth black (Usher, 1984). There are no previous reports concerning the constituents of this plant. We have now studied the hexane extracts of both bark and leaves and found them to

lack the aromatic compounds which are typical of the Guttiferae.

2. Results and discussion

Chromatographic separation of the hexane extract of the bark gave the known triterpenoids glutin-5-en- 3β -ol (1) (Kitajima, Arai, & Tanaka, 1994; Carvalho, & Seita, 1993; Mahato, Das, & Sahu, 1981), euphol (2) (De Pascual Teresa, Urones, Marcos, Basabe et al., 1987; Gewali, Hattori, Tezuka, Kikuchi, & Namba, 1990), butyrospermol (eupha-7,24-dien-3 β -ol) (3) (De Pascual Teresa et al., 1987) and dammara-20,24-dien- 3β -ol (4) (Mills, & Werner, 1955) which were identified by comparison of their physical properties with literature values. As euphol is difficult to distinguish from its C-20 epimer tirucallol, its identity was con-

^{*} Author to whom correspondence should be addressed.

^{0031-9422/99/\$ -} see front matter \odot 1999 Elsevier Science Ltd. All rights reserved. PII: S0031-9422(98)00565-2

firmed by conversion to the acetate (5) (De Pascual Teresa et al., 1987). The ¹³C NMR spectrum of dammara-20,24-dien-3 β -ol (see Table 1) has not previously been reported. The present assignments were made by comparison with those of dammarenediol II (6) (Tori, Matsuda, Sono, & Asakawa, 1988).

Euphol has previously been isolated from Garcinia myrtifolia (Guttiferae) (Mills & Werner, 1955) and several Euphorbia species (Euphorbiaceae) (De Pascual Teresa, Urones, Marcos, Basabe et al., 1987; Gewali, Hattori, Tezuka, Kikuchi, & Namba, 1990). Its ¹³C NMR signals were recently completely assigned by 2D NMR (Gewali et al., 1990; (Spino, Lal, Sotheeswaran & Aalbersberg, 1995) and some of the previous assignments (De Pascual Teresa et al., 1987) were revised. Glutin-5-en-3β-ol has been previously isolated from Mammea acuminata (Guttiferae) (Bandaranayake, Karunanayake, Sotheeswaran, & Sultanbawa, 1980) as well as from several Euphorbia species (Fisher, & Seiler, 1961; Starratt, 1966) and Securinega tinctoria (Euphorbiaceae) (Carvalho, & Seita, 1993). Plants from a variety of families, e.g., Gramineae (Akihisa, Yamamoto, Tamura, Kimura, et al., 1992), Moraceae (Kitajima, Arai, & Tanaka, 1994), Scrophulariaceae (Mahato, Das, & Sahu, 1981), Celastraceae (Gonzalez, Ferro, & Ravelo, 1987) and Verbenaceae (Lin, Kuo, & Che, 1989) are also sources of this compound. Butyrospermol (3) has been isolated from a number of sources, one being the herbaceous shrub Euphorbia broteri (Euphorbiaceae) (De Pascual Teresa, 1987). Dammara-20,24-dien-3 β -ol (4), which was first found in the dammar resins from trees of the Dipterocarpaceae family (Mills, & Werner, 1955), was also isolated from Vismia guaramirangae (Camele,

Table I	
¹³ C NMR	Shifts for Dammara-20,24-dien-3β-ol
(4) and Da	mmarenediol II (6) [21].

Carbon	4 ^a	6 ^b
1	39.1	39.0
2	27.1	27.4
3	79.0	78.9
4	39.0	39.0
5	56.0	55.9
6	18.3	18.3
7	35.5	35.3
8	40.5	40.4
9	51.0	50.7
10	37.3	37.1
11	21.4	21.6
12	27.5	27.6
13	45.3	42.3
14	49.5	50.3
15	31.4	31.2
16	25.0	24.9
17	47.9	49.9
18	15.7	15.5
19	16.0	16.2
20	152.8	75.4
21	107.5	25.4
22	39.1	40.5
23	28.9	22.6
24	124.5	124.8
25	131.4	131.5
26	25.7	25.7
27	17.7	17.7
28	28.0	28.0
29	15.4	15.4
30	16.2	16.5

In CDCl₃. ^a 125 MHz, ^b 100 MHz.

Table 2 ¹³C NMR Shifts for Friedelin (8) [26], Putranjivic Acid (9) and Methyl Putranjivate (10).

Carbon	8 ^a	9 ^b	10 ^b
1	22.3	21.2	21.4
2	41.5	41.6	41.6
3	213.2	179.5	174.3
4	58.2	151.0	151.0
5	42.1	42.1	42.1
6	41.3	37.2	37.3
7	18.2	18.0	18.0
8	53.1	53.1	53.1
9	37.4	38.4	38.4
10	59.4	58.3	58.4
11	35.6	35.26	35.3
12	30.5	30.3	30.3
13	39.7	39.7	39.7
14	38.3	38.7	38.7
15	32.4	32.3	32.3
16	36.0	36.1	36.1
17	30.0	30.0	30.0
18	42.8	42.9	42.9
19	35.3	35.34	35.2
20	28.1	28.2	28.2
21	32.7	32.9	32.8
22	39.2	39.3	39.3
23	6.8	111.0	110.8
24	14.6	18.0	18.0
25	17.9	18.2	18.2
26	20.2	18.8	18.8
27	18.6	20.2	20.2
28	32.1	31.9	31.8
29	35.0	32.1	32.1
30	31.8	35.0	35.0
OCH ₃	_	-	51.4

Delle Monache, Delle Monache, Marini Bettolo, & Alves De Lima, 1982) and *V. martiana* (Guttiferae) (Nagem, & Faria, 1990).

The leaf extract was also subjected to extensive chromatographic separation to give the known compounds caryophyllene oxide (7) (Heymann, Tezuka, Kikuchi, & Supriyatna, 1994), friedelin (8), euphol (1) (De

(4) R = CH₂
(6) R = α-CH₃,β-OH

(10)
$$R = CH_3$$

Pascual Teresa et al., 1987; Gewali et al., 1990) and putranjivic acid (9) (Chopra, Jain, & Seshadri, 1969; Aoyagi, Tsuyuki, & Takahashi, 1973) which were identified by comparison of their physical properties with those in the literature or, in the case of friedelin, by comparison with an authentic sample. The ¹³C NMR data for putranjivic acid and its methyl ester (10) (Chopra, Jain, & Seshadri, 1969; Aoyagi, Tsuyuki, & Takahashi, 1973) (see Table 2) are given here for the first time, the assignments being made by comparison with those of friedelin.

Caryophyllene oxide (7) has been found in the essential oils of a number of plants belonging to a variety of families, e.g., Myrtaceae (Zhen, Kennery, & Lam, 1992), Dipterocarpaceae (Gupta, & Dev, 1971), Zingiberaceae (Damodaran, & Dev, 1968), Labiatae (Maurer, & Hauser, 1983). Recently, it was isolated

Carbon	2 ^a	11 ^a	14 ^b	15 ^c	17 ^a
1	35.3	35.3	35.6	31.7	35.6
2	28.0	27.9	27.8	26.9	27.9
3	79.0	79.0	79.0	80.8	79.0
4	38.9	38.9	38.9	39.5	38.9
5	51.0	51.0	50.4	47.3	50.4
6	19.0	18.9	18.2	20.9	18.3
7	27.7	27.7	26.5	28.1	26.5
8	134.0	134.0	134.4	47.8	134.5
9	133.6	133.5	134.4	20.2	134.4
10	37.3	37.3	37.0	26.1	37.1
11	21.5	21.5	21.0	25.8	21.0
12	30.9	31.0	30.9	35.6	30.93
13	44.1	44.2	44.4	45.4	44.5
14	50.0	50.0	49.8	48.9	49.9
15	29.8	29.8	30.8	32.9	30.89
16	28.2	27.9	28.2	26.6	28.2
17	49.7	49.6	50.4	52.1	50.2
18	15.6	15.8	15.7	18.0	15.8
19	20.2	20.2	19.1	29.7	19.2
20	35.9	36.2	36.2	36.5	36.7
21	18.9	19.1	18.6	18.3	18.7
22	35.4	38.2	36.3	39.1	39.1
23	24.8	125.7	24.9	125.7	125.6
24	125.2	139.3	125.2	139.5	139.4
25	130.8	70.8	130.9	70.7	70.8
26	17.7	29.88	25.7	29.96	29.9
27	25.8	29.93	17.6	30.05	30.0
28	28.1	28.1	27.9	19.3	28.0
29	15.5	15.5	15.4	15.2	15.4
30	24.5	24.5	24.2	25.5	24.3

Table 3 ¹³C NMR Shifts for Compounds **2**, **11**, **14** [41], **15** [18] and **17**.

In CDCl₃. ^a 125 MHz, ^b 75 MHz, ^c 50.3 MHz.

from the roots and rhizomes of *Valeriana fauriei* (Valerianaceae) (Nishiya, Kimura, Takeya, & Itokawa, 1992) and the pods of *Sindora sumatrana* (Leguminosae) (Heymann 1994). Putranjivic acid (9) and its methyl ester (10) were first isolated from the leaves of *Putranjiva roxburghii* (Euphorbiaceae) (Chopra, Jain & Seshadri, 1969).

In addition to the known compounds, the most polar compound from the leaves, (20R,23E)-eupha-8,23-diene-3 β ,25-diol (11), was obtained as a gum, $C_{30}H_{50}O_2$ (*m*/*z* 442.3806), [α]_D + 17.0. Its IR spectrum showed a characteristic hydroxyl absorption band (3480 cm⁻¹). The ¹H NMR and ¹³C NMR spectra (see Table 3) exhibited resonances for a disubstituted double bond [$\delta_{\rm H}$ 5.58 (2H, *br s*, H-23 and H-24); $\delta_{\rm C}$ 139.3 and 125.7 (each *d*, C-23 and C-24)], a fully substituted double bond [$\delta_{\rm C}$ 134.0 and 133.5 (each *s*, C-8 and C-9)], a secondary alcohol methine [$\delta_{\rm H}$ 3.23 (1H, *dd*, *J* = 4.5 and 11.7, H-3 α ; $\delta_{\rm C}$ 79.0 (*d*, C-3)], a tertiary

(16)

alcohol carbon [$\delta_{\rm C}$ 70.8 (*s*, C-25)], one secondary [$\delta_{\rm H}$ 0.82 (3H, *d*, J = 6.0 Hz, H₃-21)] and seven tertiary methyl groups [$\delta_{\rm H}$ 1.31 (6H, *s*, H₃-26 and H₃-27), 1.00, 0.95, 0.88, 0.80 and 0.78 (each 3H, *s*, CH₃)], in addition to nine methylene carbons, three methine carbons and four quaternary carbons. The molecular formula indicated the presence of six units of unsaturation and since there are only two olefinic groups, the compound must be tetracarbocyclic.

The compound formed a monoacetate (12) $[v_{max}$ 1733 cm⁻¹ (C=O), 1246 and 1026 cm⁻¹ (C-O); $\delta_{\rm H}$ 2.05 (3H, *s*, CH₃CO)] upon treatment with acetic anhydride/pyridine and a ketone 13 $[v_{max}$ 1708 cm⁻¹ (C=O)] upon oxidation with pyridinium chlorochromate. The similarity between the A ring carbon shifts of 11 and those of euphol (2) and lanosterol (14) (see Table 3) indicated that C-3 is β -hydroxylated.

Comparison of the ¹³C NMR shifts of the ring carbons of compound 10 with those of lanosterol (14) (see Table 3) revealed differences in the chemical shifts of C-6, C-7, C-9, C-15, C-17 and C-19 ($\Delta \delta_{\rm C}$ 0.7, 1.2, 0.9, 1.0, 0.8 and 1.1). On the other hand, the nuclear carbon shifts for compounds 2 and 11 were virtually identical. This suggested that 11 had a euphane/tirucallane nucleus with a $\Delta^{8,9}$ double bond. The other double bond was hence located in the side chain. The overlapping signals at $\delta_{\rm H}$ 5.58, attributed to two olefinic protons, did not offer much information as to the nature of the double bond. However, when the ¹H NMR spectrum was recorded in C_6D_6 , the signal changed to an AB quartet with one member further coupled to a neighbouring methylene [$\delta_{\rm H}$ 5.67 (1H, ddd, J = 5.9, 7.4 and 15.6 Hz, H-23), and 5.61 (1H, d, J = 15.6 Hz, H-24)], establishing the presence of a trans-double bond in the side chain. The deshielded nature ($\delta_{\rm H}$ 1.31) of the C-25 methyls (H₃-26 and H₃-27) indicated that they must be attached to the fully substituted oxygenated carbon ($\delta_{\rm C}$ 70.8, C-25) which, in turn, must carry the tertiary hydroxyl group. The structure of the side chain is therefore [-CH2- $CH=CH-C(CH_3)_2OH$ which is a fairly common side chain in fungal lanostanes (Vrkoc, Budesinsky, & Dolejs, 1976) and is also known from higher plants (De Pascual Teresa, 1987). The ¹³C NMR shifts of the side chain were virtually identical to the shifts of the corresponding carbons of (23E)-3 β -acetoxycycloart-23en-25-ol (**15**) (see Table 3) from *Euphorbia broteri* (De Pascual Teresa et al., 1987). The compound was therefore (20*R*,23*E*)-eupha-8,23-diene-3 β ,25-diol (**11**) or its 20-epimer (20*S*,23*E*)-tirucalla-8,23-diene-3 β ,25-diol (**16**).

In order to determine the C-20 configuration, 11 was prepared by photo-oxygenation of euphol (2). This reaction is well-known and has been previously carried out for the preparation of (23E)-lanosta-8,23diene-3β,25-diol (17) from lanosterol acetate (Nagano, Poyser, Cheng, Luu et al., 1977). The physical properties of synthetic 11 were identical to those of the natural product and established its identity as (20R, 23E)eupha-8,23-diene-3 β ,25-diol. The other product of the photo-oxygenation was one of the two 24-hydroxy isomers of eupha-8,25-diene-3β,24ξ-diol (18). The configuration at C-24, however, was not assigned. The ¹³C assignments for the nuclei of compounds 11 and 18 were made by comparison with those of euphol (2) while the shifts for the side chains of both 11 and 18 were assigned by comparison with the corresponding carbons of compound 15 (see Table 3).

The photo-oxygenation of lanosterol (13) was repeated since the ¹³C NMR shifts for (23*E*)-lanosta-8,23-diene-3 β ,25-diol (17) were not available in the literature and they are useful for purposes of comparison. In addition to 17, an inseparable mixture of the 24*R*- and 24*S*-isomers of 19 was also obtained. Oxidation of this mixture with MnO₂ gave 3 β -hydroxylanosta-8,25-dien-24-one (20). The ¹³C NMR shifts of 17 and 20 are reported below (see Experimental Section 3).

3. Experimental

Mps: uncorr. $[\alpha]_{D}$: CHCl₃. UV: EtOH. IR: CCl₄. NMR: 500 MHz (¹H) and 125 MHz (¹³C) in CDCl₃ relative to TMS at $\delta = 0.00$. ¹³C multiplicities were determined using the DEPT pulse sequence. CC: silica gel (Baker, 40 µm) or C₁₈ (Bakerbond, 40 µm). GPC: Sephadex LH-20 (CHCl₃–MeOH, 1:1). HPLC: silica gel (Partisil, 5 µm, 4.6 × 250 mm) or C₁₈ (Whatman ODS2, 5 µm, 4.6 × 250 mm); RI detection.

The leaves and bark of *Tripetalum cymosum* were obtained from the Forest Research Institute, Lae, Papua New Guinea (voucher no. 8866). A specimen (TC1) is retained in the Dept. of Chemistry, NUS. The samples were air dried and ground. The ground materials (1 kg bark, 280 g leaves) were then subjected to exhaustive extraction using hot hexane and concentrated in vacuo to afford the crude leaf extract (4.8 g) and the crude bark extract (1.8 g).

3.1. Bark extract

CC of the extract (silica gel, 3-5% EtOAc-hexane gradient) afforded two frs. HPLC [silica gel, 6.25%EtOAc-hexane followed by C₁₈, Me₂CO-H₂O-AcOH (88:11:1)] of fr 1 (708 mg) afforded glutin-5-en-3 β -ol (1) (10.8 mg), euphol (2) (367 mg) and eupha-7,24dien-3 β -ol (butyrospermol) (3) (20 mg). Fr 2 (263 mg) was also subjected to HPLC [silica gel, 6.25% EtOAchexane, followed by C₁₈, Me₂CO-H₂O-AcOH (88:11:1)] to give 2 (147 mg), 3 (30 mg) and dammara-20,24-dien-3 β -ol (4) (4.6 mg).

3.2. Glutin-5-en-3 β -ol (1)

Colourless solid, mp. 207–208° (CH₃OH-CHCl₃) (lit. 209–210°C (Mahato, Das, & Sahu, 1981); $[\alpha]_D + 52.5$ (*c* 0.32) (lit. + 61.0 [17]). FT–IR v_{max} cm⁻¹: 3375 (OH), 1448 and 1373 (*gem*-dimethyl). EI–MS *m/z* (rel. int.): 426 [M]⁺ (15), 408 [M-H₂O]⁺ (23), 274 [C₂₀H₃₄]⁺ (100), 259 [C₂₀H₃₄-CH₃]⁺ (78), 205 (50), 152 [C₁₀H₁₆O]⁺ (13), 137 (52), 134 [C₁₀H₁₄]⁺ (82), 121 (51), 119 (49), 109 (53), 95 (63), 81 (53), 69 (62), 55 (74); HREI–MS: *m/z* 426.3859 (C₃₀H₅₀O requires *m/z* 426.3862). ¹H NMR and ¹³C NMR spectra were identical to those in the literature (Kitajima, Arai, & Tanaka, 1994; Carvalho, & Seita, 1993).

3.3. Eupha-8,24-dien-3 β -ol (Euphol) (2)

Colourless needles, mp. 114–115°C (CH₃OH) (lit. 115–116°C (De Pascual Teresa, 1987); $[\alpha]_D$ +30.0 (*c* 0.30), +29.4 (*c* 4.40, C₆H₆) (lit. +31.0, CHCl₃ [18]). FT–IR v_{max} cm⁻¹: 3481 (OH), 1670, 1454 and 1374 (*gem*-dimethyl), 1024 (C–O). EI–MS *m/z* (rel. int.): 426 [M] ⁺ (21), 135 (15), 133 (15), 121 (20), 119 (16), 109 (37), 107 (20), 105 (18), 95 (28), 81 (27), 79 (12), 69 (100), 67 (18), 55 (46), 43 (29), 41 (59); HREI–MS: *m/z* 426.3860 (C₃₀H₅₀O requires *m/z* 426.3862). ¹H NMR: see Table 9; ¹³C NMR: see Table 3.

3.4. Euphol acetate

The alcohol **1** (10 mg) was acetylated with Ac₂O– pyridine. After the usual workup, CC of the residue (silica gel, 1% EtOAc–hexane) yielded the monoacetate (**5**) (9 mg) as a colourless solid, mp. 107–109° (CH₃OH) (lit. 107–109°C (De Pascual Teresa, 1987). [α]_D + 37.2 (*c* 0.91) (lit. + 38.5 [18]). IR ν_{max} cm⁻¹: 1724 (C=O), 1443 and 1361 (*gem*-dimethyl), 1242 and 1019 (C–O). EI–MS *m/z* (rel. int.): 468 [M] ⁺ (18), 453 [M-CH₃] ⁺ (57), 408 [M–AcOH] ⁺ (9), 393 [M–CH₃– AcOH] ⁺ (58), 109 (41), 95 (36), 69 (100), 55 (49). HREI–MS: *m/z* 468.3939 (C₃₂H₅₂O₂ requires *m/z* 468.3967); ¹H NMR (300 MHz): δ 5.10 (1H, *br t*, *J* = 7.0 Hz, H-24), 4.50 (1H, *dd*, *J* = 4.7 and 11.7 Hz, H-3 α), 2.05 (3H, *s*, CH₃CO), 1.69, 1.61 (each 3H, *s*, H₃-26, H₃-27), 0.98, 0.884 (each 3H, *s*, CH₃), 0.876 (6H, *s*, 2 × CH₃), 0.86 (3H, *d*, *J* = 6.2 Hz, H₃-21), 0.75 (3H, *s*, CH₃); ¹³C NMR (300 MHz): δ 171.0 (*s*), 134.0 (*s*), 133.7 (*s*), 130.9 (*s*), 125.2 (*d*), 81.0 (*d*), 51.1 (*d*), 50.1 (*s*), 49.7 (*d*), 44.2 (*s*), 37.9 (*s*), 37.2 (*s*), 35.9 (*d*), 35.4 (*t*), 35.0 (*t*), 30.9 (*t*), 29.8 (*t*), 28.1 (*t*), 28.0 (*q*), 27.6 (*t*), 25.7 (*q*), 24.8 (*t*), 24.5 (*q*), 24.3 (*t*), 21.6 (*t*), 21.3 (*q*), 20.2 (*q*), 18.92 (*q*), 18.86 (*t*), 17.7 (*q*), 16.6 (*q*), 15.6 (*q*).

3.5. Eupha-7,24-dien-3 β -ol (Butyrospermol) (3)

Gum (lit. 108–110°C (De Pascual Teresa, et al., 1987); $[\alpha]_{\rm D}$ –4.5 (*c* 0.70) (lit. –12.0 [18]). FT–IR $v_{\rm max}$ cm⁻¹: 3448 (OH), 1458 and 1376 [*gem*-dimethyl]. EI– MS *m*/*z* (rel. int.): 426 [M] ⁺ (26), 411 [M-CH₃] ⁺ (100), 393 (48). HREI–MS: *m*/*z* 426.3835 (C₃₀H₅₀O requires *m*/*z* 426.3862); ¹H and ¹³C NMR spectra identical to lit. values (De Pascual Teresa, 1987).

3.6. Dammara-20,24-dien-3 β -ol (4)

Colourless solid, mp. 133–134°C (CH₃OH) (lit. 136– 138°C (Mills, & Werner, 1955); $[\alpha]_D$ + 28.5 (*c* 0.40) (lit. +47 [20]). FT–IR v_{max} cm⁻¹: 3500 (OH), 1637 (C=C), 1452 and 1376 (*gem*-dimethyl). EI–MS *m/z* (rel. int.): 426 [M]⁺ (18), 357 (5); HREI–MS: *m/z* 426.3851 (C₃₀H₅₀O requires *m/z* 426.3862). ¹H NMR: δ 5.13 (1H, *t sept*, *J* = 1.4 and 7.0 Hz, H-24), 4.74 (1H, *br s*, H-21), 4.71 (1H, *br s*, *J* = 1.5 Hz, H-21), 3.20 (1H, *dd*, *J* = 4.9 and 11.3 Hz, H-3 α), 1.69, 1.62 (each 3H, *br s*, H₃-26 and H₃-27), 0.980, 0.977, 0.87, 0.85, 0.78 (each 3H, *s*, CH₃), 0.74 (1H, *dd*, *J* = 2.3 and 12.0 Hz, H-5). ¹³C NMR: see Table 1. Difference NOE: H₃-28 [H-3 α (4.8), H-5], H₃-30 [H₃-19 (0.8)], H₃-19 [H₃-30 (2.2), H₃-29 (1.1)], H₃-29 [H₃-28 (0.6), H₃-19 (1.7)].

3.7. Leaf extract

CC on silica gel (acetone-hexane gradient) gave sixteen frs. GPC of fr 1 (398 mg) followed by recrystallisation (CHCl₃-hexane) gave friedelin (8) (22 mg) which was identified by comparison with an authentic sample. CC (silica gel, 4% EtOAc-hexane) and HPLC (silica gel, 2% EtOAc-hexane) of the concentrated mother liquors (114 mg) afforded carvophyllene oxide (7) (10.5 mg). Fr 2 (735 mg) was subjected to GPC, CC (silica gel, 7% acetone-hexane) and HPLC (silica gel, 1% acetone-hexane) to give euphol (2) (323 mg). Fr 3 contained mainly 2 and was not further investigated. Fr 4 contained mainly putranjivic acid (9). Fr 5 (242 mg) was subjected to GPC and CC (C_{18} , 85% acetone-H2O), followed by HPLC (C18, 90% acetone-H₂O) to afford putranjivic acid (9) (30 mg). Fr 6 (293 mg) was not investigated as TLC of this fraction revealed no distinct spots. Frs 7 and 8 (534 mg) were combined, and upon GPC, CC (twice, C_{18} , 76% acetone–water, followed by silica gel, CH_2Cl_2) and final purification by HPLC (silica gel, 12% acetone–hexane) afforded (20*R*,23*E*)-eupha-8,23-diene-3 β ,25-diol (**11**) (18 mg).

3.8. (6R,7R)-Caryophyllene oxide (7)

Colourless solid, mp. 57–58° (CH₃OH) (lit. 61–62°C (Nishiya et al., 1992); $[\alpha]_D$ –63.1 (*c* 0.70) (lit. –66.7 (Nishiya et al., 1992). FT–IR v_{max} cm⁻¹: 2932, 1630, 1454, 1383, 864. HREI–MS: *m/z* 220.1834 (C₁₅H₂₄O requires *m/z* 220.1827); ¹H and ¹³C NMR spectra identical to literature values (Heymann et al., 1994).

3.9. Putranjivic acid (9)

Colourless needles, mp. 178–180°C (CH₃OH) (lit. 173.0–173.5°C (Aoyagi, Tsuyuki, & Takahashi, 1973); $[\alpha]_D - 4.6$ (*c* 0.51) (lit. -12 (Aoyagi, Tsuyuki, & Takahashi, 1973). FT–IR v_{max} cm⁻¹: 3283–2614 (carboxylic OH), 1708 (C=O). EI–MS m/z (rel. int.): 442 [M] ⁺ (6), 427 (10), 205 (66); HREI–MS: m/z 442.3814 (C₃₀H₅₀O₂ requires m/z 442.3811). ¹H NMR: δ 5.62 (1H, *dd*, J = 10.7 and 17.4 Hz, H-4), 4.93 (1H, *d*, J = 10.7 Hz, H-23*E*), 4.91 (1H, *d*, J = 17.4 Hz, H-23*Z*), 2.33 (2H, *m*, H₂-2), 1.18 (3H, *s*, H₃-5), 1.02 (3H, *s*, CH₃), 1.00 (6H, *s*, 2 × CH₃), 0.95 (3H, *s*, CH₃), 0.89 (3H, *s*, CH₃). ¹³C NMR: see Table 2.

3.10. Methylation of 9

The acid (9 mg) was methylated with CH_2N_2 . CC of the residue (silica gel, 1% EtOAc-hexane) afforded methyl putranjivate (10) (6.0 mg) as a colourless solid, mp. 135-137° (CH₃OH) (lit. 136.0-136.5°C (Aoyagi, Tsuyuki, & Takahashi, 1973); $[\alpha]_{D} = 5.5$ (c 0.58) (lit. -8.3 (Aoyagi, Tsuyuki, & Takahashi, 1973). FT-IR v_{max} cm⁻¹: 1740 (C=O), 1241 and 1049 (C–O). EI–MS m/z (rel. int.): 456 [M]⁺ (9), 441 [M-CH₃]⁺ (14), 331 (8), 301 (9), 273 (23), 250 (19), 223 (52), 218 (57), 205 (85), 95 (100). HREI-MS: *m*/*z* 456.3988 (C₃₁H₅₂O₂ requires m/z 456.3967). ¹H NMR: δ 5.61 (1H, d, J = 10.8 and 17.4 Hz, H-4), 4.92 (1H, d, J = 10.7 Hz, H-23*E*), 4.90 (1H, d, J = 17.4 Hz, H-23*Z*), 3.63 (3H, s, OCH₃), 2.29 (2H, m, H₂-2), 1.17 (3H, s, H₃-5), 1.02 (3H, s, CH₃), 0.99 (6H, s, 2 × CH₃), 0.98 (3H, s, CH₃), 0.94 (3H, s, CH₃), 0.88 (3H, s, CH₃). ¹³C NMR: see Table 2.

3.11. (20*R*,23*E*)-Eupha-8,23-diene-3β,25-diol (11)

Gum. $[\alpha]_{D}$ + 17.0 (*c* 0.45). IR v_{max} cm⁻¹: 3380 (OH), 1455 and 1374 (*gem*-dimethyl), 1025 (C–O). EI–MS m/z (rel. int.): 442 [M]⁺ (4), 424 [M-H₂O]⁺ (32),

409 $[M-H_2O-CH_3]^+$ (82), 391 $[M-2H_2O-CH_3]^+$ (42), 109 (100); HREI-MS: m/z 442.3806 (C₃₀H₅₀O₂ requires m/z 442.3811). ¹H NMR: δ 5.58 (2H, br s, H-23 and H-24), 3.23 (1H, dd, J = 4.5 and 11.7 Hz, H-3 α), 2.34 (1H, br d, J = 12.7 Hz), 1.31 (6H, s, H₃-26 and H₃-27), 1.00, 0.95, 0.88 (each 3H, s, CH₃), 0.82 (3H, d, J = 6.0 Hz, H₃-21), 0.80, 0.78 (each 3H, s, CH₃). ¹H NMR (C₆D₆): δ 5.67 (1H, ddd, J = 5.9, 7.4 and 15.6 Hz, H-23), 5.61 (1H, d, J = 15.6 Hz, H-24), 3.07 (1H, m, H-3 α), 2.43 (1H, br d, J = 8.1 Hz), 1.25 (6H, s, H₃-26 and H₃-27), 1.04, 0.96, 0.93 (each 3H, s, CH₃), 0.93 (3H, d, J = 6.1 Hz, H₃-21), 0.87, 0.85 (each 3H, s, CH₃). ¹³C NMR: see Table 3.

3.12. Acetylation of 11

The diol (11) (7.5 mg) was acetylated with Ac₂O– pyridine. The crude product was purified by HPLC (silica gel, 7% acetone–hexane) to give the monoacetate (12) (4 mg) as a colou'rless solid, mp. 112–113° (CHCl₃). IR v_{max} cm⁻¹: 1733 (ester C=O), 1456 and 1372 (gem-dimethyl), 1246 and 1026 (C–O). EI–MS m/z (rel. int.): 484 [M] ⁺ (25), 466 (23), 452 (84), 370 (89); HREI–MS: m/z 484.3930 (C₃₂H₅₂O₃ requires m/z484.3916). ¹H NMR: δ 5.58 (2H, m, H-23 and H-24), 4.50 (1H, dd, J = 4.6 and 11.8 Hz, H-3 α), 2.34 (1H, br d, J = 12.6 Hz), 2.05 (3H, s, CH₃CO), 1.31 (6H, s, H₃-26 and H₃-27), 0.98, 0.884 (each 3H, s, CH₃), 0.876 (6H, s, 2 × CH₃), 0.82 (3H, d, J = 5.9 Hz, H₃-21), 0.77 (3H, s, CH₃).

3.13. Oxidation of 11

The alcohol **11** (11.5 mg) was oxidised with PCC in CH₂Cl₂. The crude product was purified by flash chromatography (silica gel, 7% acetone–hexane) to give the ketone **13** (2 mg) as a colourless solid, mp. 132– 133° (CHCl₃). IR v_{max} cm⁻¹: 1708 (C=O), 1459 and 1376 (*gem*-dimethyl). EI–MS *m*/*z* (rel. int.): 440 [M] ⁺ (11), 407 (70), 325 (97); HREI–MS: *m*/*z* 440.3640 (C₃₀H₄₈O₂ requires *m*/*z* 440.3654). ¹H NMR: δ 5.59 (2H, *m*, H-23 and H-24), 2.56 (1H, *ddd*, *J* = 7.5, 10.0 and 15.9 Hz, H-2 α), 2.47 (1H, *ddd*, *J* = 3.9, 7.7 and 15.9 Hz, H-2 β), 2.35 (1H, *br d*, *J* = 12.4 Hz), 1.32 (6H, *s*, H₃-26 and H₃-27), 1.10, 1.062, 1.057, 0.90 (each 3H, *s*, CH₃), 0.83 (3H, *d*, *J* = 6.0 Hz, H₃-21), 0.78 (3H, *s*, CH₃).

3.14. Photo-oxygenation of euphol (2)

A mixture of euphol (260 mg) and methylene blue (1.5 mg) in EtoH (30 ml) was irradiated with a 500 W lamp. The reaction mixture was stirred rapidly to effect the introduction of oxygen and its temperature was maintained at 25° . Upon consumption of the euphol, excess NaBH₄ was added and the reaction mixture was

stirred for 15 mins. Water was then added to decompose unreacted NaBH₄ and the EtOH was distilled off. The crude product was partitioned between CH₂Cl₂ and water. The organic layer was dried with Na₂SO₄, concentrated and flash chromatographed (silica gel, 8% acetone-hexane) to give (20*R*)-eupha-8,25-diene- 3β ,24 ξ -diol (18) (17 mg) and (20*R*,23*E*)-eupha-8,23-diene- 3β ,25-diol (11) (31 mg), identical to the natural product.

3.15. (20R)-Eupha-8,25-diene-3β,24ξ-diol (18)

Gum. $[\alpha]_D + 19.1$ (*c* 1.70). IR v_{max} cm⁻¹: 3389 (OH), 1465 and 1374 (*gem*-dimethyl), 1025 (C–O). EI– MS *m/z* (rel. int.): 442 [M] ⁺ (25), 427 (34), 409 (100), 391 (42), 175 (27), 173 (24), 149 (27), 133 (36); HREI– MS: *m/z* 442.3801 (C₃₀H₅₀O₂ requires *m/z* 442.3811). ¹H NMR: δ 4.92, 4.83 (each 1H, *br s*, H₂-26), 4.01 (1H, *t*, *J* = 6.1 Hz, H-24), 3.23 (1H, *dd*, *J* = 4.5 and 11.7 Hz, H-3 α), 1.72 (3H, *br s*, H₃-27), 0.99, 0.94, 0.86 (each 3H, *s*, CH₃), 0.85 (3H, *d*, *J* = 6.2 Hz, H₃-21), 0.79, 0.75 (each 3H, *s*, CH₃); ¹³C NMR: δ 147.6 (*s*), 134.0 (*s*), 133.5 (*s*), 111.1 (*t*), 79.0 (*d*), 76.6 (*d*), 51.0 (*d*), 50.0 (*s*), 49.7 (*d*), 44.1 (*s*), 38.9 (*s*), 37.3 (*s*), 36.0 (*d*), 35.3 (*t*), 31.6 (*t*), 31.1 (*t*), 30.9 (*t*), 29.8 (*t*), 28.0 (*q*), 28.0 (*t*), 27.9 (*t*), 27.7 (*t*), 24.5 (*q*), 21.5 (*t*), 20.1 (*q*), 19.0 (*q*), 18.9 (*t*), 17.4 (*q*), 15.7 (*q*), 15.5 (*q*).

3.16. Photo-oxygenation of lanosterol (13)

Commercially obtained lanosterol (250 mg) (which contained dihydrolanosterol as impurity) was used. The procedure and the workup are as described above. The crude product was flash chromatographed (silica gel, 15% EtOAc-hexane) to give unreacted dihydrolanosterol (44.1 mg), (23*E*)-lanosta-8,23-diene-3 β ,25-diol (17) (25.4 mg) and a mixture of the 24-epimers of lanosta-8,25-diene-3 β ,24-diol (19) (25.5 mg).

3.17. (23E)-Lanosta-8,23-diene-3β,25-diol (17)

Colourless plates, mp. 197–198°C (CHCl₃), (lit. 192.5–193.5°C (Nagano et al., 1977); $[\alpha]_{\rm D}$ + 46.5 (*c* 1.40). IR $v_{\rm max}$ cm⁻¹: 3450 (OH), 1454 and 1372 (*gem*-dimethyl). EI–MS m/z (rel. int.): 442 [M]⁺ (3), 424 [M–H₂O]⁺ (12), 409 [M–H₂O–CH₃]⁺ (35), 391 [M–2H₂O–CH₃]⁺ (27), 109 (100); HREI–MS: m/z 442.3802 (C₃₀H₅₀O₂ requires m/z 442.3811). ¹H NMR: δ 5.59 (2H, *br s*, H-23 and H-24), 3.23 (*dd*, *J* = 4.5 and 11.6 Hz, H-3 α), 1.31 (6H, *s*, H₃-26 and H₃-27), 1.00, 0.98 (each 3H, *s*, CH₃), 0.89 (3H, *d*, *J* = 5.9 Hz, H₃-21), 0.87, 0.81, 0.69 (each 3H, *s*, CH₃). ¹³C NMR: see Table 3.

3.18. Mixture of 24-epimers of lanosta-8,25-diene-3 β ,24-diol (19)

¹H NMR: δ 4.92 (2H, quintet of d, J = 0.9, 5.7 Hz, 2 × H-26), 4.83 (2H, m, 2 × H-26), 4.01 (2H, t, 2 × H-24), 3.23 (2H, dd, J = 4.5 and 11.6 Hz, 2 × H-3 α), 1.72 (6H, br s, 2 × H₃-27), 1.00, 0.98 (each 6H, s, 2 × CH₃), 0.91 (6H, d, J = 6.3 Hz, 2 × H₃-21), 0.87, 0.81, 0.69 (each 6H, s, 6 × CH₃). ¹³C NMR: δ 147.8 (s), 147.5 (s), 134.5 (s), 134.4 (s), 111.4 (t), 110.9 (t), 79.0 (d), 76.8 (d), 76.3 (d), 50.4 (d), 50.3 (d), 49.8 (s), 44.5 (s), 38.9 (s), 37.1 (s), 36.3 (d), 35.6 (t), 31.95 (t), 31.92 (s), 31.7 (t), 31.5 (t), 31.0 (t), 30.9 (t), 28.2 (t), 28.1 (t), 28.0 (q), 27.9 (t), 26.5 (t), 24.3 (q), 21.0 (t), 19.2 (q), 18.7 (q), 18.3 (t), 17.6 (q), 17.2 (q), 15.8 (q), 15.4 (q).

3.19. β -Hydroxylanosta-8,25-dien-24-one (20)

The mixture of 24-epimers of 19 (8 mg) was dissolved in C₆H₆. Activated MnO₂ in C₆H₆ was added to the soln and the reaction mixture was stirred and monitored by TLC. MnO₂ was removed by filtration through Celite and the crude product obtained was purified by HPLC (DIOL, 10% EtOAc-hexane) to afford 20 (4.1 mg) as a colourless solid, mp. 152-153° (CHCl₃). IR v_{max} cm⁻¹: 1682 (C=O), 1453 and 1372 (gem-dimethyl). EI-MS m/z (rel. int.): 440 [M]⁺ (16), 425 (53), 407 (70); HREI-MS: m/z 440.3648 $(C_{30}H_{48}O_2 \text{ requires } m/z 440.3654)$. ¹H NMR: δ 5.95 (1H, br s, H-26), 5.75 (1H, br s, H-26), 3.23 (1H, dd, J = 4.6 and 11.6 Hz, H-3 α), 2.72 (1H, ddd, J = 5.3, 10.3 and 15.8 Hz, H-23), 2.61 (1H, ddd, J = 5.9, 10.0 and 15.8 Hz, H-23), 1.87 (3H, br s, H₃-27), 0.91 (3H, d, J = 6.3 Hz, H₃-21), 1.00, 0.98, 0.88, 0.81 and 0.70 (each 3H, s, CH₃). ¹³C NMR: 202.9 (s), 144.6 (s), 134.5 (s), 134.4 (s), 124.2 (t), 79.0 (d), 50.4 (2 × d), 44.6 (s), 38.9 (s), 37.1 (s), 36.3 (d), 35.6 (t), 34.7 (t), 31.1 (t), 31.0(t), 30.8(t), 28.2(t), 28.0(q), 27.9(t), 26.5(t),24.3 (q), 21.0 (t), 19.2 (q), 18.6 (q), 18.3 (t), 17.8 (q),15.8 (q), 15.4 (q).

Acknowledgements

We thank the National University of Singapore for financial support and for the award of a postgraduate scholarship (to Y.-W.L.).

References

- Akihisa, T., Yamamoto, K., Tamura, T., Kimura, Y., Iida, T., Nambara, T., & Chang, F. C. (1992). *Chem. Pharm. Bull.*, 40, 789.
- Aoyagi, R., Tsuyuki, T., & Takahashi, T. (1973). Bull. Chem. Soc. Japan, 46, 692.
- Bandaranayake, W. M., Karunanayake, S., Sotheeswaran, S., & Sultanbawa, M. U. S. (1980). *Indian J. Chem.*, *19B*, 463.

- Bennett, G. J., & Lee, H. H. (1989). Phytochemistry, 28, 967.
- Bennett, G. J., Lee, H. H., & Lowrey, T. K. (1990). *Tetrahedron Letters*, 31, 751.
- Bennett, G. J., Harrison, L. J., Lim, M.-S., Sim, K. Y., Tan, E. C., & Connolly, J. D. (1991). *Phytochemistry*, 30, 3141.
- Bennett, G. J., Harrison, L. J., Sia, G. L., Sim, K. Y., & Connolly, J. D. (1992). *Phytochemistry*, 31, 1325.
- Camele, G., Delle Monache, F., Delle Monache, G., Marini Bettolo, B., & Alves De Lima, R. (1982). *Phytochemistry*, 21, 417.
- Carvalho, L., & Seita, J. (1993). Nat. Prod. Letters, 2, 57.
- Chopra, G. R., Jain, A. C., & Seshadri, T. R. (1969). Indian J. Chem., 7, 1179.
- Damodaran, N. P., & Dev, S. (1968). Tetrahedron, 24, 4113.
- De Pascual Teresa, J., Urones, J. G., Marcos, I. S., Basabe, P., Sexmero Cuadrado, M. J., & Fernandez Moro, R. F. (1987). *Phytochemistry*, 26, 1767.
- Emmons, G. T., Wilson, W. K., & Schroepfer, G. J., Jr (1989). Magn. Reson. Chem., 27, 1012.
- Fisher, F. G., & Seiler, N. (1961). Annalen, 644, 162.
- Gewali, M. B., Hattori, M., Tezuka, Y., Kikuchi, T., & Namba, T. (1990). *Phytochemistry*, 29, 1625.
- Gonzalez, A. G., Ferro, E. A., & Ravelo, A. G. (1987). *Phytochemistry*, 26, 2785.
- Gunasekera, S. P., Sivapalan, K., Sultanbawa, M. U. S., & Ollis, W. D. (1977). J. Chem. Soc., Perkin I, 00, 11.
- Gupta, A. S., & Dev, S. (1971). Tetrahedron, 27, 635.
- Harrison, L. J., Leong, L. S., Leong, Y. W., Sia, G. L., Sim, K. Y., & Tan, H. T. W. (1994). *Nat. Prod. Letters*, *5*, 111.
- Henry, G. E., Jacobs, H., Carrington, C. M., McLean, S., & Reynolds, W. F. (1996). *Tetrahedron Letters*, 37, 8663.
- Heymann, H., Tezuka, Y., Kikuchi, T., & Supriyatna, S. (1994). Chem. Pharm. Bull., 42, 138.
- Iinuma, M., Ito, T., Tosa, H., Tanaka, T., Miyake, R., & Chelladurai, V. (1997). *Heterocycles*, 45, 299.

- Ishiguro, K., Nagareya, N., Suitani, A., & Fukumoto, H. (1997). Phytochemistry, 44, 1065.
- Kitajima, J., Arai, M., & Tanaka, Y. (1994). Chem. Pharm. Bull., 42, 608.
- Kubitzki, K., Lins Mesquita, A. A., & Gottlieb, O. R. (1978). Biochem. Syst. Ecol., 6, 185.
- Lin, Y.-L., Kuo, Y.-H., & Che, Y.-L. (1989). Chem. Pharm. Bull., 37, 2191.
- Mahato, S. B., Das, M. C., & Sahu, N. P. (1981). *Phytochemistry*, 20, 171.
- Maurer, B., & Hauser, A. (1983). Helv. Chim. Acta, 66, 2223.
- McKee, T. C., Fuller, R. W., Covington, C. D., Cardellina, J. H., Gulakowski, R. J., Krepps, B. L., McMahon, J. B., & Boyd, M. R. (1996). *J. Nat. Prod.*, 59, 1108.
- Mills, J. S., & Werner, A. E. A. (1955). J. Chem. Soc., 00, 3132.
- Nagano, H., Poyser, J. P., Cheng, K.-P., Luu, B., Ourisson, G., & Beck, J.-P. J. (1977). Chem. Research M, 2519.
- Nagem, T. J., & Faria, T. de J. (1990). Phytochemistry, 29, 3362.
- Nishiya, K., Kimura, T., Takeya, K., & Itokawa, H. (1992). *Phytochemistry*, *31*, 3511.
- Peres, V., & Nagem, T. J. (1997). Phytochemistry, 44, 191.
- Spino, C., Lal, J., Sotheeswaran, S., & Aalbersberg, W. (1995). *Phytochemistry*, 38, 233.
- Starratt, A. N. (1966). Phytochemistry, 5, 1341.
- Tori, M., Matsuda, R., Sono, M., & Asakawa, Y. (1988). Magn. Reson. Chem., 26, 581.
- Usher, G., in *A Dictionary of Plants Used by Man*. CBS Publishers & Distributors, Delhi, 1984, p. 585.
- Vrkoc, J., Budesinsky, M., & Dolejs, L. (1976). *Phytochemistry*, 15, 1782.
- Willis, J. C., in A Dictionary of Flowering Plants and Ferns, 8th Edn., revised by H. K. A. Shaw. Cambridge University Press, Cambridge, 1973.
- Zhen, G. Q., Kennery, P. M., & Lam, L. K. T. (1992). J. Nat. Prod., 55, 999.