

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 15 (2005) 2771–2775

P₂ pyridine N-oxide thrombin inhibitors: a novel peptidomimetic scaffold

Philippe G. Nantermet,^{a,*} Christopher S. Burgey,^{a,*} Kyle A. Robinson,^a Janetta M. Pellicore,^a Christina L. Newton,^a James Z. Deng,^a Harold G. Selnick,^a S. Dale Lewis,^b Bobby J. Lucas,^b Julie A. Krueger,^b Cynthia Miller-Stein,^c Rebecca B. White,^c Bradley Wong,^c Daniel R. McMasters,^d Audrey A. Wallace,^e Joseph J. Lynch, Jr.,^e Youwei Yan,^f Zhongguo Chen,^f Lawrence Kuo,^f Stephen J. Gardell,^b Jules A. Shafer,^b Joseph P. Vacca^a and Terry A. Lyle^a

^aDepartment of Medicinal Chemistry, Merck Research Laboratories, PO Box 4, West Point, PA 19486, USA ^bDepartment of Biological Chemistry, Merck Research Laboratories, PO Box 4, West Point, PA 19486, USA ^cDepartment of Drug Metabolism, Merck Research Laboratories, PO Box 4, West Point, PA 19486, USA ^dDepartment of Molecular Systems, Merck Research Laboratories, PO Box 4, West Point, PA 19486, USA ^eDepartment of Pharmacology, Merck Research Laboratories, PO Box 4, West Point, PA 19486, USA ^fDepartment of Structural Biology, Merck Research Laboratories, PO Box 4, West Point, PA 19486, USA

> Received 6 January 2005; revised 28 March 2005; accepted 29 March 2005 Available online 29 April 2005

Abstract—In this study, we have demonstrated that the critical hydrogen bonding motif of the established 3-aminopyrazinone thrombin inhibitors can be effectively mimicked by a 2-aminopyridine N-oxide. As this peptidomimetic core is more resistant toward oxidative metabolism, it also overcomes the metabolic liability associated with the pyrazinones. An optimization study of the P₁ benzylamide delivered the potent thrombin inhibitor **21** ($K_i = 3.2 \text{ nM}$, 2xaPTT = 360 nM), which exhibited good plasma levels and half-life after oral dosing in the dog ($C_{\text{max}} = 2.6 \,\mu\text{M}$, $t_{1/2} = 4.5 \,\text{h}$). © 2005 Elsevier Ltd. All rights reserved.

Thrombosis-related disorders such as deep vein thrombosis, pulmonary embolism, and thromboembolic stroke remain a major cause of morbidity worldwide.¹ The limitations associated with current therapies² have driven the search for small-molecule direct inhibitors of specific enzymes involved in the coagulation cascade.³ In this regard, inhibitors of both thrombin and factor Xa have attracted considerable recent attention.⁴ In our laboratories, the search for potent and orally bioavailable direct thrombin inhibitors has led to the evaluation of pyrazinone based small molecule peptidomimetics (**1**, Fig. 1).⁵ Detailed metabolic studies indicated a significant degree of oxidative metabolism around the pyrazinone core.⁶ As a result, we sought to

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2005.03.110

Figure 1. From pyrazinone to pyridine N-oxide.

Keywords: Thrombin; Peptidomimetic.

^{*} Corresponding authors. Tel.: +1 215 652 0945; fax: +1 215 652 3971; e-mail addresses: philippe_nantermet@merck.com; christopher_burgey@ merck.com

identify alternative P_2 peptidomimetic cores that would retain the classical H-bond network with glycine-216 of the enzyme (Fig. 1); one such alternative envisioned was a pyridine N-oxide scaffold.⁷

Preparation of pyridine N-oxide derivative 2, the direct analog of pyrazinone 1, afforded a 6 nM thrombin inhibitor and provided support for this strategy. A cyano group at the 5-position provided a further potency enhancement (Fig. 1, 3). As anticipated, the corresponding neutral pyridine derivatives are significantly less potent against thrombin than their parent compounds (pyridine of 2: $K_i = 620$ nM; pyridine of 3: $K_i = 103$ nM; structures not shown), consistent with the N-oxide oxygen serving as an H-bond acceptor. Additionally, X-ray crystallographic analysis of a related inhibitor 4 bound in the active site of thrombin (Fig. 2, PDB Code: 1Z71) clearly demonstrates the H-bond network with glycine-216.

An initial study focused on incorporating the optimized P_1 groups recently discovered in our laboratories into the P_2 pyridine N-oxide template (Table 1).⁸ Compounds were evaluated for their thrombin inhibitory potency and their functional ability to double the activated partial thromboplastin time (2xaPTT) in human plasma.⁹ The unsubstituted P_1 benzyl amide **5** ($K_i = 150$ nM) functions as the benchmark compound. Installation of the N-linked triazole at the *ortho*-position of the P_1 benzyl or pyridyl group^{8a} yields inhibitors (**6–8**) with both good intrinsic and functional potency. Introduction of a 2-aminomethyl substituent^{8b} also results in a significant potency improvement, as illustrated by compounds **9** and **10**. Incorporation of a meta-chloro substituent affords a significant improvement in intrinsic potency

Figure 2. X-ray crystal structure of 4 bound in the thrombin active site.

	IN	F F H O	Ĥ						
Compd	Х	P ₁	$\frac{K_{i}}{(nM)^{a}}$	2xaPTT (µM)					
5	CN	"N	150	_					
6	Cl	N N N N	2.60	0.46					
7 8	Cl CN		2.50 0.23	0.40 0.15					
9 10	Cl CN	NH2	0.40 <0.01	0.13 0.09					
11 12	Cl CN	Survey CI	0.42 0.08	0.73 0.20					
13 14	Cl H		0.05 1.50	0.23 0.43					
15 16	H CN	N-N NN N CI	0.14 0.002	0.20 0.10					
17 18 19	Cl CN H	NH2	<0.01 0.001 0.04	0.15 0.07 0.10					

 ${}^{a}K_{i}$ values are the average of at least two determinations, standard error of the mean <10%.

(e.g., **12** vs **5**), but, as noted in earlier studies, the concomitant increase in lipophilicity is detrimental to functional activity.¹⁰ The combination of the *ortho*-azole and the *meta*-chloro substituents affords exquisitely potent thrombin inhibitors (**13–16**); for example, compound **16** displays a 2 pM K_i against thrombin, with a 2xaPTT of 100 nM. Similarly, the potency-enhancing aminomethyl and chlorine substituents can be merged

in an additive fashion to yield extremely potent thrombin inhibitors (17–19). The most potent compound produced from this study is 18 ($K_i = 1 \text{ pM}$), displaying a 2xaPTT of 70 nM.

Having completed an investigation of the P₁ SAR, we turned our attention to the evaluation of the pharmacokinetic profile of members of this series (Table 2). Upon oral dosing of aminomethyl derivative 9 (0.65 mpk) to dogs, a 0.82 μ M maximum plasma concentration (C_{max}) and a 1.5 h plasma half-life ($t_{1/2}$) were achieved. The *meta*-chloro analog 17 similarly displayed a promising pharmacokinetic profile ($C_{max} = 0.70 \ \mu$ M, $t_{1/2} = 1.3$ h). As the tri- and tetrazole analogs (13–16) had inferior pharmacokinetic profiles, our efforts focused on the optimization of the P₁ aminomethyl series.

Metabolism studies involving human and dog microsomal incubations revealed that the desired objective of minimizing the extent of P2 metabolism had been achieved; however, P_1 benzylic site oxidation and subsequent N-dealkylation now arose as the primary metabolic pathway. In an attempt to attenuate this metabolism, a study to substitute the benzylic sites was initiated (Table 2). Methylation of the benzylic position alpha to the P_1 amide group (Table 2, Y = Me) and resolution gave access to inhibitors 20 and 21. The more active enantiomer 21 displays an 8-fold loss in binding potency (vs 9) yet maintains good anticoagulant activity ($K_i = 3.2 \text{ nM}$, 2xaPTT = 360 nM); notably, this modification resulted in a significant improvement in the pharmacokinetic profile (21, $C_{\text{max}} = 2.6 \,\mu\text{M}$, $t_{1/2}$ = 4.5 h). Methylation at the other benzylic site was also tolerated, but did not lead to improved dog pharmacokinetics (22-23). Inspection of the X-ray crystal structure of the related inhibitor 4 bound in the active site of thrombin (Fig. 2) suggested that strategic placement of a hydrogen bonding group at the P_1 benzylic position could potentially gain access to an additional interaction with residues contained within the active site (e.g., Ser-195). This analysis is supported by the 5-fold

potency increase (vs 21) attained with the hydroxymethyl analog 24.

The high levels of potency demonstrated by the *ortho*aminomethyl and tetrazole analogs (Table 1, **15–19**) offered the possibility that significant truncation of these molecules could still deliver potent thrombin inhibitors. Accordingly, complete excision of the P₃ binding element afforded inhibitors in the low to mid nanomolar range (Table 3, **25–28**); most notable is compound **28** with a $K_i = 10$ nM and a 2xaPTT = 560 nM (MW = 346). Unfortunately, removal of the P₃ group afforded no significant advantage regarding pharmacokinetic profile.

The synthesis of these P₂ pyridine N-oxide inhibitors is outlined in Scheme 1.¹¹ Protection of 2-amino-6-methyl-

 $^{a}K_{i}$ values are the average of at least two determinations, standard error of the mean <10%.

Compd	Y	Z	$K_{\rm i} ({\rm nM})^{\rm a}$	2xaPTT (μM)	C _{max} (µM)	$t_{1/2}$ (h)		
9	Н	Н	0.40	0.13	0.82^{d}	1.5		
20	Me ^b	Н	260	_	_	_		
21	Me ^b	Н	3.2	0.36	2.6 ^e	4.5		
22	Н	Me ^b	20	5.9		_		
23	Н	Me ^b	0.45	0.27	0.1^{f}	2.0		
24	CH ₂ OH ^c	Н	0.48	0.23	0.34 ^g	1.5		

Table 2. P_1 benzylic substitution

^a K_i values are the average of at least two determinations, standard error of the mean <10%.

^b 20/21 and 22/23 are enantiomeric pairs.

^cSingle enantiomer, absolute configuration not established.

^d po dose = 0.65 mpk.

^e po dose = 0.95 mpk.

^f po dose = 0.7 mpk.

^g po dose = 0.85 mpk.

Scheme 1. Reagents and conditions: (a) Boc_2O ; (b) NCS, DCE; (c) LDA, diethyl carbonate, THF; (d) NaH, DMF, 32;⁵ (e) 1 N LiOH, THF; (f) P₁-NH₂, EDC, HOAt, DMF; (g) TFA, DCM; (h) mCPBA, DCE.

pyridine with di-tert-butyl dicarbonate, followed by regioselective chlorination affords **30**. The pyridylacetate **31** is produced via benzylic metalation of **30** with LDA and subsequent quenching with diethyl carbonate. Alkylation of **31** with the P₃ 2,2-difluoro-2-(2-pyr-idyl)ethyl-trifluoromethanesulfonate **32**⁵ completes the assembly of the key P₃–P₂ subunit **33**. Ester hydrolysis and P₁ amide coupling are followed by deprotection and then pyridine oxidation¹² with mCPBA to afford the final products **34**. The cyano pyridines are prepared via an analogous route starting from 2-amino-5-cyano-6-methylpyridine.

The des- P_3 analogs can be assembled in a similar manner from key intermediate **31**. Base hydrolysis is followed by EDC mediated amide formation. Amine deprotection and final pyridine N-oxidation deliver the des- P_3 thrombin inhibitors.

In conclusion, we have demonstrated that the critical hydrogen bonding motif of the established 3-aminopyrazinone thrombin inhibitors can be effectively mimicked by a 2-aminopyridine N-oxide. As this peptidomimetic core is more resistant toward oxidative metabolism, it also overcomes the metabolic liability associated with the pyrazinones. An optimization study of the P₁ benzyl-amide delivered the potent thrombin inhibitor, **21** which exhibited good plasma levels and half-life after oral dosing in the dog. Studies to explore the generality of 2-aminopyridine N-oxides as peptidomimetics are underway.

Acknowledgments

We thank the analytical chemistry, mass spectroscopy, and NMR analysis groups for their assistance.

References and notes

- (a) Hendriks, D.; Scharpe, S.; van Sande, M.; Lommaert, M. P. J. Clin. Chem. Clin Biochem. 1989, 27, 277–285; (b) Campbell, W.; Okada, H. Biochem. Biophys. Res. Commun. 1989, 162, 933–939; (c) Eaton, D. L.; Malloy, B. E.; Tsai, S. P.; Henzel, W.; Drayna, D. J. Biol. Chem. 1991, 266, 21833–21838; (d) Bajzar, L.; Manuel, R.; Nesheim, M. E. J. Biol. Chem. 1995, 270, 14477–14484.
- 2. Parenteral administration of low molecular weight heparin and intense patient monitoring required with warfarin limit their chronic utility.
- 3. Adang, A. E. P.; Rewinkel, J. B. M. Drugs Future 2000, 25, 369.
- Coburn, C. A. Exp. Opin. Ther. Patents 2001, 11, 1; Sanderson, P. E. J. Ann. Reports Med. Chem. 2001, 36, 79; Vacca, J. P. Ann. Reports Med. Chem. 1998, 33, 81.
- Burgey, C. S.; Robinson, K. A.; Lyle, T. A.; Sanderson, P. E. J.; Lewis, S. D.; Lucas, B. J.; Krueger, J. A.; Singh, R.; Miller-Stein, C.; White, R. B.; Wong, B.; Lyle, E. A.; Williams, P. D.; Coburn, C. A.; Dorsey, B. D.; Barrow, J. C.; Stranieri, M. T.; Holahan, M. A.; Sitko, G. R.; Cook, J. J.; McMasters, D. R.; McDonough, C. M.; Sanders, W. M.; Wallace, A. A.; Clayton, F. C.; Bohn, D.; Leonard, Y. M., Jr.; Detwiler, T. J., Jr.; Lynch, J. J., Jr.; Yan, Y.; Chen, Z.; Kuo, L.; Gardell, S. J.; Shafer, J. A.; Vacca, J. P. J. Med. Chem. 2003, 46, 461–473.
- Singh, R.; Silva Elipe, M. V.; Pearson, P. G.; Arison, B. H.; Wong, B. K.; White, R.; Yu, X.; Burgey, C. S.; Lin, J. H.; Baillie, T. A. *Chem. Res. Toxicol.* 2003, *16*, 198–207; Subramanian, R.; Lin, C. C.; Ho, J. Z.; Pitzenberger, S. M.; Silva-Elipe, M. V.; Gibson, C. R.; Braun, M. P.; Yu, X.; Yergey, J. L.; Singh, R. *Drug Metab. Disposition* 2003, *31*, 1437–14347.
- After completion of this work a patent publication appeared disclosing a similar concept: South, M. S.; Case, B.; Garland, D. J.; Hayes, M. J.; Huang, H-C.; Huang, W.; Jones, D. E.; Neumann, W. L.; Parlow, J. J.; Reitz, D. B.; Rueppel, M. L.; Webber, R. K. WO 02/42272 A2.
- (a) Young, M. B.; Barrow, J. C.; Glass, K. L.; Lundell, G. F.; Newton, C. L.; Pellicore, J. M.; Rittle, K. E.; Selnick,

H. G.; Stauffer, K. J.; Vacca, J. P.; Williams, P. D.; Bohn, D.; Clayton, F. C.; Cook, J. J.; Krueger, J. A.; Kuo, L. C.; Lewis, S. D.; Lucas, B. J.; McMasters, D. R.; Miller-Stein, C.; Pietrak, B. L.; Wallace, A. A.; White, R. B.; Wong, B.; Yan, Y.; Nantermet, P. G. *J. Med. Chem.* **2004**, *47*, 2995– 3008; (b) Rittle, K. E.; Barrow, J. C.; Cutrona, K. J.; Glass, K. L.; Krueger, J. A.; Kuo, L. C.; Lewis, S. D.; Lucas, B. J.; McMasters, D. R.; Morissette, M. M.; Nantermet, P. G.; Newton, C. L.; Sanders, W. M.; Yan, Y.; Vacca, J. P.; Selnick, H. G. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 3477–3482.

- Lewis, S. D.; Ng, A. S.; Lyle, E. A.; Mellott, M. J.; Appelby, S. D.; Brady, S. F.; Stauffer, K. S.; Sisko, J. T.; Mao, S.-S.; Veber, D. F.; Nutt, R. F.; Lynch, J. J.; Cook, J. J.; Gardell, S. J.; Shafer, J. A. *Thromb. Haemost.* **1995**, 74, 1107.
- (a) Lumma, W. C.; Witherup, K. M.; Tucker, T. J.; Brady, S. F.; Sisko, J. T.; Naylor-Olsen, A. M.; Lewis, S. D.; Lucas, B. J.; Vacca, J. P. *J. Med. Chem.* **1998**, *41*, 1011– 1013; (b) Tucker, T. J.; Lumma, W. C.; Lewis, S. D.; Gardell, S. J.; Lucas, B. J.; Baskin, E. P.; Woltmann, R.; Lynch, J. J.; Lyle, E. A.; Appleby, S. D.; Chen, I.-W.; Dancheck, K. B.; Vacca, J. P. *J. Med. Chem.* **1997**, *40*, 1565–1569.
- Nantermet, P. G.; Selnick, H. G.; Barrow, J. C.; Coburn, C.; Burgey, C. S.; Robinson, K. A.; Lyle, T. A. US 2003/ 0158218 A1.
- 12. Oxidation was P_2 regiospecific in the case of the chloro derivatives but in the case of the cyano derivatives careful monitoring of oxidant stoichiometry and reaction time was necessary to avoid over-N-oxidation at the P_3 pyridyl.