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Abstract: An efficient metal-free oxyarylation of electron-poor
alkynes with pyridine N-oxides has been developed. This
transformation affords meta-substituted pyridines analogous to
the drug metyrapone in high regioselectivities. Density func-
tional theory (DFT) calculations provided important insight
into the mechanism. Evaluation of the inhibitory properties
revealed the most active CYP11B1 inhibitor of these deriva-
tives, with two-digit nanomolar inhibitory activity akin to that
of metyrapone.

Metyrapone and its analogues have attracted great atten-
tion in the treatment of Cushing�s syndrome and in the
diagnosis of adrenal insufficiency (Scheme 1). These com-

pounds typically inhibit the 11b-hydroxylase CYP11B1.[1,2]

Their synthesis, however, still remains largely underdevel-
oped. One typical approach relies on the catalytic monoar-
ylation of methyl ketones with aryl chlorides (Scheme 1 a).[3]

Another strategy involves the acylation of 3-picoline with
esters in the presence of a strong base (Scheme 1b).[4]

Recently, the groups of Yu and Sanford developed elegant
meta-C�H activation strategies to gain access to meta-
substituted aryl compounds.[5] In spite of these promising

precedents, we speculated whether the direct activation of the
meta position of pyridine (or a derivative thereof) could be
accomplished (Scheme 1c).

Pyridine N-oxides and derivatives[6] thereof have found
wide applications in pharmaceutical[7] and organic chemistry[8]

owing to their unique reactivity. In 2007, Hiyama and co-
workers reported the nickel-catalyzed arylation of alkynes
with pyridine N-oxides (Scheme 2a),[9] and in 2010, Zhang

and co-workers published a pioneering method for the gold-
catalyzed oxidation of alkynes with pyridine N-oxides. Since
then, a series of catalytic alkyne difunctionalization reactions
with pyridine N-oxides have been developed (Scheme 2b).[10]

Despite this progress, pyridine N-oxides have been rarely
employed as both oxygen source and aryl donor. Very
recently, Li and co-workers successfully realized oxyarylation
reactions of alkynes with quinoline N-oxides using a rhodium-
(III) catalyst (Scheme 2 c).[11] Given our strong interest in the
development of metal-free methods for oxyarylation reac-
tions,[12] we herein report a metal-free oxyarylation of alkynes,
where pyridine N-oxides enable the direct meta-regioselective
preparation of metyrapone analogues (Scheme 2d).[13] We
further report studies on the biological activity of the products
and mechanistic studies.

Initially, the reaction of ethyl phenylpropynoate (1a) with
lutidine N-oxide (2 a) was investigated (Table 1). The desired
oxyarylation product 3a was obtained in 10% yield with 4%
of the decarboalkoxylation product 4a when the reaction
mixture was stirred at 150 8C (microwave irradiation) for
15 min (entry 1). Based on this preliminary result, we first
investigated the impact of reaction time and found that the

Scheme 1. Inhibition of 11b-hydroxylase by metyrapone (Ref. [2i]) and
typical approaches to metyrapone and known analogues.

Scheme 2. Reactions of pyridine N-oxides with alkynes.
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yields of the oxyarylation and decarboalkoxylation products
could be improved by extending the reaction time (entries 1–
3). We next turned our attention to enhancing the production
of decarboalkoxylation product 4a. The yield of 4a indeed
improved to 77% upon increasing the temperature to 200 8C
(entries 4 and 5). It should be noted that low yields were
obtained in dry DMF (entry 6), and we therefore reasoned
that traces of water play an important role in the decarboal-
koxylation event. As expected, using wet DMF and raising the
temperature to 200 8C led to a substantial increase in the
decarboalkoxylation yield of 4 a (entry 7).[14]

With optimized reaction conditions in hand, the scope of
the reaction was briefly investigated with respect to various
pyridine N-oxides (Scheme 3). Pyridine N-oxides with elec-
tron-withdrawing or electron-donating substituents (4-Me,
4-Ph, and 4-CN) all reacted well and gave the desired
products 4b–4d in good yields. For 4d, a lower temperature
was beneficial for enhancing the product yield. Reactions of
ortho-substituted nucleophiles also proceeded well, with
lower yields observed with meta substitution (4e–4g). For
nucleophiles with two non-equivalent meta positions, high
selectivity for the less hindered position was observed (4 f,
11:1 ratio). Notably, the reaction of a challenging 2,4,6-
substituted substrate was also successful (4h). Several differ-
ently substituted quinoline N-oxides were also tested in the
reaction, affording the desired products 4j–4 l in moderate
yields.[15]

The scope of the reaction with respect to the alkyne
coupling partner was also examined (Scheme 4). Aromatic
alkynes with electron-withdrawing or electron-donating sub-
stituents (4-MeC6H4 and 4-ClC6H4) were well tolerated (4m
and 4n). Furthermore, meta- (3-MeC6H4) or ortho-substituted
(2-ClC6H4) arene rings had no negative effect on the reaction
(4o and 4p). Aliphatic alkynes were also found to be suitable
substrates, giving the desired products (4q–4v) in good yields.
Both isopropyl- and tert-butyl-substituted alkynes reacted
smoothly with pyridine N-oxide to afford the corresponding

oxyarylation products in 65 % and 73 % yield with high
regioselectivities (4w and 4x). The method also tolerated
a variety of functional groups, such as ethers, arenes, and
nitriles (4y–4 ab), and these reactions could also be conducted
on gram scale (see the Supporting Information for details).

The products lend themselves to simple modifications
(Scheme 5). For instance, alcohols 5a/5g were easily obtained
in good to very good yields by either hydrogenation or NaBH4

reduction. Wolff–Kishner reduction is also possible (6a).
To gain insight into the factors determining the selectivity

of this process, we conducted computational studies.[16] The
parent substrate pyridine N-oxide (2 i) and phenylacetylene
(1a) were used as model substrates. As shown in Scheme 6,
the formation of key cyclopropane D involves the generation
of the formal (3+2) cycloadduct C and a subsequent pseudo-
pericyclic reaction.[17] The initial process A!D is both highly
feasible (DG�

max = 22.4 kcalmol�1) and favorable (DG =

Table 1: Optimization of the reaction conditions.

Entry Solvent T t Yield[a] [%]
[8C] [min] 3a 4a

1 neat 150 15 10 4
2 neat 150 45 21 8
3 neat 150 120 45 19
4[b] neat 150 60 ND 67
5[c] neat 150 60 ND 77 (82)
6 DMF 150 60 3 20
7[d] DMF 200 60 ND 83 (81)

[a] Determined by 1H NMR analysis using mesitylene as an internal
standard. Yields of isolated products given in parentheses. [b, c] After the
indicated reaction time, DMF (2.0 mL) and H2O (12 equiv) were added;
then the mixture was stirred for 20 min at [b] 150 8C (MW) or [c] 200 8C
(MW). [d] H2O (12 equiv) added. ND =not detected.

Scheme 3. Scope of pyridine N-oxides in the metal-free oxyarylation of
alkynes. All reactions were carried out on 0.2 mmol scale. [a] The
reaction was stirred at 150 8C for 1 h, then H2O (12 equiv) was added,
and the mixture was stirred in DMF at 200 8C (MW) for 20 min.

Scheme 4. Alkyne scope of the oxyarylation reaction. All reactions were
carried out on 0.2 mmol scale.
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�46.4 kcalmol�1) under the reaction conditions, with the final
step being irreversible (C!D). Interestingly, the (3+2)
cycloaddition event proceeds via discrete vinyl anion B,[18]

with the final concerted [3,5] rearrangement (TSC-D) being
symmetry-allowed owing to the participation of the orthog-
onal oxygen lone pair.

The reaction pathway from D to b-ketoester 3 i is depicted
in Scheme 7. The oxyarylation process was found to proceed
more efficiently in the presence of both water and DMF (see
Table 1), strongly suggesting that water may (re)actively
participate in the reaction pathway leading to transient
b-ketoester 3. In accordance with this observation, we
evaluated mechanistic scenarios in the absence and presence
of explicit solvent molecules. Our computational data indeed
suggest that water facilitates the formation of b-ketoester 3 i
by acting as a proton shuttle (see TSF’-G’/TSE’-G’, Scheme 7).[19]

Furthermore, the anticipated[14] direct cyclopropane opening/
rearomatization sequence was found to be kinetically disfa-
vored by DDG = 4.9 kcalmol�1 over yet another pseudoper-
icyclic [3,5] rearrangement, which leads to dihydrofuran E’ in
the presence of water (Scheme 7). The preference of cyclo-
propane D’ to undergo a [3,5] rearrangement (TSD’-E’) can also
be deduced from an analysis of its LUMO.[20] This step
(TSD’-E’) is rate-determining (DG� = 30.3 kcalmol�1).

Once formed, dihydrofuran E’ can undergo a water-
mediated proton transfer/rearomatization sequence (TSE’-G’)

affording ketene acetal G’, which is followed by exergonic
water-assisted tautomerization (TSG’-H’) to generate ketoester
H’ (= 3 i and H2O). Alternatively, an initial [1,5] sigmatropic
rearrangement of dihydrofuran E’ (TSE’-F’) followed by water-
mediated proton transfer/rearomatization (TSF’-G’) also leads
to G’. In light of the small energy difference between the two
processes (TSE’-G’ vs. TSE’-F’: DDG�< 1.0 kcal mol�1), both
pathways should be operative. Finally, hydrolysis and sub-
sequent decarboxylation of b-ketoester 3 i give rise to ketone
4 i.[21]

Selected compounds were tested for inhibition of the
human 11b-hydroxylase CYP11B1 and its isozyme CYP11B2
(aldosterone synthase, 93 % sequence homology). Four com-
pounds, namely 4b, 4e, 4n, and 4o, showed strong inhibition
of both enzymes, with 4o also displaying two-digit nanomolar
inhibitory activity like metyrapone (Table 2).

Clearly, small electron-donating groups in the meta and
para position to the heme-binding pyridyl nitrogen atom are
important structural requirements for inhibition. Bulky
moieties or substituents ortho to the pyridyl nitrogen atom
lead to less active or inactive compounds. These compounds
are good starting points for structural optimization to
enhance CYP11B1 inhibition and the selectivity towards
CYP11B2, in particular, as this enzyme must not be inhibited
with similar potency to avoid side effects in the treatment of
Cushing�s syndrome.

In summary, we have developed a metal-free oxyarylation
of alkynes with pyridine N-oxides, providing the correspond-
ing meta-substituted pyridines in moderate to good yields
with high regioselectivities. Metyrapone analogues were thus
readily synthesized. Furthermore, computational studies have
revealed that the oxyarylation proceeds through an unex-
pected elaborate rearrangement cascade involving rather
unusual [3,5] pseudopericyclic reactions. The process devel-
oped herein resulted in a series of hit compounds as good

Scheme 5. Derivatization of the oxyarylation products.

Scheme 6. Energy profile for the formation of key cyclopropane D
through a [3,5] rearrangement of the formal (3+2) cycloaddition
product C. The free enthalpies DGDMF and enthalpies DHDMF are given
with respect to association complex A. Distances are given in �.

Scheme 7. Energy profile for the generation of transient b-ketoester 3 i
(see H’) in the presence of water. Free enthalpies DGDMF and
enthalpies DHDMF are given with respect to association complex D’
(= D+ H2O). Distances are given in �.
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starting points for further optimization by common medicinal
chemistry strategies.
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Metal-Free meta-Selective Alkyne
Oxyarylation with Pyridine N-Oxides:
Rapid Assembly of Metyrapone
Analogues

New leads : The title reaction affords
meta-substituted pyridines analogous to
the drug metyrapone with high regiose-
lectivities. DFT calculations revealed an
elaborate rearrangement cascade involv-

ing unusual [3,5] pseudopericyclic reac-
tions. Biological studies indicate that
some of these products are active
CYP11B1 inhibitors.
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