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Abstract: A mild, catalytic, atom economical syn-
thesis of imidazo ACHTUNGTRENNUNG[1,2-a]pyridines has been devel-
oped: catalytic dichloro(2-pyridinecarboxylato)gold
[PicAuCl2] in the presence of an acid produces
a range of imidazo ACHTUNGTRENNUNG[1,2-a]pyridines in good yields
starting from alkynes and 2-aminopyridine N-
oxides. This strategy is mild and foreseen to be of
particular use for the installation of stereogenic
centers adjacent to the imidazoACHTUNGTRENNUNG[1,2-a]pyridine ring
without loss of enantiomeric excess.
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The possibility of forming an a-oxo gold carbenoid
species through an oxygen transfer reaction using an
alkyne and a nucleophilic oxide (initially a sulfoxide)[1]

was first exploited in 2007 and this concept has subse-
quently been expanded: specifically one area in which
this redox chemistry has been developed is the ac-
commodation of pyridine N-oxides[2] which serve as
the oxidant in the formation of the a-oxo gold carbe-
noid species (Scheme 1).[3] This reaction combination
has utilized both intra- and intermolecular attack of
the N-oxide moiety on the alkyne, however, in cases
where the N-oxide has been utilized in an intermolec-
ular reaction a stoichiometric amount of pyridine
waste is produced.[4] As an alternative, we envisaged
a process in which 2-aminopyridine N-oxide would
serve as the oxidant and be incorporated in the mo-
lecular complexity of the product through trapping
the carbenoid species.[5] Imidazo ACHTUNGTRENNUNG[1,2-a]pyridines have
recently attracted significant interest in the pharma-
ceutical industry as they exhibit antibacterial,[6] anti-
fungal,[7] antiviral,[8] and anti-inflammatory proper-
ties.[9] The imidazoACHTUNGTRENNUNG[1,2-a]pyridine ring system can be

formed in many ways: typically they are formed via
condensation of aminopyridines and a-halo ketones[10]

and can be formed by a one-pot condensation of an
aldehydes, isonitrile and a 2-aminopyridine although
this approach can require harsh conditions so limiting
the scope of functionalities tolerated in this reac-
tion.[11] More recently a number of copper-catalyzed
methodologies have been developed, namely a three-
component reaction of a 2-aminopyridine with an al-
dehyde and an alkyne,[12] a dehydrogenative coupling
of a ketone with a 2-aminopyridine conducted at
40 8C,[13] an oxidative cyclization of a haloalkyne with
an aminopyridine at 60 8C,[14] and an oxidative reac-
tion between a ketone and a 2-aminopyridine carried
out at 120 8C.[15] Two further methods reported recent-
ly are worthy of note, the iron ACHTUNGTRENNUNG(III)-catalyzed reaction
between a nitroolefin and an aminopyridine achieved
at 80 8C,[16] and the silver-mediated oxidative coupling
between terminal alkynes and a 2-aminopyridine con-
ducted at 110 8C.[17]

The concept reported here offers an atom economic
redox[18] process to imidazo ACHTUNGTRENNUNG[1,2-a]pyridines by em-
ploying the pyridine component both as a nucleophile,
directly attacking the gold carbenoid intermediate,
and it is involved in the regioselective formation of
these N-bridgehead heterocycles [Scheme 1, Eq. (2)].
Interestingly this combination of reagents appears to
offer more flexibility in the choice of components in
the reaction.[19] We foresaw that this new methodolo-
gy might allow access to a range N-bridgehead het-
erocycles with chiral substituents which would other-
wise be extremely difficult to obtain using the classi-
cal routes. To test our initial hypothesis and delineate
reaction parameters, the reaction of 2-aminopyridine
N-oxide and 1-chloro-3-ethynylbenzene was investi-
gated.

Gratifyingly, our initial efforts identified the use of
1.2 equiv. of pyridine N-oxide and 10 mol% of di-
chloro(2-pyridinecarboxylato)gold [PicAuCl2] in di-
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chloromethane at room temperature as suitable con-
ditions for the reaction, giving a 43% conversion to
the desired imidazo ACHTUNGTRENNUNG[1,2-a]pyridine 2 (entry 1 in
Table 1). Addition of 1 equivalent of MsOH improved
the conversion, with 71% of starting alkyne being
converted to the desired product. Alternative acids
such as TFA, HNTf2, acetic acid and para-nitrobenzo-
ic acid were then tested and as previously noted,
faster reaction was seen on lowering of the pKa of the
acid.[2]

The acid appears to play a key role: this we believe
increases the reaction rate by promoting the dissolu-

tion of the sparingly insoluble starting pyridine N-
oxide. This fact was particularly highlighted in the
case of para-nitrobenzoic acid (entry 5) where the for-
mation of an insoluble salt resulted in no conversion
to the product. The best conversion to product was
achieved using MsOH or TFA as the acid (entries 2
and 3). On the other hand, no product was formed in
the absence of gold catalysts (entry 4).[20] Interestingly
slow formation of the desired compound was ob-
served when 0.5 equivalent of TFA was used
(entry 7), and therefore 1 equivalent of TFA was
chosen for further studies. Dichloromethane proved

Scheme 1. Precedent using an intermolecular pyridine N-oxide and the new concept for imidazo ACHTUNGTRENNUNG[1,2-a]pyridine synthesis
using a 2-aminopyridine N-oxide.

Table 1. Evaluation of reaction parameters.

Entry Catalyst[a] Additive Conversion[b]

1 PicAuCl2 None 43
2 PicAuCl2 MsOH (1 equiv.) 71
3 PicAuCl2 TFA (1 equiv.) 70
4 None TFA (1 equiv.) none
5 PicAuCl2 p-NO2C6H4CO2H (1 equiv.) none
6 PicAuCl2 HNTf2 (1 equiv.) 72
7 PicAuCl2 TFA (0.5 equiv.) 54
8 AuCl TFA (1 equiv.) 33
9 AuCl3 TFA (1 equiv.) 53
10 NHCAuNTf2 TFA (1 equiv.) 36
11 PPh3AuNTf2 TFA (1 equiv.) 36
12 PicAuCl2 TFA (1 equiv.)[c] 89 (72)[d]

[a] 10 mol% of catalyst was used.
[b] Determined by correlation between HPLC-MS and crude 1H NMR analysis using 3,5-dinitrobenzoic acid as internal stan-

dard.
[c] The reaction mixture was heated at 40 8C for 15 h.
[d] Isolated yield after column chromatography.
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to be the solvent of choice; toluene, chlorobenzene
and 1,2-dichloroethane did not give any product and
other solvents were screened but none produced
a better conversion than dichloromethane.[21] The con-
centration of the reaction mixture appeared not to
affect the reaction rate. Various alternative metal cat-

alysts were screened during the optimization of the
catalyst: platinum and copper catalysts failed to pro-
duce any of the desired product[22] and gold(I) cata-
lysts, such as AuCl and Ph3PAuNTf2 (entries 8 and
11), generally reacted sluggishly and produced many
impurities. Finally, heating the reaction mixture to

Scheme 2. Scope of reaction with substitution possible on all positions of the pyridine N-oxide and various terminal alkynes.
The yields were determined after column chromatography or preparative HPLC.
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40 8C for 15 h gave the desired product 2 in 72% yield
(89% conversion).

After establishing the optimal conditions, we at-
tempted to delineate the scope of the functionalities
tolerated (Scheme 2).

Pleasingly, the reaction conditions were tolerant of
various functional groups using alkylalkyne as well as
arylalkyne substrates where electron-rich and elec-
tron-poor arylalkynes give the desired imidazo ACHTUNGTRENNUNG[1,2-
a]pyridines in good conversions. Predictably, the elec-
tron-poor substrates were the best, as the alkyne was
more susceptible to nucleophilic attack from 2-amino-
pyridine N-oxide 1. Further heteroatom density was
tolerated, with 3-ethynylthiophene affording the de-
sired product 9 in good yield whereas the reaction of
3-ethynylpyridine and 3-ethynylquinoline proceeded
in lower yields, to give 8 and 10, respectively, presum-
ably due to nitrogen coordination to the gold catalyst.
We also noted that conversions were dependent on
the sterics of the R group associated with the alkyne:
18>28@38 carbon a to terminal alkyne; it should be
noted that 1-ethynyl-2,4,6-trimethylbenzene and 3,3-
dimethylbut-1-yne did not produce any product ac-
cording to crude 1H NMR analysis. Our preliminary
data suggest that the pyridine reactant is tolerant of
substitution in all positions with the 6-methylpyridine
N-oxide giving a significantly poorer conversion to
product when compared with the 3-methyl derivative.
Our initial hypothesis that the efficient and mild reac-
tion conditions would be applicable to chiral alkynes
was validated by the formation of Boc-protected pro-
line derivative 17 in good yield and as a single diaste-
reoisomer. Unfortunately disubstituted alkynes did
not produce any of the desired product.[23]

A mechanism for the formation of the imidazo ACHTUNGTRENNUNG[1,2-
a]pyridine adducts is proposed in Scheme 3. Addition

of the pyridine N-oxide to the alkyne is promoted by
complexation to the gold catalyst. The resulting vinyl-
gold intermediate can rearrange to form a gold-carbe-
noid intermediate.[24] This intermediate may form a-
chloro and a-mesylate ketones[25] that are known to
be converted to imidazo ACHTUNGTRENNUNG[1,2-a]pyridine; however, nei-
ther of these a-functionalized ketones were detected
in our investigations. In contrast, the mass consistent
with the proposed pyridinium intermediate in
Scheme 3 was identified by crude LC-MS analysis of
the reaction mixture. This species can be generated
either by reaction of a gold carbenoid with a newly
generated aminopyridine, or from direct rearrange-
ment of a vinylgold precursor.[26] Finally, condensation
of the amine and the generated ketone formed from
the pyridinium intermediate furnishes the imidazo-ACHTUNGTRENNUNG[1,2-a]pyridine.

In summary, we have developed a new, regioselec-
tive, atom economic synthesis of imidazo ACHTUNGTRENNUNG[1,2-a]pyri-
dines using gold catalysis that has the potential to in-
stall stereogenic centers adjacent to the imidazo ACHTUNGTRENNUNG[1,2-
a]pyridine ring without loss of stereochemical integri-
ty. Many functional groups are tolerated in the reac-
tion which can conducted under mild conditions
either at room temperature or more optimally at
reflux in dichloromethane: the reaction provides com-
plex core targets quickly from the vast array of com-
mercially available alkynes.

Experimental Section

Typical Procedure

TFA (0.016 mL, 0.22 mmol) was added to a solution of 2-
aminopyridine N-oxide 1 (29.0 mg, 0.26 mmol) in CH2Cl2

(0.2 M). The reaction mixture was stirred for 10 min, then

Scheme 3. Proposed mechanism for the formation of the imidazoACHTUNGTRENNUNG[1,2-a]pyridine using gold catalysis.
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alkyne (0.027 mL, 0.22 mmol) and PicAuCl2 (8.7 mg,
0.022 mmol) were added. After stirring overnight at 40 8C,
Et3N (20 mL) was added and the reaction mixture was con-
centrated under reduced pressure and purified by column
chromatography to give pure imidazo ACHTUNGTRENNUNG[1,2-a]pyridine 2 ;
yield: 36.2 mg (72%).
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