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Abstract: A practical and straightforward approach for the highly
stereoselective synthesis of γ,δ-unsaturated β-amino sulfones by
nucleophilic (phenylsulfonyl)methylation of N-tert-butylsulfinyl
ketimines with methyl phenyl sulfone was achieved. With lithium
bis(trimethylsilyl)amide as the base, the corresponding sulfone-
stabilized carbanion derived from methyl phenyl sulfone can be
transferred to (S)-α,β-unsaturated N-tert-butylsulfinyl ketimines in
very good yields and with high diastereoselectivities. Electron-
withdrawing or electron-donating substituents on the aryl rings of
(S)-α,β-unsaturated N-tert-butylsulfinyl ketimines did not exert a
significant effect on the outcome of the diastereoselective nucleo-
philic (phenylsulfonyl) methylation.
Key words: amines, ketimines, nucleophilic addition, β-amino sul-
fones

Chiral β-amino sulfones are prevalent as a common motif
in natural and unnatural products,1 and have been exten-
sively used as important building blocks in the design of
many enzyme inhibitors such as novel HIV protease
inhibitors2 and matrix metalloproteinase inhibitors.3 Be-
sides, β-amino sulfones are useful synthetic intermediates
as exemplified by their utility in the synthesis of allylic
amines, nonproteinogenic α-amino acids,4 amino alco-
hols,5 carbohydrate derivatives,6 and nitrogen hetero-
cycles,7 taking advantage of the varying chemical
reactivities of sulfones (so-called ‘chemical chameleon’)
such as electrophilic substitution in the α-position and re-
ductive cleavage of the sulfone group.8

Not surprisingly, the synthesis of β-amino sulfones have
attracted a lot of synthetic endeavors. The classic method
developed for their asymmetric synthesis involves a syn-
thetic sequence starting from natural amino acids.9 The
other straightforward approach was achieved via aza-
Michael addition of chiral amines to α,β-unsaturated sul-
fones.10 Also, the same process employing achiral amines
and optically active α,β-unsaturated sulfones as reactive
partners has also been described. However, in many cases
these reactions proceeded with low stereoselectivity, and

separation of the corresponding diastereomeric products
was laborious. Recently, we developed a practical ap-
proach for the highly stereoselective synthesis of β-amino
sulfones, based on nuleophilic (phenylsulfonyl) alkyla-
tion of Ellman’s N-tert-butylsulfinyl aldimines with alkyl
phenyl sulfones.11 A remarkable feature of this reaction is
that it can be applied to nonenolizable, enolizable, aromat-
ic, and heterocyclic imines alike with very high yields and
excellent diastereoselectivities. However, although sig-
nificant progress has been made in the area of synthesis of
chiral β-amino sulfones, the asymmetric synthesis of
structure diverse β-amino sulfones, especially those with
the amino group adjacent to a chiral tertiary carbon center,
is yet to be developed.
Ideally, we can envision that a straightforward (arylsulfo-
nyl)alkylation of chiral ketimines with alkylaryl sulfone
would provide a highly attractive route to the target struc-
tures. It should be mentioned that Shiau, Jain, and co-
workers recently developed a method to prepare racemic
β-amino sulfonate esters from N-tert-butanesulfinyl ket-
imines and ethoxysulfonylmethide in strong basic condi-
tions, and only low to moderate yields (15–42%) were

Table 1  Optimization of Reaction Conditionsa

Entrya Base Molar ratio 
(2a/1/base)

Solvent Yield (%)b dr (%)c

1 LiHMDS 1:1.2:1.3 CH2Cl2 83 95:5

2 NaHMDS 1:1.2:1.3 CH2Cl2 32 94:6

3 KHMDS 1:1.2:1.3 CH2Cl2 25 92:8

4 LDA 1:1.2:1.3 CH2Cl2 trace –

5 n-Buli 1:1.2:1.3 CH2Cl2 trace –

6 LiHMDS 1:1.2:1.3 THF 20 95:5

7 KHMDS 1:1.2:1.3 THF 45 10:1

a In all cases, base was added to a mixture of 1 and 2a at –65 °C, and 
the reactions were usually complete within 4 h.
b Yield of isolated analytically pure material.
c Diastereomeric ratios were determined by 1H NMR of the crude 
reaction mixture.
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obtained with the optimized reaction conditions (n-BuLi,
THF, HMPA, –78 °C).12 In this paper, as part of our con-
tinuing effort to develop structure-diverse β-amino sul-
fones, we wish to disclose the highly diastereoselective
(phenylsulfonyl) methylation of α,β-unsaturated N-tert-
butylsulfinyl ketimines, which has enabled us for the first
time to efficiently synthesize γ,δ-unsaturated β-amino sul-
fones containing chiral tertiary carbon centers through a
simple and reliable protocol. It is also worthy to point out
that another significant structural feature of this kind of β-
amino sulfones is the existence of allylic amine subunit, as
it is well-known that allyllic amines are widely applied in
medicinal chemistry and drug discovery since a variety of
synthetically and biologically important organic com-
pounds can be obtained through the functionalization of
their double bond.
Although α,β-unsaturated ketimines have been widely
used as important intermediates in organic synthesis, in-
stances of nucleophilic 1,2-addition of α,β-unsaturated
ketimines are scarce. Recently, Hu and coworkers report-
ed nucleophilic 1,2-addition of the (phenylsulfonyl)di-
fluoromethyl anion, generated in situ from PhSO2CF2H
and a base, to α,β-unsaturated ketones and N-tert-butyl-
sulfinyl ketimines.13 It was believed that, due to the exis-

tence of the high electronegativity of the fluorine atom(s),
(phenylsulfonyl)difluoromethyl anion (PhSO2CF2

–) was
regarded as a relatively ‘hard’ nucleophile, and thus un-
dergo 1,2-addition reactions with α,β-enones or α,β-unsat-
urated ketimines. However, to the best our knowledge, the
addition reaction between methyl phenyl sulfone and α,β-
enones or α,β-unsaturated ketimines have not been dis-
closed. With these in mind, we initially prepared a variety
of (S)-α,β-unsaturated N-tert-butylsulfinyl ketimines 2 by
Ti(OEt)4-mediated condensation of (S)-N-tert-butylsul-
finamide and the requisite α,β-unsaturated ketones, ac-
cording to the reported protocol.14 With these α,β-
unsaturated ketimines 2 in hand, we next chose (S)-α,β-
unsaturated N-tert-butylsulfinyl ketimine 2a as a model
compound to test the nucleophilic (phenylsulfonyl) meth-
ylation with PhSO2Me (Scheme 1).
Following initial deprotonation with lithium hexamethyl-
disilazide (LiHMDS), PhSO2Me reacted with 2a to afford
the 1,2-addition product 3a (not 1,4-addition product)
with very good yield (83%) and diastereoselectivity (dr =
95:5). Several bases were then screened, and the results
are summarized in Table 1 (Scheme 2). As shown, a
significant drop in yield was observed when sodium
hexamethyldisilazide (NaHMDS) or potassium hexa-

Scheme 1 Synthesis of γ,δ-unsaturated β-amino sulfones
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methyldisilazide (KHMDS) was used as base. Also, n-
BuLi was not suitable for this reaction, probably due to its
high nucleophilicity toward ketimine 2a. Reactant molar
ratios were also carefully examined to improve the prod-
uct yield using LiHMDS as the base, and the best yield of
product 3a was obtained with a reactant molar ratio of
2a/1/LiHMDS = 1:1.2:1.3. Having identified the optimal
reaction conditions, the scope of this nucleophilic 1,2-ad-
dition reaction was investigated with various (S)-α,β-un-
saturated ketimines (Table 2, Scheme 3).

The absolute configuration of product 3a was determined
to be SS,S by its single-crystal X-ray structure (Figure 1),
and the configurations of others were assigned by analo-
gy.22 The stereocontrol mode of the present diastereose-
lective (phenylsulfonyl)methylation of ketimines can be
predicted by envisaging a cyclic six-membered transition
state (Figure 2) in which the bulky tert-butyl group pref-
erentially adopts an equatorial position, and the (phenyl-
sulfonyl)methyl anion (PhSO2CH2

–) attack the Re face of
the ketimine.15

Table 2  Stereoselective Synthesis of γ,δ-Unsaturated β-Amino Sulfones

Entry Ketimines 2 Products 3 Yield (%)a dr (%)b

1

2a 3a

83 95:5

2

2b 3b

87 92:8

3

2c 3c

82 95:5

4

2d 3d

85 93:7

5

2e 3e

86 92:8

6

2f 3f

81 92:8
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7

2g 3g

85 93:7

8

2h 3h

83 98:2

9

2i 3i

87 95:5

10

2j 3j

81 96:4

11

2k 3k

87 94:6

12

2l 3l

82 94:6

13

2m 3m

85 92:8

Table 2  Stereoselective Synthesis of γ,δ-Unsaturated β-Amino Sulfones (continued)
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Figure 1  Single-crystal X-ray structure of compound 3a

It has been rationalized that ‘hard’ nucleophiles usually
undergo 1,2-addition reaction with α,β-unsaturated ket-
imines, whereas ‘soft’ nucleophiles prefer attacking the
β-carbon atom of α,β-unsaturated ketimines. Our herein-
reported (phenylsulfonyl)methylation of α,β-unsaturated
ketimines afforded 1,2-addition products, indicating that
the (phenylsulfonyl)methyl anion is still a relatively hard
nucleophile. Our further attempts to (phenylsulfo-

nyl)methylate (S)-2-methyl-N-(1-phenylethylidene)pro-
pane-2-sulfin amide with predeprotonated or in situ
generated (phenylsulfonyl)methyl anion failed, and we
assume that unwanted aza-enolization of the ketimines
occurred.16–20

In summary, we have developed the highly efficient syn-
thesis of γ,δ-unsaturated β-amino sulfones through diaste-
reoselective nucleophilic of (S)-α,β-unsaturated N-tert-
butylsulfinyl ketimines, with in situ generated
PhSO2CH2

– anion and an appropriate base (LiHMDS).
The reaction afford the 1,2-addition products with good
diastereoselectivities and very good yields.21 Electron-
withdrawing or electron-donating substituents on the aryl
rings of (S)-α,β-unsaturated N-tert-butylsulfinyl ket-
imines did not exert a significant effect on the outcome of
the diastereoselective nucleophilic (phenylsulfonyl)meth-
ylation. Our further attempts to (phenylsulfonyl)methyla-
tion of (S)-2-methyl-N-(1,5-diphenylpenta-2,4-dien-
ylidene)propane-2-sulfinamide with predeprotonated or
in situ generated (phenylsulfonyl)methyl anion 3n suc-
ceeded.
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