

electrophile.5

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 3385-3389

Tetrahedron Letters

Novel organic catalysts for the direct enantioselective α-oxidation of carbonyl compounds

Henrik Sundén, Nils Dahlin, Ismail Ibrahem, Hans Adolfsson* and Armando Córdova*

Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden

Received 26 December 2004; revised 9 March 2005; accepted 15 March 2005 Available online 2 April 2005

Abstract—The proline-derived *N*-sulfonylcarboxamide-catalyzed direct enantioselective α -oxidation of ketones and aldehydes with nitrosobenzene is presented. The reactions proceed smoothly furnishing the corresponding α -aminoxylated compounds in good yields with up to >99% ee. The proline-derived *N*-sulfonylcarboxamides were also found to be excellent catalysts for the direct enantioselective nitroso Diels–Alder-type reaction between nitrosobenzene and α , β -unsaturated cyclic ketones yielding the corresponding bicyclic Diels–Alder adduct products with up to >99% ee. The proline-derived *N*-sulfonylcarboxamides represent a readily available and highly modular novel type of organic catalyst. © 2005 Elsevier Ltd. All rights reserved.

Optically active α -hydroxy carbonyl moieties are common in numerous important natural products.^{1,2} This has led to extensive research to find new diastereoselective and enantioselective routes for their syntheses.³ One way of preparing these compounds is the asymmetric α -hydroxylation of enolates employing chiral auxiliaries or substrates.⁴ Recently, Momiyama and Yamamoto reported an efficient catalytic system based on AgX/BI-NAP-complexes that mediate indirect α -oxidation of activated tin enolates with nitrosobenzene as the

Organocatalysis has experienced a renaissance in organic chemistry.⁶ In this context, Zhong,^{7c} MacMillan and co-workers,^{7d} Hayashi et al.^{7e,f,g} and ourselves^{7a,b} have reported that amino acids and their derivatives catalyze Yamamoto-type α -aminoxylation reactions with excellent stereoselectivities.⁷ These initial reports were later followed up by the excellent studies of Yamamoto and co-workers,⁸ Blackmond and others.⁹ Furthermore, we recently demonstrated that amino acids catalyze the biomimetic, asymmetric, aerobic α -oxidation of aldehydes and ketones.¹⁰ During studies on novel organic catalysts, we recently found that N-sulfonyl-2-aminomethylpyrrolidines were excellent catalysts for the direct enantioselective α -amination of aldehydes.¹¹ The organic catalysts furnished the desired products with good enantioselectivites, however, their preparation required five synthetic steps. In contrast, proline-derived N-sulfonylcarboxamides could be prepared in only two steps from commercially available N-Cbz protected p-nitrophenol proline esters (Scheme 1) and potentially could have similar activities as N-sulfonyl-2-aminomethylpyrrolidines. Based on these facts and our interest in the development of organocatalytic reactions,¹² we became interested in whether proline-derived N-sulfonylcarboxamides would be able to catalyze the direct, catalytic, enantioselective α -aminoxylation reaction. Herein, we disclose that prolinederived N-sulfonylcarboxamides are excellent catalysts for direct catalytic asymmetric *α*-oxidation and hetero Diels-Alder reactions of carbonyl compounds with nitrosobenzene, yielding the corresponding α -aminoxylated products with up to >99% ee.

Scheme 1. Two-step synthesis of proline-derived *N*-sulfonylcarboxamides. Reagents and conditions: (i) 1.5 equiv NaH, 1.3 equiv $R-SO_2NH_2$, DMF, rt; (ii) Pd(C), H₂, MeOH.

Keywords: Proline-derived *N*-sulfonylcarboxamides; Asymmetric catalysis; Nitroso Diels–Alder; Ketones; Aldehydes.

^{*} Corresponding authors. Tel.: +46 8 162479; fax: +46 8 154908; e-mail addresses: hansa@organ.su.se; acordova@organ.su.se; acordoval@ netscape.net

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.03.085

Table 1. Catalyst screen for the direct catalytic asymmetric α -oxidations of **2a** with nitrosobenzene^a

Entry	Cat.	Time (h)	Prod.	Yield (%) ^b	ee (%) ^c	Prod.	Yield (%) ^b	ee (%) ^c
1	4	2	2a	55	>99	3	27	>99
2	5	2	2a	52	98	3	21	99
3	6	16	2a	Traces	n.d.	3	_	_
4	7	18	2a	18	99	3	Traces	n.d.
5	8	3	2a	70	>99	3	22	>99
6	9	16	2a	67	>99	3	Traces	n.d.
7	10	3	2a	66	>99	3	20	>99
8	11	16	2a	Traces	n.d.	3	_	_
9	12	16	ent- 2a	5	>99	ent-3	—	_

^a To nitrosobenzene (1 mmol) in the presence of catalyst (10–30 mol %) in 2 mL of organic solvent was added ketone **1a** (2 mmol). After vigorous stirring at room temperature the reaction mixture was quenched by addition of brine and extraction with EtOAc. Subsequent purification utilizing silica-gel chromatography afforded the α -aminoxylated ketones **2a** and **3**.

^b Yield of the isolated pure ketone.

^c The ee as determined by chiral-phase HPLC analyses.

In an initial catalyst screen of amino acid derivatives 4– 12, we found that *N*-methylsulfonylcarboxamide 4 was an excellent catalyst for the reaction between cyclohexanone 1a (3 mmol) and nitrosobenzene (1 mmol) and gave the corresponding α -aminoxylated ketone 2a and α, α' -diaminoxylated ketone 3 in 55% and 27% yields with >99% ee's, respectively (Table 1).¹³

Furthermore, the novel sulfonylcarboxamides 4, 5 and tetrazole 10 were the most reactive catalysts followed by proline.¹⁴ In addition, hydroxyproline was a highly

selective catalyst and furnished **2a** in 67% yield with >99% ee. To our surprise organic catalyst **6** provided only trace amounts of **2a**, which was probably due to the presence of TFA. This was further supported by the ability of our previously reported catalyst **7**, which did not have a TFA additive, to mediate the α -aminoxylation reaction to yield **2a** with >99% ee. Interestingly, diamine **12** provided **2a** with the opposite stereoselectivity as compared to all the other proline-derived catalysts. Encouraged by the discovery that the highly modular proline-derived *N*-alkyl- and arylsulfonylcarboxamide

Table 2.	The direct	asymmetric	α-oxidations	of 1	l with	sulfony	lcarboxamide	4 a	s the	catalyst
----------	------------	------------	--------------	------	--------	---------	--------------	------------	-------	----------

		+	O Catalyst, 4 (10 mol%) DMSO, rt	O ONHPh +	PhHNO	ONHPh	
	1:	3		2a	3		
Entry	Time (h)	Prod.	Yield (%) ^b	ee (%) ^c	Prod.	Yield (%) ^b	ee (%) ^c
1	2	2a	55	>99	3	27	>99
2	2	2a	80^{d}	>99	3	Traces	n.d.
3	16 ^e	2a	80^{d}	98	3	Traces	n.d.

^a Nitrosobenzene (1 mmol) in DMSO (1 mL) was slowly added via a syringe-pump to a solution of ketone **1a** (2 mmol) in the presence of catalyst **4** (10 mol %) in DMSO (1 mL). After vigorous stirring at room temperature the reaction mixture was quenched by addition of brine and extraction with EtOAc. Subsequent purification utilizing silica-gel chromatography afforded the α -aminoxylated ketones **2a** and **3**.

^b Yield of the isolated pure ketone.

^c The ee as determined by chiral-phase HPLC analyses.

^d Slow addition of the nitrosobenzene.

^e The reaction was performed in DMF at 4 °C.

were excellent catalysts for the direct catalytic α -aminoxylation reaction, we decided to optimize the yield of **2a** using **4** as the catalyst (Table 2).

We found that the yield of 2a was increased by slow addition of the electrophile using a syringe pump to the reaction mixture. For example, the reaction was completed within 2 h in DMSO and 2a was isolated in 80% yield with >99% ee and only trace amounts of ketone 3. The methylsulfonylcarboxamide 4 also mediated the α -oxidation reaction with excellent results in DMF.

Next, we investigated the α -aminoxylation reaction with a variety of ketones and aldehydes (Table 3).

The reactions proceeded smoothly and α -aminoxylated ketones **2a–c** were isolated in good yield with excellent enantioselectivity (entries 1–3). The methylsulfonylcarboxamide **4** was also able to mediate the direct enantioselective α -oxidation of aldehydes. For example, the sulfonylcarboxamide **4**-catalyzed reaction between propionaldehyde and nitrosobenzene furnished the corresponding α -aminoxylated product **2d** (entry 4), which was reduced in situ with excess NaBH₄ to the corresponding alcohol, which was isolated in 66% yield with >99% ee. We also investigated whether 2-cyclohexen-1-

ones could be α -oxidized with nitrosobenzene using organic catalysts (Table 4).^{8b,15} The reaction was successful and sulfonylcarboxamides, proline and tetrazole **10** were able to catalyze the reaction between cyclohexenone **1e** and nitrosobenzene to yield the corresponding bicyclic product **2e** with excellent stereoselectivity. Methylsulfonylcarboxamide **4**-catalyzed the tandem α aminoxylation/Michael reaction with the highest stereoselectivity and enantiomerically pure **2e** was obtained (entry 1). However, tetrazole catalyst **10** furnished **2e** in a higher yield as compared to catalyst **4** with 99% ee (entry 3). The reaction was also run on a gram scale with L-proline as the catalyst without decreasing the enantioselectivity of the reaction.

The stereochemical outcome of the α -oxidations and tandem α -aminoxylation/Michael reactions of ketones and aldehydes utilizing sulfonylcarboxamide catalysis was the same as for L-proline catalysis.⁷ Thus, organo-catalysts **4** and **5** catalyzed the formation of (2*R*)-aminoxylated products. We therefore believe that the nitrosobenzene approaches the *si*-face of the chiral enamine-intermediate via transition state **I**, which is similar to our and Houk's previous density functional theory (DFT)-calculations of the transition state **II** of the proline-catalyzed α -aminoxylation reaction.^{7b,9}

Table 3. The direct asymmetric α -oxidations of ketones and aldehydes with sulfonylcarboxamide 4 as the catalyst^a

		$\begin{array}{c} R \\ R^1 \\ 1 \end{array} + \left(\begin{array}{c} I \\ I \end{array} \right)$	DMSO, rt R^1		
Entry	1	Time (h)	Prod.	Yield (%) ^b	ee (%) ^c
1	0=	2	O ,ONHPh	80	>99
2	1a ○ ○ ○ ○ □ 1b	5	2a O ONHPh O O D 2b	74	98
3		3	O ONHPh 2c	54 ^d	>99
4		2	ONHPh	66 ^{e,f}	>99 ^{e,g}

Catalyst 4 (10 mol%)

^a Nitrosobenzene (1 mmol) in DMSO (1 mL) was slowly added with syringe-pump to a solution of ketone or aldehyde 1 (2 mmol) in the presence of catalyst 4 (10 mol %) in DMSO (1 mL). After vigorous stirring at room temperature the reaction mixture was quenched by addition of brine and extraction with EtOAc. Subsequent purification utilizing silica-gel chromatography afforded the α-aminoxylated product 2.

^b Yield of the isolated pure product.

^c The ee as determined by chiral-phase HPLC analyses.

^d Dr = 1:1 (*anti:syn*).

^e The reaction was performed by simple mix and stirring.

^fThe yield of the isolated pure alcohol obtained by in situ reduction of **2d** with NaBH₄ at 0 °C.

^g ee determined by chiral HPLC-analyses of the α -aminoxylated alcohol derived from 2d.

Table 4. Amine-catalyzed direct enantioselective reactions with 2-cyclohexen-1-ones^a

			O " Ph [∕] N	Catalyst (10 mol%) Solvent	O N Ph		
		1e			2e		
Entry	Catalyst	<i>T</i> (°C)	Solvent	Time (h)	Prod.	Yield (%) ^b	ee (%) ^c
1	4	40	MeCN	15	2e	22	>99
2	4	Rt	DMSO	12	2e	23	96
3	L-Proline	40	MeCN	16	2e	21	99
4	10	40	MeCN	15	2e	65	99

^a A mixture of nitrosobenzene (1 mmol), ketone **1** (2 mmol) and catalyst (10 mol %) in DMSO (2 mL) was vigorously stirred at room temperature or 40 °C. The reaction mixture was quenched by addition of brine and extraction with EtOAc. Subsequent purification of the crude product by silicagel chromatography afforded the Diels–Alder product **2**.

^b Yield of the isolated pure product.

^c The ee as determined by chiral-phase HPLC analyses.

Favourable coloumbic interactions between nitrosobenzene and the pyrrolidine ring of catalyst **12** in transition state **III** may explain why *ent*-**2a** was obtained.

In the case, of the sulfonylcarboxamide-catalyzed nitroso reactions of α , β -unsaturated cyclic ketones we believe that the reaction proceeds via a potential step-wise mechanism (Scheme 2). Accordingly, the tandem α aminoxylation/Michael reaction starts by reaction of the unsaturated ketone with the organic catalyst to yield the chiral enamine. Next, the electrophile approaches the *si*-face of the chiral enamine intermediate via transition state I to furnish the activated iminium salt. The chiral-activated iminium salts undergoes a subsequent stereospecific intermolecular Michael-addition, which results in the bicyclic enamine intermediate. Hydrolysis of this chiral enamine intermediate provides the desired bicycle 2e and free organic catalyst.

In summary, we have shown that proline-derived sulfonylcarboxamides are excellent catalysts for the direct enantioselective α -oxidation of ketones and aldehydes. The alkyl and arylsulfonylcarboxamides furnished the corresponding α -aminoxylated products in good yield with up to >99% ee. The novel organic catalysts are readily prepared in two steps and allows for the generation of catalyst libraries. Furthermore, proline-derived sulfonylcarboxamides are able to catalyze nitroso reactions that proceed via a tandem α -aminoxylation–Michael reaction

Scheme 2. Potential catalytic mechanism of the amine-catalyzed tandem α -aminoxylation/Michael reaction and plausible transition state I of the initial 4-catalyzed α -aminoxylation of ketone 1e.

to yield the desired bicyclic adducts with up to >99% ee. The high modularity in the synthesis of proline-derived carboxamides makes the likelihood of finding highly enantioselective reactions mediated by this class of catalysts a real possibility. Efforts in this area are in progress.

Acknowledgements

A.C. and H.A. thank the Swedish Research Council and Wenner-Gren Foundation for financial support.

References and notes

- (a) Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Heidelberg, 1999; (b) Noyori, R. Asymmetric Catalysis in Asymmetric Organic Synthesis; John Wiley & Sons: New York, 1994; (c) Catalytic Asymmetric Synthesis; Ojima, I., Ed., 2nd ed.; Wiley-VCH: New York, 2000.
- (a) Davis, F. A.; Chen, B. C. In Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Houben-Weyl: Methods of Organic Chemistry; Georg Thieme: Stuttgart, 1995; Vol. E 21, p 4497; (b) Enders, D.; Reinhold, U. *Liebigs Ann.* 1996, 11; (c) Enders, D.; Reinhold, U. *Synlett* 1994, 792.
- (a) Davis, F. A.; Chen, B. C. *Chem. Rev.* **1992**, *92*, *919*, and references cited therein; (b) Lohray, B. B.; Enders, D. *Helv. Chim. Acta* **1989**, *72*, 980.
- 4. Paquette, L. A.; Hartung, R. E.; Hofferberth, J. E.; Vilotijevic, I.; Yang, J. J. Org. Chem. 2004, 69, 2454, and references cited therein.
- Momiyama, N.; Yamamoto, H. J. Am. Chem. Soc. 2003, 125, 6038.
- 6. (a) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2001, 40, 3726; (b) Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138; (c) List, B. Tetrahedron 2002, 58, 5573; (d) Merino, P.; Tejero, T. Angew. Chem., Int. Ed. 2004, 43, 2995; For α-aminations see: (e) Bøgevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 1790; (f) List, B. J. Am. Chem. Soc. 2002, 124, 5656; (g) Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Bøgevig, A.; Jørgensen, K. A. J. Am. Chem. Soc. 2002, 124, 6254; For a-chlorinations of ketones see: (h) Marigo, M.; Bachmann, S.; Halland, N.; Braunton, A.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2004, 43, 5507; For amine-catalyzed epoxidations see: (i) Bohe, L.; Hanquet, M.; Lusinchi, M.; Lusinchi, X. Tetrahedron Lett. 1993, 34, 7271; (j) Adamo, M. F. A.; Aggarwal, V. K.; Sage, M. A. J. Am. Chem. Soc. 2000, 122, 8317; (k) Armstrong, A. Angew. Chem., Int. Ed. 2004, 43, 1460, and references cited therein.
- (a) Bøgevig, A.; Sundén, H.; Córdova, A. Angew. Chem., Int. Ed. 2004, 43, 1109; (b) Córdova, A.; Sundén, H.; Bøgevig, A.; Johansson, M.; Himo, F. Chem. Eur. J. 2004, 10, 3673; (c) Zhong, G. Angew. Chem., Int. Ed. 2003, 42, 4247; (d) Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808; (e) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Tetrahedron Lett. 2003, 44, 8293; (f) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Angew. Chem., Int Ed.

2004, *43*, 1112; (g) Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Hibino, K.; Shoji, M. J. Org. Chem. **2004**, *69*, 5966.

- (a) Momiyama, N.; Torii, H.; Saito, S.; Yamamoto, H. *Proc. Natl. Acad. Sci. U.S.A.* 2004, 101, 5374; (b) Yamamoto, Y.; Momiyama, N.; Yamamoto, H. J. Am. *Chem. Soc.* 2004, 126, 5962.
- (a) Mathew, S. P.; Iwamura, H.; Blackmond, D. G. Angew. Chem., Int. Ed. 2004, 43, 3317; (b) Wang, W.; Wang, J.; Hao; Li; Liao, L. Tetrahedron Lett. 2004, 45, 7235; (c) Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Sumiya, T.; Urushima, T.; Shoji, M.; Hashizume, D.; Koshino, H. Adv. Synth. Catal. 2004, 346, 1435. For density functional calculations see: Ref. 7b and (d) Cheong, P. H.-Y.; Houk, K. N. J. Am. Chem. Soc. 2004, 43, 13912.
- (a) Córdova, A.; Sundén, H.; Engqvist, M.; Ibrahem, I.; Casas, J. J. Am. Chem. Soc. 2004, 126, 8914; (b) Sundén, H.; Engqvist, M.; Casas, J.; Ibrahem, I.; Córdova, A. Angew. Chem., Int. Ed. 2004, 43, 6532.
- (a) Dahlin, N.; Bøgevig, A.; Adolfsson, H. Adv. Synth. Catal. 2004, 346, 1101; During the preparation of this manuscript Berkessel and co-workers reported that arylsulfonylcarboxamides catalyze the direct catalytic asymmetric aldol reaction with excellent stereoselectivity see:
 (b) Berkessel, A.; Koch, B.; Lex, J. Adv. Synth. Catal. 2004, 346, 1141.
- (a) Casas, J.; Persson, P. V.; Iversen, T.; Córdova, A. Adv. Synth. Catal. 2004, 346, 1087; (b) Córdova, A. Tetrahedron Lett. 2004, 45, 3949; (c) Casas, J.; Sundén, H.; Córdova, A. Tetrahedron Lett. 2004, 45, 6117; (d) Ibrahem, I.; Casas, J.; Córdova, A. Angew. Chem., Int. Ed. 2004, 43, 6528; (e) Córdova Acc. Chem. Res. 2004, 37, 102; (f) Córdova, A.; Notz, W.; Barbas, C. F., III. J. Org. Chem. 2002, 67, 301; (g) Córdova, A. Chem. Eur. J. 2004, 10, 1987; (h) Córdova Synlett 2003, 1651, and references cited therein.
- 13. In a typical experiment, the ketone **1a** (2 mmol) was added to a mixture of nitrosobenzene (1 mmol) in DMSO (4 mL) and organic catalyst (10–30 mol%). After vigorous stirring at room temperature the reaction mixtures were quenched by addition of brine followed by extraction with EtOAc to furnish the corresponding α -aminoxylated ketone **2a**. Pure **2a** was isolated by silica-gel column chromatography (EtOAc/pentane-1:4) and the ee was determined by chiral-phase HPLC-analysis (see Ref. 7b).
- 14. For previous use of catalyst 10 see: Ref. 8a,8b,10, and (a) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. Synlett 2004, 558; (b) Torii, H.; Nakadai, M.; Ishihara, K.; Saito, S.; Yamamoto, H. Angew. Chem., Int. Ed. 2004, 43, 1983; (c) Hartikaa, A.; Arvidsson, P. I. Tetrahedron: Asymmetry 2004, 15, 1831.
- 15. In a typical experiment, the ketone **1e** (2 mmol) was added to nitrosobenzene (1 mmol) and catalyst (10 mol %) in organic solvent (2 mL) and the reaction mixture was vigorously stirred. After 14–16 h the reaction mixture was quenched by addition of brine followed by extraction with EtOAc to give the bicyclic adduct **2e**. Pure **2e** was isolated by silica-gel column chromatography (EtOAc/pentane-1:10) and the ee was determined by chiral-phase HPLCanalysis. HPLC (Daicel Chiralpak AD, hexanes/*i*-PrOH = 97:3, flow rate 0.5 mL/min, $\lambda = 254$ nm): major isomer: $t_{\rm R} = 25.72$ min; minor isomer: $t_{\rm R} = 19.81$ min; $[\alpha]_{\rm D}^{23} - 80.1$ (*c* 0.5, CHCl₃).