Synthesis of difunctional organooxasilacycloalkanes

N. V. Chizhova,* T. V. Astapova, P. V. Petrovskii, and N. N. Makarova

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation. Fax: +7 (095) 135 5085. E-mail: nmakar@ineos.ac.ru.

2,8-Dichloro-2,4,4,6,6,8,10,10,12,12-decamethyl-5-carbacyclohexasiloxane, 4,7-dichloro-2,2,4,7-tetramethyl-1,3-dioxa-2,4,7-trisilacycloheptane, and 4,8-dichloro-2,2,4,8-tetramethyl-1,3-dioxa-2,4,8-trisilacyclooctane were prepared for the first time by heterofunctional condensation of 1,1,7,7-tetrachloro-1,3,3,5,5,7-hexamethyl-4-carbatetrasiloxane with 1,3-dihydroxy-1,1,3,3-tetramethyldisiloxane, of 2,2,5,5-tetrachloro-2,5disilahexane with dihydroxydimethylsilane, and of 2,2,6,6-tetrachloro-2,6-disilaheptane with dihydroxydimethylsilane, respectively. Hydrolysis of the resulting compounds afforded the corresponding dihydroxy derivatives, and *trans*-isomers of some of these derivatives were isolated in individual form.

Key words: difunctional methyloxasilacycloalkanes, substitution reactions, heterofunctional condensation, hydrolysis.

Previously, the synthesis of difunctional organocyclosiloxanes which differ in the number of siloxane groups in the ring and are characterized by different organic framing has been reported^{1,2} and the effect of their structures on the ability of cyclolinear polyorganosiloxanes (CLPOS) to undergo self-organization in ultrathin Langmuir-Blodgett (LB) films has been investigated.³ However, the mechanism of interaction of LB films of CLPOS with surfaces of different liquids is still poorly understood. To elucidate the role of individual R₂SiO and R₂SiO_{1,5} fragments in the CLPOS unit, it is necessary to compare these units with cyclolinear polyorganocarbosiloxanes in which one or two oxygen atoms or R₂SiO fragments are replaced by $(CH_2)_n$ fragments. The aim of this work was to synthesize difunctional organocyclocarbosiloxanes which differ in the number of SiCH₂Si groups and in the length of $(CH_2)_n$ fragments between silicon atoms. These compounds are of interest as monomers for the preparation of organosilicon polymers.

Synthesis of tetrachloroorganocarbosiloxane. The synthesis of difunctional organocyclocarbosiloxanes (Scheme 1) was carried out with the use of carbotetrasiloxane 2, which was prepared by heterofunctional condensation of compound 1b with trichloromethylsilane.

Scheme 1

$$CICH_2SiMe_2CI + Me_2SiCI_2 + Mg \longrightarrow$$

$$CIMe_2SiCH_2SiMe_2CI \qquad (a)$$
1a

$$1a + 2 H_2O \qquad \frac{2 PhNH_2}{-2 PhNH_2 \cdot HCl}$$

$$+ OMe_2SiCH_2SiMe_2OH \qquad (b)$$

$$1b$$

$B = PhNH_2, C_5H_5N$

Depending on the reaction conditions, the reaction of compound **1b** with MeSiCl₃ (stage c) afforded either linear or cyclic products (2 and 3, respectively). Unlike the goals pursued in studies carried out previously,^{4,5} a distinguishing feature of the conditions chosen by us for the synthesis of compound 2 is the suppression of the formation of cyclic product 3.

The results of studies of the effects of the solvent, the acceptor, the ratio between the initial compounds, and their concentrations on the composition of the final reaction products are summarized in Table 1, from which it can be seen that the yield of compound 2 depends on the concentration of disilapentane **1b** and on the excess of $MeSiCl_3$, the latter being governed by the reagent ratio.

Published in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1436-1441, August, 2000.

1066-5285/00/4908-1430 \$25.00 © 2000 Kluwer Academic/Plenum Publishers

Run	Ratio 1b : CH ₃ SiCl ₃ /mol mol ⁻¹	Concentration of the reagents in the initial solutions/mol L^{-1}		Acceptor	Solvent	Ratio of reaction products based on GLC data		Yield of reaction products (%)	
		1b	CH ₃ SiCl ₃			2	3	2	3
1	1:4	0.34	1.00	C ₅ H ₅ N	PhMe	0.33	0.67		
2	1:4	0.34	12.00	CHIN	PhMe	0.37	0.63		
3	1:4	0.12	1.00	C,H,N	PhMe	0.60	0.40		
4	1:4	0.12	1.00	C _z H _z NH,	PhMe	0.60	0.40		
5	1:4	0.82	1.96	C [°] H ₂ NH	PhMe	0.20	0.80	11.9	49.1
6	1:4	0.82	1.96	C _s H _s N ⁻¹	PhMe	0.29	0.71		
7	1:4	0.82	1.96	C,H,N	Et ₂ O	0.44	0.56	35.7	40.1
8	1:4	0.30	1.00	CLHIN	Et ₂ O	0.72	0.28	48.6	18.3
9	1:6	0.30	1.50	C,H,N	Et ₂ O	0.68	0.32		
10	1:6	0.10	0.50	C,H,NH,	Et ₂ O	0.00	1.00		
11	1:4	0.15	0.30	C ² H ₂ NH ²	Et,O	0.00	1.00		
12	I : 7	0.30	1.64	$C_{5}H_{5}N^{2}$	Et ₂ O	0.80	0.20	59.6	28.3

Table 1. Effect of the reaction conditions of heterofunctional condensation of 1b and MeSiCl₃ on the ratio of products 2 and 3

Synthesis of dichloroorganocyclocarbosiloxanes containing SiCH₂Si fragments. Dichloroorganocyclocarbosiloxanes containing one or two SiCH₂Si groups were synthesized according to Scheme 2.

Judging from the GLC data, an attempt to synthesize cyclocarbosiloxane 4 containing two SiCH₂Si fragments resulted in a mixture of four compounds in a ratio of 24.5 : 18.5 : 33.5 : 23.5. The ¹H and ²⁹Si NMR spectra (Tables 2 and 3, respectively) of the product isolated by distillation have four groups of signals characteristic of

protons and Si atoms, respectively, of the SiCH₂Si, CH₃SiO_{1.5}, (CH₃)₂SiO, and CH₃SiCl groups as well as of CH₃SiCl₂. According to the data from GLC-mass spectrometry (m/z 411, 465, and 557), this product is a mixture of compounds, which may be assigned to compounds 4-7. The formation of compounds 5 and 6 is highly probable taking into account the characteristic structural features of disilapentane 1b. In this compound, the Si-C-Si angle is 118°,⁶ unlike the Si-O-Si angle in 1,1,3,3-tetramethyl-1,3-dihydroxydisiloxane (13)

1b: $Y = CH_2$; **2**: $X = CH_2$; **4**: $X = Y = CH_2$; **5**: $X = CH_2$; **6**: $Y = CH_2$; **7**: $X = CH_2$; **8**: X = O; **9a**: X = O, $Y = CH_2$; **10**, **11**: X = O; **12**, **13**: Y = O

Com-	Sol-	δ							
pound	vent	CH ₃ SiCl ₂	CH ₃ SiCl*	(CH ₃) _n SiCH ₂	(CH ₃) _n SiO	Si(CH ₂) _n Si	CH ₃ SiO _{1,5}		
				(n = 1, 2)		(n = 1, 2, 3)			
2	C ₆ D ₆	0.70 (d, 6 H)			0.26 (s, 12 H)	0.14 (s, 2 H)	······································		
3	$C_6^{\circ}D_6^{\circ}$		0.41, 0.42 (both s, 3 H)		0.27 (s, 6 H)	0.22 (s, 2 H)			
47	C ₆ D ₆	0.65, 0.67 (both s -3 H)	0.41 - 0.47	0.23 - 0.34		-0.2 - 0.06 (m 4 H)**	0.14 - 0.18 (m 6 H + 3 H)**		
9-12 (mixture)	C ₆ D ₆	(both s, 3 H) 0.71, 0.72 (both s, 3 H)	(h), 0 11) 0.42, 0.44 (both s, 6 H)	0.19, 0.20, 0.22, 0.23 (all s, 12 H)	0.17 (s, 6 H) 0.24, 0.25, 0.28, 0.29 (all s, 12 H)**	$(m, 4 H)^{-0.03}$ (m, 4 H)**	0.15 (s, 3 H)		
9a	CDCI3		0.40, 0.41 (both s, 6 H)	0.12, 0.13, 0.17, 0.18 (all s, 12 H)	0.18, 0.19, 0.22, 0.23 (all s, 12 H)	-0.09 (q, 2 H)			
trans-9b	(CD ₃) ₂ CO	I	4.96 (br.s. 2 H)	0.08, 0.10 (both br.s. 12 H)	0.13, 0.15 (all br.s, 12 H)		0.04 (br.s, 6 H)		
11	CDCI3		, ,	0.09, 0.11 (both s, 12 H)	0.14, 0.16 (both s, 12 H)	-0.06 (q, 2 H)	0.07 (s, 6 H)		
16a	C ₆ D ₆		0.38, 0,40 (both s, 6 H)	(0.18, 0.23 (both s, 6 H)	0.96, 1.16 (AA'BB' system, 4 H)			
16b	(CD ₃) ₂ CO		4.21 (br.s, 2 H)	0.02 (<i>trans</i>), 0.04 (<i>cis</i>) (both s -6 H)	0.05, 0.08 (both s, 6 H)	0.64, 0.72 (AA'BB' system 4 H)			
17a			0.38, 0.39 (both s, 6 H)	(00111 3, 0 11)	0.23, 0.25 (both s, 6 H)	0.99, 1.10 (2 m, AA'BB'X ₂ system)			
176	(CD ₃) ₂ CO		2.99 (br.s, 2 H)	0.07 (<i>trans</i>), 0.09 (<i>cis</i>) (both s, 6 H)	0.04, 0.08 (both s, 6 H)	0.75, 0.81 (2 m, AA BB X ₂ system)			

Table 2. Data of ¹H NMR spectroscopy

* For dihydroxy derivatives, CH₃SiOH.

** In cyclic and linear fragments of compounds 5, 6, 10, and 12.

 (140.1°) .⁷ We failed to isolated compound 4 in the individual state.

The reaction of tetrachloride 8 with dihydroxy derivative 1b afforded a product in 15% yield. According to the GLC data, this product consisted of two compounds in a ratio of 22 : 78. We failed to separate these compounds by additional distillation due to their similar boiling points. The GLC-mass spectrum of this mixture has an ion with m/z 467 with an intensity distribution in the isotope pattern characteristic of compounds containing two chlorine atoms. This peak may be assigned to structural isomers, viz., to carbosiloxane 9a and compound 10 with the molecular weight of 482. In addition, the mass spectrum has peaks of ions at m/z 413 and 561 corresponding to compounds 11 and 12, respectively. This is supported by the ¹H NMR spectrum (see Table 2), which has signals for the protons of the CH₃SiCl₂ and CH₃SiCl groups, signals assigned to the methyl protons of the (CH₃)₂SiCH₂Si(CH₃)₂ and (CH₃)₂SiOSi(CH₃)₂ fragments, and signals characteristic of the CH₂ group in the cyclic and linear fragments of compounds 9a-12.

We succeeded in preparing carbosiloxane 9a by the reaction of tetrachloride 2 with disiloxane 13. When aniline was used as an acceptor of HCl, chromato-

graphically pure compound 11 was isolated in 25% yield. Its structure was established based on the data from GLC-mass spectrometry and ¹H NMR spectroscopy. When pyridine was used instead of aniline, compound 9a was obtained in 39.9% yield. The resulting product contained an admixture of 11, but the content of the latter was no higher than 7.0%.

Synthesis of difunctional organooxasilacycloalkanes containing Si(CH₂)_nSi fragments. Organooxasilacycloalkanes containing $-(CH_2)_2-$ and $-(CH_2)_3$ groups between silicon atoms were synthesized by heterofunctional condensation of tetrachlorides 14 or 15 with dihydroxydimethylsilane. As a result, dichlorotrisilacycloheptane (16a) and dichlorotrisilacyclooctane (17a) were prepared (Scheme 3).

The starting disilahexane 14 and disilaheptane 15 were synthesized by the addition of dichloromethylsilane to vinyl- or allyldichloromethylsilanes, respectively, in the presence of the Speyer catalyst.^{8,9}

Fractionation of a mixture of heterofunctional condensation products gave compounds 16a and 17a in 20 and 30% yields (with respect to the total amount of distillate), respectively, as well as fractions whose ¹H NMR spectra have signals characteristic of CH₃SiO_{1.5} fragments. These signals belong, apparently, to bicyclic

Compound	Solvent	δ					
		SiO _{1.5}	CH ₃ SiCl (CH ₃ SiOH)	OSi(CH ₃) ₂	CH ₂ Si(CH ₃) ₂		
4, 5, 6, 7	CDCl ₃	-64.27,-63.25, -61.95 (all s, 3 Si)	-56.85, -56.68 (both s, 2 Si)		6.37-7.25, 9.88-10.64* (both m, 10 Si) 28.89-29.01** (both s, 4 Si)		
92	CDCI3		-45.5 (s, 2 Si)	-18.96, 18.71 (both s. 2 Si)	10.49 (br.s, 2 Si)		
9b 16b 17b	(CD ₃) ₂ CO (CD ₃) ₂ CO (CD ₃) ₂ CO		-63.02 (s, 2 Si) -11.48 (s, 2 Si) -12.28 (s, 2 Si)	-19.5 (s, 2 Si) -16.32 (s, 2 Si) -18.42 (s, 2 Si)	6.59 (s, 2 Si)		

Table 3. Data of ²⁹Si NMR spectroscopy

* In compound 4 and cyclic fragments of compounds 5 and 6.

** In linear fragments of compounds 5 and 6.

n = 2 (14, 16), 3 (15, 17)

compounds in which chlorine atoms of molecules 16a and 17a reacted with a second dihydroxydimethylsilane molecule.

Dihydroxy derivatives 9b, 16b, and 17b were prepared by hydrolysis of compounds 9a, 16a, and 17a, respectively, in Et₂O in the presence of aniline as an acceptor of HCl. The structures of the products were established by ¹H and ²⁹Si NMR spectroscopy (Tables 2 and 3, respectively) and IR spectroscopy. For compound 9b, the trans-isomer was isolated from hydrolysis products of compound 9a by fractional crystallization from a hexane-Et₂O mixture. The structure of this isomer was confirmed by IR spectroscopy. The IR spectrum of compound *trans*-9b in a solution in CCl_4 (C = 0.1 mol $L^{-1})$ has a broad band at 3050-3600 \mbox{cm}^{-1} characteristic of hydrogen bonds of associated OH groups. The IR spectrum of a solution diluted to C =0.005 mol L^{-1} has a narrow band at 3690 cm⁻¹ characteristic of free OH groups. Unlike the trans-isomer, the cis-isomer retains intramolecular hydrogen bonds. The ¹H NMR spectrum of trans-9b is analogous to that of compound 11. In the ¹H NMR spectrum of *trans-9b*, the protons of the methyl groups bound to the silicon

atoms are observed as five signals. In the spectrum of compound **9b**, unlike that of bicyclic compound **11**, the signals for the protons of the methylene groups are shifted downfield and overlap with intense signals of the methyl groups.

Fractional crystallization of compounds 16b and 17b from a hexane-Et₂O mixture afforded their *trans*-isomers in 18.6 and 31.6% yields, respectively. The ¹H NMR spectrum of *trans*-isomer 16b has two signals with equal integral intensities, which belong to the methyl protons of the (CH₃)₂SiO and CH₃SiOH groups. The protons of the CH₂CH₂ fragment give a multiplet characteristic of the AA'BB' spin system. The region of signals of the CH₃SiOH and (CH₃)₂SiO groups in the ¹H NMR spectrum of *trans*-17b is to a great extent analogous to that of *trans*-16b, and the chemical shifts of the protons of the -(CH₂)₃- group are observed as two multiplets characteristic of the AA'BB'X₂ spin system.

Experimental

The IR spectra were recorded on a Specord M-82 spectrophotometer.

The ¹H and ²⁹Si NMR spectra were measured on a Bruker AMX-400 spectrometer (400.13 MHz) in CCl₄--CDCl₃, CCl₄-(CD₃)₂CO, and CCl₄-C₆D₆ solutions. The ²⁹Si NMR spectra were recorded in the absence of the Overhauser effect: the delay time between pulses was 25 s. Chromatographic analysis was carried out on an LKhM-80 instrument (the length and the diameter of the column were 3 m and 3 mm, respectively; Chromaton as the sorbent; SE-30 as the liquid phase; helium as the carrier gas (30 mL min⁻¹); the evaporator temperature was 270 °C; a katharometer as the detector; the temperature-programming mode from 50 to 300 °C at a rate of 25 deg min⁻¹). The GLC-mass spectrometric analysis (EI) was carried out on a Kratos MS-890 spectrometer (Great Britain) (70 eV, the temperature of the ionization chamber was 250 °C) equipped with a Carlo Erba Meda Series gas-liquid chromatograph with a capillary column (15 m) coated with methylsiloxane elastomer. The operating mode: 4 deg min⁻¹ from 30 to 250 °C. 10 deg min⁻¹ from 250 to 400 °C, and 15 min at 400 °C. Helium was used as the carrier gas (2 mL min⁻¹).

The reactions were carried out in anhydrous solvents.

Dihydroxydimethylsilane was prepared according to a known procedure.¹⁰ The yield was 79.3%, m.p. 98-99 °C (hexane) (cf. lit. data10: m.p. 99-100 °C). Allyldichloromethylsilane was synthesized as described previously.9 The yield was 33.9%, b.p. 118-122 °C (cf. lit. data9: b.p. 120 °C). 1,1,7,7-Tetrachloro-1,3,3,5,5,7-hexamethyltetrasiloxane (8) was prepared according to a procedure reported previously.² The chromatographically pure product was isolated in 35.7% yield, b.p. 247-250 °C. 1,3-Dihydroxy-1,1,3,3-tetramethyldisiloxane (13) was prepared according to a known procedure.¹¹ The crystalline product was obtained in 56.6% yield, m.p. 68 °C (cf. lit. data¹¹: m.p. 68.5 °C). 2,4-Dichloro-2,4-dimethyl-2,4-disilapentane (1a). A mixture of dimethylchloromethylchlorosilane (43.84 g. 0.306 mol) and Me₂SiCl₂ (102.12 g, 0.920 mol) in THF (65 mL) was added dropwise to a solution of Mg (chips, 8.10 g, 0.333 g-at.) in THF (20 mL) at 60 °C. The reaction mixture was refluxed with stirring for 20 h. The precipitate was filtered off. The solvent and unconsumed Me₂SiCl₂ were distilled off. Then the reaction mixture was distilled and the fraction with b.p. 140-180 °C was fractionated once again on a rectification column with metal ring packing. The fraction with b.p. 170-178 °C was collected (cf. lit. data¹¹: b.p. 177-178 °C). Disilapentane la was isolated in a yield of 22.7 g (36.8%). ¹H NMR (CDCl₃-CCl₄), δ : 0.51 (s, 12 H, CH₃(Cl)SiCH₂); 0.56 (s. 2 H, SiCH₂Si).

1,1,6,6-Tetrachloro-2,5-disilahexane (14) was prepared according to a known procedure.¹² Dichloromethylsilane (44.24 g, 0.385 mol) was added dropwise to a mixture of dichloromethylvinylsilane (54.25 g, 0.385 mol) and H₂PtCl₆ · 6H₂O (0.155 g, $0.3 \cdot 10^{-3}$ mol) in THF at 60 °C. Chromatographically pure product **14** was obtained in a yield of 86.7 g (88.0%), b.p. 139 °C (80 Torr) (cf. lit. data¹²: b.p. 109--111 °C (30 Torr)).

1,1,7,7-Tetrachloro-2,6-disilaheptane (15) was prepared according to a procedure reported previously.¹³ Dichloromethylsilane (11.8 g, 0.1 mol) was added dropwise to a mixture of allyldichloromethylsilane (15.9 g, 0.102 mol) and $H_2PtCl_6 \cdot 6H_2O$ (0.518 g, $1.0 \cdot 10^{-3}$ mol) at 60 °C. The reaction mixture was heated at 70--80 °C for 4 h. Chromatographically pure compound 15 was isolated by fractionation in a yield of 18.95 g (50.8%), b.p. 58--66 °C (1 Torr) (cf. lit. data¹³: b.p. 132-136 °C (33 Torr)).

2,4-Dihydroxy-2,4-dimethyl-2,4-disilapentane (1b). A solution of disilapentane 1a (9.50 g, 0.047 mol) in Et₂O (150 mL) was added dropwise with intense stirring to a mixture of PhNH₂ (9.22 g, 0.099 mol) and H₂O (1.70 g, 0.094 mol) in Et₂O (190 mL) cooled to from -5 to -8 °C. The reaction mixture was filtered from a precipitate of PhNH₂ · HCl, the solvent was distilled off under reduced pressure, and the crystals that precipitated were twice recrystallized. Disilapentane 1b was obtained in a yield of 4.4 g (56.7%), m.p. 85--86 °C (pentane). Found (%): C, 36.46; H, 9.75; Si, 34.39. C₅H₁₆O₂Si₂. Calculated (%): C, 36.53; H, 9.83; Si, 34.17. ¹H NMR ((CD₃)₂CO), δ : -0.08 (s, 2 H, CH₃Si); 0.10 (s, 12 H, CH₃Si); 4.10 (s, 2 H, HOSiCH₃).

1,1,7,7-Tetrachloro-1,3,3,5,5,7-hexamethyl-4-carbatetrasiloxane (2). A. A solution of disilapentane 1b (4.7 g, 0.029 mol) in Et₂O (95 mL) and Py (4.74 g, 0.060 mol) were added dropwise with intense stirring to a solution of MeSiCl₃ (17.10 g, 0.114 mol) in Et₂O (114 mL) at -4 °C. The reaction mixture was kept at this temperature for 1 h. Then the reaction mixture was allowed to warm to ~20 °C and filtered under a flow of argon. The solvent was distilled off. The reaction products were isolated first by distillation and then by rectification. Compound 3 was obtained in a yield of 1.21 g (18.3%), b.p. 170-180 °C. Tetrasiloxane 2 was obtained in a yield of 3.21 g (48.6%), b.p. 246-256 °C. 1R of 3 (CCl₄), v/cm⁻¹: 1032, 1064 (SiOSi); 1266, 1256 (SiCH₂). **B.** The synthesis was carried out analogously to procedure A starting from a solution of MeSiCl₃ (80.19 g, 0.536 mol) in Et₂O (450 mL), a solution of compound **1b** (22.40 g, 0.134 mol) in Et₂O (150 mL), and a solution of PhNH₂ (26.92 g, 0.282 mol) in Et₂O (150 mL). Tetrasiloxane **2** was obtained in a yield of 18.8 g (35.7%), b.p. 247-250 °C. Compound **3** was obtained in a yield of 21.10 g (40.1%), b.p. 172-181 °C.

C. The synthesis was carried out analogously to procedure A starting form a solution of MeSiCl₃ (44.2 g, 0.296 mol) in Et₂O (180 mL) and a solution of compound 1b (7.4 g, 0.045 mol) and Py (7.2 g, 0.091 mol) in Et₂O (150 mL). Chromatographically pure tetrasiloxane 2 was obtained in a yield of 10.7 g (59.6%).

attempt to synthesize 2,8-dichloro-An 2,4,4,6,6,8,10,10,12,12-decamethyl-5,11-dicarbacyclohexasiloxane (4). A mixture of disilapentane 1b (1.47 g, 0.896 · 10⁻² mol) and PhNH₂ (1.75 g, 0.188 · 10⁻¹ mol) in Et₂O (37.4 mL) and a solution of tetrasiloxane 2 (3.36 g. $0.896 \cdot 10^{-2}$ mol) in Et₂O (37.4 mL) were added simultaneously dropwise at the same rate to Et₂O (10 mL) at -8 °C. The reaction mixture was kept at this temperature for 1 h. Then the mixture was filtered from a precipitate of PhNH₂ · HCl and the solvent was distilled off. A mixture of compounds 4-7 was isolated by fractionation in a yield of 0.83 g (20.1%), b.p. 120-160 °C (1 Torr). 1R (CCl₄), v/cm⁻¹: 830, 853 (SiMe); 1020, 1059 (SiO); 1255, 1266 (SiMe). GLC/MS, m/z (1rej (%)), 6: 557 $[M - Me]^+$ (20); 4 and 5 (for ³⁵Cl isotope): 465 $[M - Me]^+$ $(53); 7: 411 [M - Me]^+ (34).$

2,8-Dichloro-2,4,4,6,6,8,10,10,12,12-decamethyl-5-carbahexacyclosiloxane (9a). *A*. A solution of tetrachloride **8** (6.51 g, 0.040 mol) in Et₂O (65 mL) and a solution of a mixture of PhNH₂ (7.38 g, 0.079 mol) and disilapentane **1b** (14.81 g, 0.038 mol) in Et₂O (45 mL) were added dropwise simultaneously using two dropping funnels to dry Et₂O (135 mL) at -4 °C. After 1 h, the reaction mixture was filtered from the precipitate, the solvent was distilled off under reduced pressure, and the reaction mixture was distilled. The fraction with b.p. 170–175 °C (1 Torr) was collected in a yield of 5.10 g (35%). GLC/MS, m/z (I_{rel} (%)). **11**: 413 [M - Me]⁺; **9a** and **10** (for ³⁵Cl isotope): 467 [M - Me]⁺; **12**: 561 [M - Me]⁺.

B. The reaction was carried out analogously to procedure A. A solution of a mixture of compound 13 (1.81 g, 0.011 mol) and PhNH₂ (2.24 g, 0.024 mol) in Et₂O (47 mL) was added to a solution of compound 2 (4.25 g, 0.011 mol) in Et₂O (47 mL). Product 11 was obtained in a yield of 1.55 g (30.0%), b.p. 115-118 °C (1 Torr). GLC/MS. m/z (I_{rei} (%)): 413 [M - Me]⁺ (70.6).

C. The synthesis was carried out analogously to procedure A. A solution of compound 2 (7.80 g, 0.020 mol) in Et₂O (87 mL) and a solution of a mixture of compound 13 (3.32 g, 0.020 mol) and Py (3.32 g, 0.042 mol) in Et₂O (87 mL) were added to Et₂O (48 mL). Chromatographically pure dichloride 9a was obtained in a yield of 3.85 g (39.9%), b.p. 99–110 °C. GLC/MS (for ³⁵Cl isotope), m/z (I_{ct} (%)): 467 [M - Me]⁺ (11.2).

2,8-Dihydroxy-2,4,4,6,6,8,10,10,12,12-decamethyl-5carbacyclohexasiloxane (9b). The reaction was carried out as described above for compound 1b. A solution of H₂O (0.083 g, $4.612 \cdot 10^{-3}$ mol) in Et₂O (17 mL) was added to a solution of compound 9a (2.240 g, $4.612 \cdot 10^{-3}$ mol) in Et₂O (9 mL) and PhNH₂ (0.859 g, $9.255 \cdot 10^{-3}$ mol). Compound 9b was obtained in a yield of 0.85 g (71.0%). trans-9b was isolated by recrystallization from a mixture of hexane and Et₂O in a yield of 0.61 g (51.0%), m.p. 80–82 °C. Found (%): C, 29.62; H, 7.63; Si, 37.01. C₁₁H₃₄O₇Si₆. Calculated (%): C, 29.56; H, 7.68; Si, 37.70. IR (Nujol mulls), v/cm⁻¹: 3050–3600 (SiOH).

4,7-Dichloro-2,2,4,7-tetramethyl-1,3-dioxa-2,4,7-trisilucycloheptane (16a). A solution of tetrachloride 14 (30.50 g,

0.111 mol) in Et₂O (200 mL) and a solution of dihydroxydimethylsilane (10.21 g, 0.111 mol) in Et₂O (200 mL) were added dropwise simultaneously using two dropping funnels to a solution of Py (18.40 g, 0.234 mol) in Et₂O (100 mL). The temperature of the reaction mixture was maintained at about -5 °C. The reaction mixture was kept at ~20 °C for 2 days. The completion of the reaction was followed from the disappearance of the signal for the methyl proton in the CH₃SiCl₂ fragment of compound 14 at § 0.5-0.6 in the ¹H NMR spectrum. The solvent was distilled off. The reaction product was distilled first in vacuo and then on a rectification column with metal ring packing. Product 16a was obtained in a yield of 3.3 g (10.1%), b.p. 66.5--73.0 °C (4 Torr). The fraction with b.p. 90-130 °C (2 Torr) was isolated in a yield of 9.8 g (30%). Found (%): C, 25.82; H, 5.81; Si, 31.01; Cl, 25.75, C₆H₁₆Si₃Cl₂, Calculated (%): C, 26.18; H, 5.81; Si, 30.61; Cl, 25.76.

4,7-Dihydroxy-2,2,4,7-tetramethyl-1,3-dioxa-2,4,7-trisilacyclopentane (16b). The reaction was carried out as described above for compound **1b.** Water (0.65 g, 0.036 mol) in Et₂O (67 mL) was added to a solution of compound **16a** (4.40 g, 0.018 mol) in Et₂O (34 mL) and PhNH₂ (3.54 g, 0.038 mol). The products with b.p. 80–100 °C (5 Torr) and with b.p. 110–130 °C (5 Torr) obtained after fractionation crystallized. The total yield was 2.70 g (70.9%). *trans-16b*, m.p. 133–137 °C (hexane). *trans.cis-16b* (75–25%), m.p. 108–125 °C (hexane-Et₂O). *cis.trans-16b* (25–75%), m.p. 108–109 °C (bexane-Et₂O). Found (%): C, 29.98: H, 7.51; Si, 35.80. C₆H₁₈O₄Si₃. Calculated (%): C, 30.24; H, 7.55; Si, 35.35. 1R (KBr), v/cm⁻¹: 848, 880, 1253, 1259 (MeSiMe); 1053, 1076 (SiOSi); 1148 (SiCH₂CH₂Si); 3000–3550 (SiOH).

4,8-Dichloro-2,2,4,8-tetramethyl-1,3-dioxa-2,4,8-trisilacyclooctane (17a). The reaction was carried out as described above for compound 16a. A solution of compound 15 (20.92 g. 0.105 mol) in Et₂O (127.6 mL) and a solution of dihydroxydimethylsilane (9.68 g, 0.105 mol) in Et₂O (127.6 mL) were added to a solution of Py (17.34 g, 0.221 mol) in Et₂O (127.6 mL). Rectification of the reaction mixture afforded compound 17a in a yield of 4.81 g (22.5%), b.p. 61--69 °C (5 Torr), and a fraction of a product with b.p. 69--75 °C (5 Torr) in a yield of 4.3 g (20%). Found (%): C, 29.13; H, 6.30; Cl, 24.46; Si, 29.05. C₇H₁₈Si₂O₂Cl₂. Calculated (%): C, 29.13; H, 6.28; Cl, 24.50; Si, 29.11.

4,8-Dihydroxy-2,2,4,8-tetramethyl-1,3-dioxa-2,4,8-trisilacyclooctane (17b). The reaction was carried out as described above for compound 16b. A solution of compound 17a (1.86 g, 0.014 mol) in Et₂O (14.4 mL) was added dropwise to a mixture of PhNH₂ (1.32 g, 0.028 mol), H₂O (0.24 g, 0.028 mol), and Et₂O (28.8 mL) at a temperature from -5 to -8 °C. A precipitate of PhNH₂ · HCl was filtered off and Et₂O was distilled off. Then the crystalline product was recrystallized from a hexane— Et₂O mixture. A mixture of isomers 17b was obtained in a yield of 0.65 g (40.3%). Repeated crystallization afforded *trans*-17b, m.p. 130-134 °C, and a mixture of *cis*-17b and *trans*-17b, m.p. 108-115 °C. Found (%): C, 33.01; H, 7.90; Si, 33.81. $C_7H_{20}O_4Si_2$. Calculated (%): C, 33.32; H, 7.93; Si, 33.39. IR (KBr), v/cm⁻¹: 849, 876, 1246, 1263 (MeSiMe); 1035, 1065 (SiOSi); 1114 (Si(CH₂)_nSi): 3000-3550 (SiOH).

We thank Yu. I. Lyakhovetskii for help in recording and discussing the GLC-mass spectra.

This work was financially supported by the Russian Foundation for Basic Research (Project Nos. 96-03-32645a and 96-15-97440).

References

- N. N. Makarova, B. D. Lavrukhin, T. V. Timofeeva, and V. N. Zelencheva, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1985, 1114 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, 34, 1017 (Engl. Transl.)].
- N. N. Makarova and B. D. Lavrukhin, *Izv. Akad. Nauk* SSSR, Ser. Khim., 1986, 652 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 592 (Engl. Transl.)].
- N. N. Makarova and Yu. K. Godovsky, Prog. Polym. Sci., 1997, 22, 1001.
- Yu. A. Yuzhelevskii, T. V. Kurlova, E. G. Kagan, and M. V. Suvorova, Zh. Obshch. Khim., 1972, 42, 2006 [J. Gen. Chem. USSR, 1972, 42 (Engl. Transl.)].
- A. B. Zachernyuk, E. A. Burlova, and A. A. Zhdanov, *Zh. Obshch. Khim.*, 1985, 55, 1368 [J. Gen. Chem. USSR, 1985, 55 (Engl. Transl.)].
- K. A. Lyssenko, T. V. Astapova, M. Yu. Antipin, and N. N. Makarova. *Mendeleev Commun.*, 1998, 87.
- A. P. Polishuk, T. V. Timofeeva, M. Yu. Antipin, N. N. Makarova, and Yu. T. Struchkov, *Liq. Crystall.*, 1991, 9, 433.
- 8. G. Greber and G. Degler, Macromol. Chem., 1962, 52, 174.
- 9. D. Scott, J. Am. Chem. Soc., 1946, 68, 1877.
- 10. T. Takiguchi. J. Am. Chem. Soc., 1959, 81, 2359.
- 11. G. I. Harris, J. Chem. Soc., 1963, 5978.
- 12. V. M. Vdovin and A. D. Petrov, Zh. Obshch. Khim., 1960, 838 [J. Gen. Chem. USSR, 1960 (Engl. Transl.)].
- K. A. Andrianov, L. M. Volkova, and N. V. Delazari, *Khim. Geterotsikl. Soedin.*, 1968, 222 [*Chem. Heterocycl. Compd.*, 1968 (Engl. Transl.)].

Received December 29, 1998; in revised form January 24, 2000