Contents lists available at SciVerse ScienceDirect

Journal of Organometallic Chemistry

Chemistry

Arene ruthenium dichloro complexes containing isonicotinic ester ligands: Synthesis, molecular structure and cytotoxicity

Farooq-Ahmad Khan^a, Bruno Therrien^a, Georg Süss-Fink^{a,*}, Olivier Zava^b, Paul J. Dyson^b

^a Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel, Switzerland ^b Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

ARTICLE INFO

Article history: Received 23 July 2012 Received in revised form 3 October 2012 Accepted 4 October 2012

Keywords: Anticancer drugs Bioorganometallic chemistry Isonicotinic ester ligands Arene ruthenium complexes

ABSTRACT

A series of *p*-cymene ruthenium dichloro complexes containing isonicotinic ester ligands, [(arene) RuCl₂NC₅H₄-4-COO-C₆H₄-*p*-O-(CH₂)_n-CH₃] (n = 1: **1**, n = 3: **2**, n = 5: **3**, n = 7: **4**, n = 9: **5**, n = 11: **6**, n = 13: **7**, n = 15: **8**), were prepared from *p*-cymene ruthenium dichloro dimer and the corresponding isonicotinic ester ligand. The single-crystal X-ray analysis of **1** shows the molecule to adopt the usual pseudo-tetrahedral piano-stool geometry, the isonicotinic ester ligand being coordinated through the nitrogen atom. The cytotoxicity of all complexes and of the free ligands was studied towards human ovarian cancer cells; high activities were observed only for n = 9 (presenting a chain with ten carbon atoms), both as far as the free ligands and the complexes are concerned. Based on this result, a new isonicotinic ester ligand with a C₁₀ substituent containing a terminal alcohol function, NC₅H₄-4-COO $-C_6H_4-p$ -O- $-(CH_2)_{10}$ -OH, was synthesized by a four-step method, and arene ruthenium complexes thereof, [(arene)RuCl₂NC₅H₄-4-COO $-C_6H_4-p$ -O- $-(CH_2)_{10}$ -OH] (arene = C_6H_6 : **9a**, arene = p-MeC₆H₄Pr¹: **9b**, arene = C_6M_6 : **9c**) were prepared. The complexes **9a** and **9b** show indeed remarkable anticancer activities, the IC₅₀ values for human ovarian cancer cells being in the submicromolar range. The highest cytotoxicity was observed for complex **9b**, with IC₅₀ values of 0.18 μ M for A2780 and 3.04 μ M for the cisplatin-resistant mutant A2780CisR.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Arene ruthenium complexes containing chlorido ligands are often both lipophilic and water-soluble, which preconditions these organometallics for bio-medical applications, in particular as anticancer agents [1]. The field of antitumoral and antimetastatic arene ruthenium complexes has, in recent years, received considerable attention [2,3], following the first in vitro study of arene ruthenium compounds as anticancer agents by Tocher et al. in 1992, who observed a cytotoxicity enhancement by coordinating the anticancer agent metronidazole $[1-\beta-(hydroxyethyl)-2-methyl-5$ nitro-imidazole] to a benzene ruthenium dichloro fragment [4]. Prototype arene ruthenium(II) complexes evaluated for anticancer properties include $[(p-MeC_6H_4Pr^i)RuCl_2(P-pta)]$ (pta = 1,3,5-triaza-7-phospha-tricyclo-[3.3.1.1]decane), termed RAPTA-C [5], and $[(C_6H_5Ph)RuCl(N,N-en)][PF_6]$ (en = 1,2-ethylenediamine) [6], although many different classes have since been reported [7]. Recently, we reported highly cytotoxic diruthenium compounds such as $[(p-MeC_6H_4Pr^i)Ru_2(S-p-C_6H_4Me)_3]Cl$ [8].

Isonicotinic acid (pyridine-4-carboxylic acid), an isomer of nicotinic acid (pyridine-3-carboxylic acid), is widely used for the synthesis of antibiotics and antituberculosis preparations [9], and it has strong bactericide effects [10]. The encouraging pharmacological profile of isonicotinic acid derivatives coupled with amphiphilic arene ruthenium moieties makes this combination promising for drug design. Thus, Liu et al. recently reported arene ruthenium complexes containing isonicotinic acid, methyl isonicotinate and 5-fluorouracil-1-methyl isonicotinate (5-Fu) ligands, a synergistic effect was observed in the case of the 5-Fu ligand and the p-cymene ruthenium fragment [11]. Similar effect was observed by Schobert et al. in a series of arene ruthenium dichloro complexes containing N-coordinated oestrogen and androgen isonicotinates [12]. However, Šipka et al. reported only low cytotoxic activity for a series of arene ruthenium complexes with functionalized pyridines including a *p*-cymene ruthenium derivative containing an isonicotinic acid ligand viz. [(p-MeC₆H₄Prⁱ)RuCl₂NC₅H₄COOH] [13]. Another arene ruthenium complex containing isonicotinic acid as a ligand, namely $[(C_6H_6)RuCl_2NC_5H_4COOH]$, was synthesized by Małecki et al., but the biological properties of this complex were not reported [14]. We have been interested in the use of long-chain isonicotinic esters as lipophilic components in order to increase

^{*} Corresponding author. Tel.: +41 32 718 2405; fax: +41 32 718 2511. *E-mail address*: georg.suess-fink@unine.ch (G. Süss-Fink).

⁰⁰²²⁻³²⁸X/\$ - see front matter © 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jorganchem.2012.10.016

the anticancer activity of arene ruthenium complexes. Recently, we found that long-chain isonicotinic ester ligand-stabilized ruthenium(0) nanoparticles, derived from the precursor complex [$(p-MeC_6H_4Pr^i)RuCl_2NC_5H_4-4-COO-C_6H_4-p-O-(CH_2)_9-CH_3$] (**5**) show *in vitro* anticancer activity against human ovarian cancer cells [15].

In this paper we report a systematic study of this type of complexes: the synthesis and characterization of *p*-cymene ruthenium complexes containing isonicotinic ester ligands, (arene) RuCl₂[NC₅H₄-4-COO-C₆H₄-*p*-O-(CH₂)_{*n*}-CH₃] (n = 1: **1**, n = 3: **2**, n = 5: **3**, n = 7: **4**, n = 9: **5**, n = 11: **6**, n = 13: **7**, n = 15: **8**) with an even number of carbon atoms in the aliphatic chain (including the known complex **5** [15]), the synthesis and characterization of a new long-chain isonicotinic ester ligand with a C₁₀ substituent containing a terminal alcohol function, NC₅H₄-4-COO-C₆H₄-*p*-O-(CH₂)₁₀-OH, and of the corresponding ruthenium complexes thereof, [(arene) RuCl₂NC₅H₄-4-COO-C₆H₄-*p*-O-(CH₂)₁₀-OH] (arene = C₆H₆: **9a**, arene = *p*-MeC₆H₄Pr^{*i*}: **9b**, arene = C₆Me₆: **9c**) as well as the cytotoxicities of these compounds for human ovarian cancer cells.

2. Results and discussion

2.1. Synthesis of the p-cymene ruthenium complexes 1-8

The dinuclear complex $[(p-MeC_6H_4Pr^i)RuCl_2]_2$ reacts in dichloromethane with two equivalents of the isonicotinic ester ligands NC₅H₄-4-COO-C₆H₄-p-O-(CH₂)_n-CH₃ at room temperature to give the neutral complexes $[(p-MeC_6H_4Pr^i)RuCl_2NC_5H_4$ -4-COO-C₆H₄-p-O-(CH₂)_n-CH₃] (n = 1: 1, n = 3: 2, n = 5: 3, n = 7: 4, n = 9: 5, n = 11: 6, n = 13: 7, n = 15: 8) in quantitative yield, see Scheme 1.

All the complexes are obtained as air-stable yellow to yellowbrownish powders, which are soluble in polar organic solvents, in particular in dichloromethane and in chloroform. The complexes are also sparingly soluble in water.

2.2. Single-crystal X-ray structure analysis of 1

Orange crystals of **1** with X-ray diffraction quality were obtained by slow evaporation of a dichloromethane solution. This compound crystallizes in the monoclinic centrosymmetric space group $P2_1/c$. The structure of this complex can be described as pseudotetrahedral, having a "piano stool"-like geometry, in which the ruthenium atom is coordinated to the p-MeC₆H₄Pr^{*i*} ligand, the two chlorido ligands and to the nitrogen atom of the isonicotinic ester ligand. The molecular structure of **1** is shown in Fig. 1, and characteristic distances and angles are summarized in Table 1.

2.3. Anticancer properties of complexes 1-8 and of the free ligands

The *in vitro* cytotoxicity of the complexes $[(p-MeC_6H_4Pr^i)$ RuCl₂NC₅H₄-4-COO-C₆H₄-*p*-O-(CH₂)_n-CH₃] (**1**–**8**) and of the corresponding free isonicotinic ester ligands NC₅H₄-4-COO-C₆H₄-*p*-O-(CH₂)_n-CH₃ (n = 1, 3, 5, 7, 9, 11, 13, 15) was studied towards the

Fig. 1. OREP diagram of complex 1 with 50% probability thermal ellipsoids.

A2780 ovarian cancer cell line and cisplatin-resistant variant A2780cisR using the MTT assay. It was found that the IC_{50} values for both cell lines depend strongly on the length of the carbon chain in the isonicotinic ester ligand (Fig. 2). In particular, complex **5** containing a ten-carbon-atom chain (n = 9) exhibits a very high cytotoxicity towards both cell lines, the IC_{50} values being comparable to those of cisplatin [16]. Indeed, it has been shown previously that arene ruthenium complexes with long aliphatic chains [17] or long perfluorous chains [18] are often very cytotoxic.

Interestingly, the analogous pyridine complex $[(p-MeC_6H_4Pr^i)$ RuCl₂(py)] is essentially inactive (IC₅₀ = 750 μ M) under comparable conditions in these cancer cell lines [19], suggesting that the cytotoxicity of isonicotinic ester complexes may be due to the long-chain isonicotinic ligand. This is supported by the low IC₅₀ values observed for the free ligands (Fig. 3).

The remarkable dependence of the IC_{50} values on the length of the carbon chain in both, the free isonicotinic ester ligands and of the *p*-cymene ruthenium complexes thereof suggests that for the highest anticancer activity ten carbon atoms in the substituent of the isonicotinic ester are required. This observation prompted us to synthesize a new isoniconitic ester containing a ten-carbon-atom chain with an alcoholic function at the terminal carbon atom in order to increase the hydrophilicity of the complex.

2.4. Synthesis of the isonicotinic ester NC₅H₄-4-COO-C₆H₄-p-O-(CH₂)₁₀-OH

The long-chain isonicotinic ester NC_5H_4 -4-COO- C_6H_4 -p-O-(CH₂)₁₀-OH was synthesized using a classical four-step method,

Scheme 1.

Fig. 2. Cytotoxicities of arene ruthenium complexes 1–8 containing isonicotinic ester ligands and graphical representation of carbon atom chain length effect on IC₅₀ values of these complexes.

see Scheme 2: Starting by selective bromination of 1,10-decanediol using 48% HBr solution in a liquid–liquid extractor to give 10bromodecanol [20] (Step 1), the corresponding benzyl ether was obtained by reaction with benzyl hydroquinone in the presence of potassium carbonate and 18-crown-6, according to a literaturemodified etherification process [21] (Step 2). The benzyl group was then removed with molecular hydrogen under pressure in the presence of palladium on carbon [22] (Step 3). The isonicotinic ester NC_5H_4 -4-COO– C_6H_4 –p-O–(CH_2)₁₀–OH was obtained by reacting isonicotinoyl chloride hydrochloride with the alcohol *viz*. 4-(10-hydroxydecyloxy)phenol (Step 4) [22]. The reaction is done in the presence of triethylamine to bind the HCl eliminated. The full characterization of this new isonictonic ester is presented in the Experimental Part.

2.5. Synthesis of the arene ruthenium complexes 9a-c

The precursors $[(C_6H_6)RuCl_2]_2$, $[(p-MeC_6H_4Pr^i)RuCl_2]_2$ and $[(C_6Me_6)RuCl_2]_2$ react in dichloromethane as expected with two equivalents of the new isonicotinic ester ligand NC₅H₄-4-COO-C₆H₄-*p*-O-(CH₂)₁₀-OH to give the complexes $[(arene)Ru-4-COO-C_6H_4-p-O-(CH_2)_{10}-OH]$ (arene = C₆H₆: **9a**, arene = *p*-MeC₆H₄Prⁱ: **9b**, arene = C₆Me₆: **9c**) in quantitative yield, see Scheme 3.

The coordination of the ligand to the ruthenium centre can be concluded from the ¹H NMR spectra of the complexes 9a-c, in

Table 1		
Selected bond lengths (Å) and angles (°)	for	1.

Bond lengths (Å)	Angles (°)	
Ru1-N1	2.142(3)	Cl1-Ru1-N1	85.53(11)
Ru1-C1	2.216(4)	Cl2-Ru1-N1	86.13(9)
Ru1-C2	2.181(4)	Cl1-Ru1-Cl2	88.02(4)
Ru1–C3	2.144(5)	-	_
Ru1–C4	2.177(4)	-	-
Ru1-C5	2.153(4)	-	-
Ru1–C6	2.188(4)	-	-
Ru1-Cl1	2.4251(12)	-	_
Ru1–Cl2	2.3934(11)	-	-

which the signals for the α -protons in the pyridine ring appear at lower field as compared to those of the corresponding protons in the free ligand. All complexes are obtained as air-stable yellow to brownish-yellow powders, which are soluble in polar organic solvents, in particular in dichloromethane and chloroform. The complexes are also soluble in DMSO and sparingly soluble in water.

2.6. Anticancer properties of complexes 9a-c and of the free ligand

The in vitro cytotoxicity of the complexes [(arene)RuCl₂NC₅H₄- $4-COO-C_6H_4-p-O-(CH_2)_{10}-OH$ (arene = C_6H_6 : **9a**, arene = p- $MeC_6H_4Pr^i$: **9b**, arene = C_6Me_6 : **9c**) and of the corresponding free isonicotinic ester ligand NC₅H₄-4-COO-C₆H₄-p-O-(CH₂)₁₀-OH was studied towards the A2780 ovarian cancer cell line and cisplatin-resistant variant A2780cisR using the MTT assay. Surprisingly, the free ligand NC₅H₄-4-COO-C₆H₄-p-O-(CH₂)₁₀-OH is almost inactive (IC_{50} = 162 μM for A2780 and IC_{50} = 208 μM for A2780cisR), in contrast to its non-hydroxylated analogue NC_5H_4 -4-COO- C_6H_4 -p-O-(CH₂)₉-CH₃ (IC₅₀ = 5 μ M for A2780 and $IC_{50} = 11 \ \mu M$ for A2780cisR). However, the arene ruthenium complexes containing the hydroxylated C₁₀ ligand are very active, see Table 2. In particular, the *p*-cymene ruthenium complex **9b** containing the hydroxylated C₁₀ ligand is, towards the A2780 cell line, ten times more active than the corresponding *p*-cymene ruthenium complex **5** containing the non-hydroxylated C₁₀ ligand; towards the cisplatin-resistant A2780 cell line, the introduction of a terminal hydroxyl function into the C₁₀ isonicotinic ester ligand increases the anticancer activity by a factor of 2.

3. Conclusions

A systematic series of *p*-cymene ruthenium dichloro complexes containing an isonicotinic ester ligand, the carbon chain length of which varying from 2 to 16 were prepared and evaluated for anticancer activity towards human ovarian cancer cells (A2780 and A2780cisR). A striking activity increase was observed for the complex containing a C_{10} aliphatic chain. A new isonicotinic ester was synthesized by introducing a terminal

Fig. 3. Cytotoxicity values of isonicotinic ester ligands NC_5H_4 -4-COO $-C_6H_4$ -p-O-(CH₂) $_n$ -CH₃ (n = 1, 3, 5, 7, 9, 11, 13, 1) and correlation of IC_{50} values and carbon chain length.

hydroxy group at the end of the C_{10} chain, and the corresponding *p*-cymene ruthenium dichloro complex turned indeed out to be the most active compound. It is too early to say whether these ruthenium compounds exert their cytotoxic effect via a similar mechanism to cisplatin or whether different mechanisms are in operation.

4. Experimental section

4.1. General procedures

Solvents were dried using appropriate drying agents and distilled prior to use. $RuCl_3 \cdot n H_2O$ (Johnson-Matthey), 1bromoalkanes (Sigma Aldrich), isonicotinoyl chloride hydrochloride (Sigma Aldrich), 4-benzyloxyphenol (Sigma Aldrich) were used as received. NMR spectra were recorded on a Bruker DRX 400 MHz spectrometer at 400.13 (¹H) with SiMe₄ as internal references and coupling constants are given in Hz. Infrared spectra were recorded on Perkin–Elmer FT-IR spectrometer as KBr pellets. UV–Vis studies were recorded on a UVIKON 930 spectrometer. The compounds [(C₆H₆)RuCl₂]₂ [24], [(*p*-MeC₆H₄Prⁱ)RuCl₂]₂ [25], [(C₆Me₆)RuCl₂]₂ [26], the 4-(alkyloxy)phenyl isonicotinate ligands [27] (except the new derivative for n = 7, see below) and $[(p-MeC_6H_4Pr^i)$ RuCl₂NC₅H₄-4-COO-C₆H₄-p-O-(CH₂)₉-CH₃] (**5**) [15] were prepared according to published methods.

4.2. Cytotoxicity tests (MTT assay)

The cytotoxicity was determined using the MTT assay (MTT = 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide). Cells were seeded in 96-well plates as monolayers with 100 μ l of cell solution (approximately 20,000 cells) per well and preincubated for 24 h in medium supplemented with 10% FCS. Compounds were added as DMSO solutions and serially diluted to the appropriate concentration (to give a final DMSO concentration of 0.5%). 100 μ l of drug solution was added to each well and the plates were incubated for another 72 h. Subsequently, MTT (5 mg/ml solution in phosphate buffered saline) was added to the cells and the plates were incubated for a further 2 h. The culture medium was aspirated, and the purple formazan crystals formed by the mitochondrial dehydrogenase activity of vital cells were dissolved in DMSO. The optical density, directly proportional to the number

Scheme 2.

Scheme

of surviving cells, was quantified at 540 nm using a multiwell plate reader and the fraction of surviving cells was calculated from the absorbance of untreated control cells. Evaluation is based on means from two independent experiments, each comprising three microcultures per concentration level.

4.3. Crystal structure determination of compound 1

Single crystal X-ray data for **1** were collected at 173 K ($-100 \,^{\circ}$ C) on a Stoe Mark II-Image Plate Diffraction System equipped with a two-circle goniometer and using MoK α graphite monochromated radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods using the program SHELXS-97 [28]. The refinement and all further calculations were carried out using SHELXL-97 [28]. The C-bound H-atoms were included in calculated positions and treated as riding atoms. The non-H atoms were refined anisotropically, using weighted full-matrix least-squares on F^2 . Crystallographic details are summarized in Table 3. Fig. 1 was drawn with ORTEP [29]. CCDC 853079 (**1**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via ww.ccdc.cam.ac. uk/data_request/cif.

4.4. Synthesis of the isonicotinic ester NC₅H₄-4-COO-C₆H₄-p-O-(CH₂)₇-CH₃

4-Benzyloxyphenol (3 g, 15 mmol) and aqueous potassium hydroxide (0.84 g, 15 mmol in 30 mL water) were stirred in ethanol (125 mL). Then octyl bromide (15 mmol) was added dropwise, and the mixture was refluxed overnight. The following day, water and ethanol were removed under reduced pressure. Dichloromethane (100 mL) was added to the residue, the insoluble potassium bromide was filtered off and discarded. The filtrate was purified by flash chromatography using dichloromethane as mobile phase. The solvent was then removed by evaporation under reduced pressure in order to get a brown residue of 1-(benzyloxy)-4-(octyloxy)benzene, yield: 3.2 g, 68%. ¹H NMR (400 MHz, *CDCl*₃) δ ppm 7.48–7.35 (m, 5H, C₆H₅), 6.91 (d, ³*J* = 9 Hz, 2H, C₆H₄), 6.84 (d, ³*J* = 9 Hz, 2H, C₆H₄), 5.01 (s, 2H, CCH₂), 3.91 (t, ³*J* = 7 Hz, 2H, OCH₂), 1.75 (quin, ³*J* = 7 Hz, 2H, CH₂), 1.45 (m, 2H, CH₂), 1.28 (m, 8H, (CH₂)₄), 0.89 (t, ³*J* = 7 Hz, 3H, CH₃). 1-(Benzyloxy)-4-(octyloxy)benzene (3.2 g, 10.2 mmol) was deprotected

Table 2	
Cytotoxicity values of the arene ruthenium complexes 9a – c .	

Complex	A2780 IC ₅₀ [µM]	A2780cisR IC50 [µM]
9a	0.60 ± 0.24	3.56 ± 1.43
9b	0.18 ± 0.07	$\textbf{3.04} \pm \textbf{1.12}$
9c	$\textbf{3.00} \pm \textbf{1.23}$	9.57 ± 2.14

using 10% Pd/C (0.4 mol eq) in a CH₂Cl₂/EtOH mixture (9:1). This mixture was stirred overnight under H₂ pressure (4 bar) at room temperature. Then, Pd/C was removed by filtration, and the solvents were evaporated under reduced pressure in order to give a pale-white residue of 4-octyloxyphenol, yield: 2.1 g, 91%. ¹H NMR (400 MHz, *CDCl*₃) δ ppm 6.77 (m, 4H, C₆H₄), 4.57 (s, 1H, OH), 3.98 (t, ³*J* = 7 Hz, 2H, OCH₂), 1.75 (quin, ³*J* = 7 Hz, 2H, CH₂), 1.44 (m, 2H, CH₂), 1.28 (m, 8H, (CH₂)₄), 0.89 (t, ${}^{3}I = 7$ Hz, 3H, CH₃). 4-Octyloxyphenol (1.26 g, 5.7 mmol) and Et₃N (0.8 mL) were dissolved in CH₂Cl₂ (100 mL). Isonicotinovl chloride hydrochloride (1.06 g, 5.09 mmol) was then added. The reaction mixture was stirred overnight at room temperature. The precipitate was filtered off and discarded, and the solution was evaporated to dryness under reduced pressure. The yellow residue obtained was recrystallized several times from ethanol to give a white product, viz. 4-(octyloxy)phenyl isonicotinate, yield: 1.04 g, 56%. (Found: C, 73.26; H, 7.68; N, 4.31. Calc. for C₂₀H₂₅NO₃ (*M* = 327.42): C, 73.37; H, 7.70; N, 4.28%). IR (KBr, cm⁻¹): 3476(m), 2933(s, vCH₂CH₃), 2856(m, *v*CH₂), 1738(s, *v*C = 0), 1596(w), 1563(w), 1514(s, *v*CN_{py}), 1410(m), 1296(m), 1254(m, vOCH₂), 1207(m), 1103(m), 1050(m), 877(m), 821(m), 753(m), 701(m, vNC₅H₄), 553(w), 456(w). UV-vis: (2.30×10^{-5}) M, CH₂Cl₂, 298 K): λ_{max} 419 nm $(\varepsilon = 1094 \text{ M}^{-1} \text{ cm}^{-1}), \lambda_{\text{max}} 277 \text{ nm} (\varepsilon = 6660 \text{ M}^{-1} \text{ cm}^{-1}), \lambda_{\text{max}} 229 \text{ nm} (\varepsilon = 8557 \text{ M}^{-1} \text{ cm}^{-1})^{-1} \text{H} \text{ NMR} (400 \text{ MHz}, CDCl_3) \delta \text{ ppm}$ 8.87 (d, ${}^{3}I = 6$ Hz, 2H, NC₅H₄), 8.01 (d, ${}^{3}I = 6$ Hz, 2H, NC₅H₄), 7.13

Table 3		
Crystallographic and structure refinement	parameters for complex	1.

	• •
Chemical formula	C ₂₄ H ₂₇ Cl ₂ NO ₃ Ru
Formula weight	549.44
Crystal system	Monoclinic
Space group	$P2_1/c$
Crystal colour and shape	Orange block
Crystal size (mm)	$0.18\times0.15\times0.13$
a (Å)	14.3079(9)
b (Å)	8.4712(4)
<i>c</i> (Å)	19.3588(9)
β(°)	99.463(4)
V (Å ³)	2314.5(2)
Ζ	4
T (K)	173(2)
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.577
$\mu ({ m mm^{-1}})$	0.934
Scan range (°)	1.44 < heta < 25.11
Unique reflections	4107
Observed refls $[I > 2\sigma(I)]$	2909
R _{int}	0.1062
Final <i>R</i> indices $[I > 2\sigma(I)]^a$	R ₁ 0.0489, wR ₂ 0.0563
R indices (all data)	R ₁ 0.0877, wR ₂ 0.0620
Goodness-of-fit	0.978
Max., min. Δρ (e Å ⁻³)	0.566, -0.699

^a Structures were refined on F_0^2 : $R_1 = \Sigma ||F_0| - |F_c||/\Sigma |F_0|, wR_2 = [\Sigma [w (F_0^2 - F_c^2)^2]/\Sigma w (F_0^2)^2]^{1/2}$, where $w^{-1} = [\Sigma (F_0^2) + (aP)^2 + bP]$ and $P = [max(F_0^2, 0) + 2F_c^2]/3$.

(d, ${}^{3}J = 9$ Hz, 2H, C₆H₄), 6.95 (d, ${}^{3}J = 9$ Hz, 2H, C₆H₄), 3.98 (t, ${}^{3}J = 7$ Hz, 2H, OCH₂), 1.83 (quin, ${}^{3}J = 7$ Hz, 2H, CH₂), 1.46–1.30 (m, 10H, (CH₂)₅), 0.91 (t, ${}^{3}J = 7$ Hz, 3H, CH₃) ppm. 113 C{¹H} NMR (100 MHz, CDCl₃): δ 164.1 (1C, C=O), 157.2 (1C, C–O), 150.8 (2C, NCH), 143.7 (1C, C–O), 136.9 (1C, C_{py}), 123.0 (2C, CH_{py}), 122.0 (2C, CH), 115.1 (2C, CH), 68.4 (1C, OCH₂), 31.8–22.6 (6C, (CH₂)₆), 14.1 (1C, CH₃) ppm. MS (ESI) *m/z*: 327 [M + H]⁺.

4.5. Synthesis of the isonicotinic ester NC₅H₄-4-COO-C₆H₄-p-O-(CH₂)₁₀-OH

10-Bromodecanol was synthesized by reported procedures [23]. A typical procedure for the synthesis of 10-bromodecanol is as follows: 1,10-decandiol (25 g, 0.14 mol) and 48% HBr solution (125 mL, 2.2 mol) in 380 mL ligroin were distilled in a liquid-liquid extractor. After 3 days, the organic layer was separated. The solvent was then removed by evaporation under reduced pressure in order to get a dark brown oily residue of 10-bromodecanol, yield: 22.9 g, 67.1%. ¹H NMR (400 MHz, *CDCl*₃) δ ppm 3.64 (t, ³*J* = 4 Hz, 2H, CH₂Br), 3.41 (t, ${}^{3}J = 4$ Hz, 2H, CH₂OH), 1.88 (quin, ${}^{3}J = 8$ Hz, 2H, CH₂), 1.59 (quin, ${}^{3}J = 8$ Hz, 2H, CH₂), 1.52–1.29 (m, 12H, (CH₂)₆). A mixture of 4-benzyloxyphenol (5.0 g, 21 mmol), potassium carbonate (5.6 g, 41 mmol) and 18-crown-6 ether (0.2 g, 0.7 mmol) was stirred in dry acetone (125 mL) for 30 min at room temperature. Then, 1bromodecanol (2.8 g, 14 mmol) in acetone (25) was added dropwise. This mixture was refluxed under inert atmosphere. After four days, the solution was filtered to eliminate potassium carbonate. and the solvent was removed by evaporation under reduced pressure. The product was further purified by CH₂Cl₂/H₂O extraction. followed by recrystallization in isopropanol, which affords a light brown product, viz. 10-(4-(benzyloxy)phenoxy)decanol, yield: 4.46 g, 88.9%. ¹H NMR (400 MHz, *CDCl*₃) δ ppm 7.43–7.31 (m, 5H, C_6H_5), 6.91 (d, ${}^{3}J = 9$ Hz, 2H, C_6H_4), 6.84 (d, ${}^{3}J = 9$ Hz, 2H, C_6H_4), 5.01 (s, 2H, $C_6H_5CH_2O$), 3.91 (t, ${}^{3}J = 6$ Hz, 2H, OCH₂), 3.66 (m, 2H, CH₂OH), 1.78 (quin, ${}^{3}J = 7$ Hz, 2H, CH₂), 1.60 (quin, ${}^{3}J = 7$ Hz, 2H, CH₂), 1.44–1.31 (m, 12H, (CH₂)₆). 10-(4-(Benzyloxy)phenoxy)decanol (0.21 g, 0.6 mmol) was deprotected using 10% Pd/C (0.4 mol eq) in a CH₂Cl₂/EtOH mixture (9:1). This mixture was stirred overnight under H₂ pressure (4 bar) at room temperature. Then, Pd/C was removed by filtration, and the solvents were evaporated under reduced pressure in order to give the white residue of 4-(10hydroxydecyloxy)phenol, yield: 0.15 g, 95.4%. ¹H NMR (400 MHz, *CDCl*₃) δ ppm 6.77 (m, 4H, C₆H₄), 4.48 (s, 1H, OH), 3.91 (t, ³J = 6, 2H, OCH₂), 3.67 (m, 2H, CH₂OH), 1.76 (quin, ³J = 6 Hz, 2H, CH₂), 1.58 (m, 2H, CH₂), 1.48-1.21 (m, 12H, (CH₂)₆). 4-(10-Hydroxyde)phenol (0.15 g, 0.6 mmol) and Et₃N (0.08 mL) were dissolved in CHCl₃ (20 mL). Isonicotinoyl chloride hydrochloride (0.1 g, 0.6 mmol) was then added. The reaction mixture was stirred overnight at room temperature. The yellow precipitate was filtered off and discarded, and the solution was evaporated to drvness. The vellow residue obtained was recrystallized several times from ethanol to give a white product, viz. 4-(10-hydroxydecyloxy)phenyl isonicotinate, yield: 1.04 g, 61.4%. (Found: C, 71.05; H, 7.95; N, 3.78. Calc. for $C_{22}H_{29}NO_4$ (*M* = 371.48): C, 71.13; H, 7.87; N, 3.77%). IR (KBr, cm⁻¹): 3471(m), 2934(s, vCH₂CH₃), 2856(m, vCH₂), 2346(w), 1738(s, $\nu C = 0$), 1611(w), 1564(w), 1514(s, νCN_{py}), 1410(m), 1295(m), 1255(m, vOCH₂), 1207(m), 1103(m), 1052(m), 877(m), 824(m), 754(m), 701(m, ν NC₅H₄), 607(w), 483(w).UV-vis: (1.5 × 10⁻⁵ M, CH₂Cl₂, 298 K): λ_{max} 277 nm ($\epsilon = 7386 \text{ M}^{-1} \text{ cm}^{-1}$), λ_{max} 229 nm $(\varepsilon = 8395 \text{ M}^{-1} \text{ cm}^{-1})$. ¹H NMR (400 MHz, *CDCl*₃) δ ppm 8.86 (s, 2H, NC₅H₄), 8.03 (d, ${}^{3}J = 5$ Hz, 2H, NC₅H₄), 7.13 (d, ${}^{3}J = 9$ Hz, 2H, C₆H₄), 6.95 (d, ${}^{3}J = 9$ Hz, 2H, C₆H₄), 3.98 (t, ${}^{3}J = 7$ Hz, 2H, OCH₂), 3.66 (t, ${}^{3}J = 7$ Hz, 2H, CH₂OH), 1.83 (quin, ${}^{3}J = 7$ Hz, 2H, CH₂), 1.9 (quin, ${}^{J}_{J} = 7$ Hz, 2H, CH₂), 1.46–1.30 (m, 12H, (CH₂)₆). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 163.9 (1C, C=O), 157.2 (1C, C-O), 150.3 (2C,

NCH), 143.7 (1C, C–O), 137.3 (1C, C_{py}), 123.4 (2C, CH_{py}), 122.0 (2C, CH), 115.1 (2C, CH), 68.4 (1C, OCH₂), 63.0 (1C, CH₂OH), 32.7–25.7 (8C, (CH₂)₈) ppm. MS (ESI) *m/z*: 372.4 [M + H]⁺.

4.6. Synthesis of the arene ruthenium dichloro isonicotinic ester complexes

A mixture of the appropriate $[(arene)RuCl_2]_2$ and 2 equivalents of the isonicotinic ester ligand in CH₂Cl₂ solution (25 mL) was stirred for 3 h at room temperature. The solvent was then removed under reduced pressure, and the residue was re-dissolved in EtOH (30 mL). The solution was filtered and then evaporated to dryness, and the final product was collected and dried *in vacuo*.

4.6.1. $[(p-MeC_6H_4Pr^i)RuCl_2NC_5H_4-4-COO-C_6H_4-p-O-CH_2-CH_3](1)$

Yield: 0.0816 g, >99%. (Found: C, 52.59; H, 5.08; N, 2.54. Calc. for C₂₄H₂₇NO₃Cl₂Ru (*M* = 549.46): C, 52.46; H, 4.95; N, 2.55%). IR (KBr, cm⁻¹): 3481(s), 2935(m, vCH₂CH₃), 2868(w, vCH₂), 2363(w), 1748(s, *v*C = 0), 1613(m), 1589(w), 1507(s, *v*CN_{py}), 1417(m), 1273(m), 1190(s, vOCH₂), 1100(s), 1089(s), 878(m), 826(m), 768(m), 696(w, vNC₅H₄), 607(w), 483(w). UV-vis: (1.0 \times 10⁻⁵ M, CH2Cl2, 298 K): λ_{max} 337 nm (ϵ = 5552 M⁻¹ cm⁻¹), λ_{max} 277 nm (ϵ = 10,259 M⁻¹ cm⁻¹), $λ_{max}$ 229 nm (ε = 21,320 M⁻¹ cm⁻¹). ¹H NMR (400 MHz, *CDCl*₃) δ ppm 9.32 (d, ³*J* = 5 Hz, 2H, NC₅H₄), 7.99 (d, ³*J* = 5 Hz, 2H, NC₅H₄), 7.12 (d, ${}^{3}J = 8$ Hz, 2H, C₆H₄), 6.95 (d, ${}^{3}J = 8$ Hz, 2H, C₆H₄), 5.48 (d, ${}^{3}J = 6$ Hz, 2H, RuC₆H₄), 5.26 (d, ${}^{3}J = 6$ Hz, 2H, RuC₆H₄), 4.05 (q, ${}^{3}J = 6$ Hz, 2H, OCH₂), 3.01 (sept, ${}^{3}J = 7$ Hz, 1H, CH), 2.12 (s, 3H, CH₃), 1.42 (t, ${}^{3}J = 7$ Hz, 3H, CH₃), 1.32 (d, ${}^{3}J = 7$ Hz, 6H, (CH₃)₂). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃): δ 162.9 (1C, C=0), 157.2 (1C, C-0), 156.0 (2C, NCH), 143.6 (1C, C-O), 138.3 (1C, Cpv), 123.8 (2C, CHpv), 122.0 (2C, CH), 115.3 (2C, CH), 103.9 (1C, Carene), 97.5(1C, Carene), 83.2(2C, CHarene), 82.4(2C, CHarene), 63.9 (1C, OCH₂), 30.8 (1C, CH(CH₃)₂), 22.3 (2C, (CH₃)₂) 18.3(1C, CH₃),14.8 (1C, CH₃) ppm.

4.6.2. $[(p-MeC_6H_4Pr^i)RuCl_2NC_5H_4-4-COO-C_6H_4-p-O-(CH_2)_3-CH_3]$ (2)

Yield: 0.0908 g, >99%. (Found: C, 53.79; H, 5.50; N, 2.41. Calc. for $C_{26}H_{31}NO_3Cl_2Ru$ (M = 577.51): C, 54.07; H, 5.41; N, 2.43. IR (KBr, cm⁻¹): 3480(s), 2935(s, vCH₂CH₃), 2867(m, vCH₂), 2366(w), 1748(s, vC = 0), 1611(m), 1592(w), 1505(s, vCN_{py}), 1488(m), 1406(m), 1251(m), 1194(s, vOCH₂), 1100(s), 1094(s), 878(m), 826(s), 691(w, ν NC₅H₄), 607(w), 487(w). UV–vis: (1.1 × 10⁻⁵ M, CH₂Cl₂, 298 K): λ _{max} 337 nm (ϵ = 4740 M⁻¹ cm⁻¹), λ_{max} 278 nm (ϵ = 7900 M⁻¹ cm⁻¹), λ_{max} 229 nm (ϵ = 18,544 M⁻¹ cm⁻¹). ¹H NMR (400 MHz, *CDCl*₃) δ ppm 9.32 (d, ${}^{3}J$ = 5 Hz, 2H, NC₅H₄), 7.99 (d, ${}^{3}J$ = 5 Hz, 2H, NC₅H₄), 7.12 (d, ${}^{3}J = 8$ Hz, 2H, C₆H₄), 6.95 (d, ${}^{3}J = 8$ Hz, 2H, C₆H₄), 5.48 (d, ${}^{3}J = 6$ Hz, 2H, RuC₆H₄), 5.26 (d, ${}^{3}J = 6$ Hz, 2H, RuC₆H₄), 3.97 $(t, {}^{3}J = 6 Hz, 2H, OCH_{2}), 3.01 (sept, {}^{3}J = 7 Hz, 1H, CH), 2.13 (s, 3H, CH_{3}),$ 1.81 (quin, ${}^{3}J = 6$ Hz, 2H, CH₂), 1.49 (m, 2H, CH₂), 1.34 (d, ${}^{3}J = 7$ Hz, 6H, $(CH_3)_2$, 1.00 (t, ${}^{3}J = 7$ Hz, 3H, CH₃). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 162.9 (1C, C=O), 157.4 (1C, C-O), 156.0 (2C, NCH), 143.5 (1C, C-O), 138.4 (1C, C_{py}), 123.8 (2C, CH_{py}), 122.0 (2C, CH), 115.3 (2C, CH), 103.9 (1C, C_{arene}), 97.5(1C, C_{arene}), 83.2(2C, CH_{arene}), 82.4(2C, CH_{arene}), 68.2 (1C, OCH₂), 31.3 (1C, CH(CH₃)₂), 30.7 (1C, CH₂), 22.3 (2C, (CH₃)₂), 19.2 (1C, CH₂), 18.3 (1C, CH₃), 14.8 (1C, CH₃) ppm.

4.6.3. $[(p-MeC_6H_4Pr^i)RuCl_2NC_5H_4-4-COO-C_6H_4-p-O-(CH_2)_5-CH_3]$ (3)

Yield: 0.0964 g, >99%. (Found: C, 55.75; H, 5.85; N, 2.34. Calc. for C₂₈H₃₅NO₃Cl₂Ru (*M* = 605.56): C, 55.54; H, 5.83; N, 2.31%). IR (KBr, cm⁻¹): 3489(m), 2937(s, *ν*CH₂CH₃), 2867(m, *ν*CH₂), 2373(w), 1748(s, *ν*C = 0), 1611(m), 1592(w), 1505(s, *ν*CN_{py}), 1488(m), 1417(m), 1251(m), 1190(s, *ν*OCH₂), 1099(s), 1089(s), 878(m), 826(s), 691(w, *ν*NC₅H₄), 607(w), 486(w). UV-vis: (0.7 × 10⁻⁵ M, CH₂Cl₂, 298 K): λ_{max} 337 nm (ϵ = 7176 M⁻¹ cm⁻¹), λ_{max} 278 nm (ϵ = 11,960 M⁻¹ cm⁻¹), λ_{max}

229 nm (ε = 28,073 M⁻¹ cm⁻¹). ¹H NMR (400 MHz, *CDCl*₃) δ ppm 9.31 (d, ³*J* = 5 Hz, 2H, NC₅H₄), 7.99 (d, ³*J* = 5 Hz, 2H, NC₅H₄), 7.12 (d, ³*J* = 8 Hz, 2H, C₆H₄), 6.95 (d, ³*J* = 8 Hz, 2H, C₆H₄), 5.48 (d, ³*J* = 6 Hz, 2H, RuC₆H₄), 5.26 (d, ³*J* = 6 Hz, 2H, RuC₆H₄), 3.96 (t, ³*J* = 6 Hz, 2H, OCH₂), 3.01 (sept, ³*J* = 7 Hz, 1H, CH), 2.12 (s, 3H, CH₃), 1.79 (quint, ³*J* = 6 Hz, 2H, CH₂), 1.47 (m, 2H, CH₂), 1.34–1.29 (m, 10H, (CH₃)₂ and (CH₂)₂), 0.92 (t, ³*J* = 7 Hz, 3H, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.9 (1C, C= 0), 157.4 (1C, C–0), 156.0 (2C, NCH), 143.5 (1C, C–0), 138.4 (1C, C_{py}), 123.8 (2C, CH_{py}), 122.0 (2C, CH), 115.3 (2C, CH), 103.9 (1C, C_{arene}), 97.5(1C, C_{arene}), 83.2(2C, CH_{arene}), 82.4(2C, CH_{arene}), 68.5 (1C, OCH₂), 31.6 (1C, CH(CH₃)₂), 30.7–22.6 (4C, (CH₂)₄), 22.3 (2C, (CH₃)₂), 18.3 (1C, CH₃), 14.1 (1C, CH₃) ppm.

4.6.4. $[(p-MeC_6H_4Pr^i)RuCl_2NC_5H_4-4-COO-C_6H_4-p-O-(CH_2)_7-CH_3]$ (4)

Yield: 0.1052 g, >99%. (Found: C, 57.08; H, 6.23; N, 2.23. Calc. for $C_{30}H_{39}NO_3Cl_2Ru$ (*M* = 633.62): C, 56.87; H, 6.20; N, 2.21%). IR (KBr, cm⁻¹): 3477(s), 2933(s, vCH₂CH₃), 2865(m, vCH₂), 2367(w), 1748(s, $\nu C = 0$), 1613(m), 1589(w), 1496(s, νCN_{py}), 1456(m), 1405(m), 1251(m), 1192(s, vOCH₂), 1099(s), 1086(s), 878(m), 826(s), 691(w, ν NC₅H₄), 607(w), 488(w). UV-vis: (0.8 × 10⁻⁵ M, CH₂Cl₂, 298 K): λ_{max} 337 nm (ϵ = 3747 M⁻¹ cm⁻¹), λ_{max} 278 nm (ϵ = 6673 M⁻¹ cm⁻¹), λ_{max} 229 nm (ϵ = 16,052 M⁻¹ cm⁻¹). ¹H NMR (400 MHz, *CDCl*₃) δ ppm 9.31 (d, ³*J* = 5 Hz, 2H, NC₅H₄), 7.98 (d, ³*J* = 5 Hz, 2H, NC₅H₄), 7.12 (d, ${}^{3}J = 8$ Hz, 2H, C₆H₄), 6.94 (d, ${}^{3}J = 8$ Hz, 2H, C₆H₄), 5.49 (d, ${}^{3}J = 6$ Hz, 2H, RuC₆H₄), 5.26 (d, ${}^{3}J = 6$ Hz, 2H, RuC₆H₄), 3.95 (t, ${}^{3}J = 6$ Hz, 2H, OCH₂), 3.01 (sept, ${}^{3}J = 7$ Hz, 1H, CH), 2.12 (s, 3H, CH₃), 1.80 (quin, ${}^{3}J = 6$ Hz, 2H, CH₂), 1.47 (m, 2H, CH₂), 1.32–1.26 (m, 14H, $(CH_3)_2$ and $(CH_2)_4$), 0.91 (t, ${}^3J = 7$ Hz, 3H, CH₃). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): § 162.9 (1C, C=0), 157.4 (1C, C-0), 156.0 (2C, NCH), 143.5 (1C, C-O), 138.4 (1C, Cpy), 123.8 (2C, CHpy), 122.0 (2C, CH), 115.3 (2C, CH), 103.9 (1C, Carene), 97.5(1C, Carene), 83.2(2C, CH_{arene}), 82.4(2C, CH_{arene}), 68.5 (1C, OCH₂), 31.8 (1C, CH(CH₃)₂), 30.7-22.7 (6C, (CH₂)₆), 22.3 (2C, (CH₃)₂), 18.3 (1C, CH₃), 14.1 (1C, CH₃) ppm.

4.6.5. $[(p-MeC_6H_4Pr^i)RuCl_2NC_5H_4-4-COO-C_6H_4-p-O-(CH_2)_{11}-CH_3]$ (**6**)

Yield: 0.1087 g, >99%. (Found: C, 59.27; H, 6.81; N, 2.04. Calc. for C₃₄H₄₇NO₃Cl₂Ru (*M* = 689.73): C, 59.21; H, 6.87; N, 2.03%). IR (KBr, cm⁻¹): 3485(s), 2927(s, vCH₂CH₃), 2862(m, vCH₂), 2362(w), $1749(m, \nu C = 0)$, 1611(m), 1591(w), $1496(s, \nu CN_{pv})$, 1454(m), 1405(m), 1251(m), 1192(s, vOCH₂), 1099(s), 1088(s), 878(m), 826(s), 691(w, ν NC₅H₄), 607(w), 485(w). UV–vis: (0.7 × 10⁻⁵ M, CH₂Cl₂, 298 K): λ_{max} 337 nm (ϵ = 6535 M⁻¹ cm⁻¹), λ_{max} 277 nm $(\varepsilon = 13,238 \text{ M}^{-1} \text{ cm}^{-1}), \lambda_{max} 229 \text{ nm} (\varepsilon = 25,689 \text{ M}^{-1} \text{ cm}^{-1}).$ ¹H NMR (400 MHz, *CDCl*₃) δ ppm 9.31 (d, ³*J* = 5 Hz, 2H, NC₅H₄), 7.99 (d, ${}^{3}J = 5$ Hz, 2H, NC₅H₄), 7.12 (d, ${}^{3}J = 8$ Hz, 2H, C₆H₄), 6.95 (d, ${}^{3}J = 8$ Hz, 2H, C₆H₄), 5.48 (d, ${}^{3}J = 6$ Hz, 2H, RuC₆H₄), 5.26 (d, ${}^{3}J = 6$ Hz, 2H, RuC₆H₄), 3.96 (t, ${}^{3}J = 6$ Hz, 2H, OCH₂), 3.01 (sept, ${}^{3}J = 7$ Hz, 1H, CH), 2.13 (s, 3H, CH₃), 1.79 (quin, ${}^{3}J = 6$ Hz, 2H, CH₂), 1.46 (m, 2H, CH₂), 1.33–1.26 (m, 22H, (CH₃)₂ and (CH₂)₈), 0.88 (t, ${}^{3}J = 7$ Hz, 3H, CH₃). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.9 (1C, C=O), 157.4 (1C, C=O), 156.0 (2C, NCH), 143.5 (1C, C-O), 138.4 (1C, C_{py}), 123.8 (2C, CH_{py}), 122.0 (2C, CH), 115.3 (2C, CH), 103.9 (1C, Carene), 97.5(1C, Carene), 83.2(2C, CH_{arene}), 82.4(2C, CH_{arene}), 68.5 (1C, OCH₂), 31.8 (1C, CH(CH₃)₂), 30.7–22.7 (10C, (CH₂)₁₀), 22.3 (2C, (CH₃)₂), 18.3 (1C, CH₃), 14.2 (1C, CH₃) ppm.

4.6.6. $[(p-MeC_6H_4Pr^4)RuCl_2NC_5H_4-4-COO-C_6H_4-p-O-(CH_2)_{13}-CH_3]$ (7)

Yield: 0.1237 g, >99%. (Found: C, 60.30; H, 7.08; N, 1.98. Calc. for $C_{36}H_{51}NO_3Cl_2Ru$ (M = 717.78): C, 60.24; H, 7.16; N, 1.95%). IR (KBr, cm⁻¹): 3476(m), 2927(s, ν CH₂CH₃), 2858(m, ν CH₂), 2359(w), 1749(m, ν C = O), 1612(m), 1589(w), 1505(s, ν CN_{pV}), 1456(m),

1405(m), 1251(m), 1192(s, ν OCH₂), 1097(s), 1087(s), 877(m), 826(s), 795(w), 691(w, ν NC₅H₄), 607(w), 483(w). UV–vis: (0.7 × 10⁻⁵ M, CH₂Cl₂, 298 K): λ_{max} 337 nm (ε = 5098 M⁻¹ cm⁻¹), λ_{max} 277 nm (ε = 9253 M⁻¹ cm⁻¹), λ_{max} 229 nm (ε = 19,935 M⁻¹ cm⁻¹). ¹H NMR (400 MHz, *CDCl*₃) δ ppm 9.32 (d, ³J = 5 Hz, 2H, NC₅H₄), 7.99 (d, ³J = 5 Hz, 2H, NC₅H₄), 7.12 (d, ³J = 8 Hz, 2H, C₆H₄), 6.95 (d, ³J = 8 Hz, 2H, C₆H₄), 5.48 (d, ³J = 5 Hz, 2H, RuC₆H₄), 5.26 (d, ³J = 5 Hz, 2H, RuC₆H₄), 3.96 (t, ³J = 6 Hz, 2H, OCH₂), 3.01 (sept, ³J = 7 Hz, 1H, CH), 2.13 (s, 3H, CH₃), 1.79 (quin, ³J = 6 Hz, 2H, CH₂), 1.46 (m, 2H, CH₂), 1.34–1.26 (m, 26H, (CH₃)₂ and (CH₂)₁₀), 0.88 (t, ³J = 7 Hz, 3H, CH₃). ¹³C{¹} NMR (100 MHz, CDCl₃): δ 162.9 (1C, C=O), 157.4 (1C, C–O), 156.0 (2C, NCH), 143.5 (1C, C–O), 138.4 (1C, C_{py}), 123.8 (2C, CH_{py}), 122.0 (2C, CH), 115.3 (2C, CH), 103.9 (1C, C_{arene}), 97.5(1C, C_{arene}), 83.2(2C, CH_{arene}), 82.4(2C, CH_{arene}), 68.5 (1C, OCH₂), 31.8 (1C, CH(CH₃)₂), 30.7–22.7 (12C, (CH₂)₁₂), 22.3 (2C, (CH₃)₂), 18.3 (1C, CH₃), 14.2 (1C, CH₃) ppm.

4.6.7. $[(p-MeC_6H_4Pr^i)RuCl_2NC_5H_4-4-COO-C_6H_4-p-O-(CH_2)_{15}-CH_3]$ (8)

Yield: 0.1219 g, >99%. (Found: C, 61.33; H, 7.34; N, 1.89. Calc. for C₃₈H₅₅NO₃Cl₂Ru (*M* = 745.83): C, 61.20; H, 7.43; N, 1.88%). IR (KBr, cm⁻¹): 3481(m), 2926(s, vCH₂CH₃), 2856(m, vCH₂), 2361(w), 1749(s, *v*C = 0), 1612(m), 1587(w), 1506(s, *v*CN_{pv}), 1417(m), 1251(m), 1191(s, vOCH₂), 1097(m), 1087(m), 877(m), 826(m), 766(w), 691(w, vNC₅H₄), 607(w), 472(w). UV–vis: (0.8 \times 10 $^{-5}$ M, CH₂Cl₂, 298 K): λ_{max} 337 nm (ϵ = 4118 M⁻¹ cm⁻¹), λ_{max} 277 nm (ϵ = 7569 M⁻¹ cm⁻¹), λ_{max} 229 nm $(\varepsilon = 17,483 \text{ M}^{-1} \text{ cm}^{-1})$. ¹H NMR (400 MHz, *CDCl*₃) δ ppm 9.32 (d, ${}^{3}J = 5$ Hz, 2H, NC₅H₄), 7.99 (d, ${}^{3}J = 5$ Hz, 2H, NC₅H₄), 7.12 (d, ${}^{3}J = 8$ Hz, 2H, C₆H₄), 6.95 (d, ${}^{3}J = 8$ Hz, 2H, C₆H₄), 5.48 (d, ${}^{3}J = 6$ Hz, 2H, RuC_6H_4), 5.26 (d, ${}^{3}I = 6$ Hz, 2H, RuC_6H_4), 3.96 (t, ${}^{3}I = 6$ Hz, 2H, OCH₂), 3.01 (sept, ${}^{3}J = 7$ Hz, 1H, CH), 2.13 (s, 3H, CH₃), 1.79 (qint, ${}^{3}J = 6$ Hz, 2H, CH₂), 1.46 (m, 2H, CH₂), 1.34-1.26 (m, 30H, (CH₃)₂ and (CH₂)₁₂), 0.88 (t, ${}^{3}J = 7$ Hz, 3H, CH₃). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃): δ 162.9 (1C, C=0), 157.4 (1C, C-0), 156.0 (2C, NCH), 143.5 (1C, C-0), 138.4 (1C, C_{pv}), 123.8 (2C, CH_{pv}), 122.0 (2C, CH), 115.3 (2C, CH), 103.9 (1C, Carene), 97.5(1C, Carene), 83.2(2C, CHarene), 82.4(2C, CHarene), 68.5 (1C, OCH₂), 31.8 (1C, CH(CH₃)₂), 30.7–22.7 (14C, (CH₂)₁₄), 22.3 (2C, (CH₃)₂), 18.3 (1C, CH₃), 14.2 (1C, CH₃) ppm.

4.6.8. $[(C_6H_6)RuCl_2NC_5H_4-4-COO-C_6H_4-p-O-(CH_2)_{10}-OH]$ (**9a**)

Yield: 0.2536 g, >99%. (Found: C, 52.70; H, 5.62; N, 2.25. Calc. for $C_{28}H_{35}NO_4Cl_2Ru \cdot 0.25 CH_2Cl_2$ (*M* = 642.09): C, 52.79; H, 5.57; N, 2.18%). IR (KBr, cm⁻¹): 3471(s), 2931(s, vCH₂CH₃), 2862(m, vCH₂), 2361(w), $1743(m, \nu C = 0)$, 1613(m), 1583(w), $1496(s, \nu CN_{py})$, 1405(m), 1253(m), 1192(s, vOCH₂), 1096(s), 1053(s), 877(m), 825(s), 691(w, ν NC₅H₄), 607(w), 486(w). UV–vis: (0.8 × 10⁻⁵ M, CH₂Cl₂, 298 K): λ_{max} 328 nm (ϵ = 4937 M⁻¹ cm⁻¹), λ_{max} 277 nm $(\varepsilon = 6502 \text{ M}^{-1} \text{ cm}^{-1}), \lambda_{\text{max}} 229 \text{ nm} (\varepsilon = 19,597 \text{ M}^{-1} \text{ cm}^{-1}).$ ¹H NMR (400 MHz, CD_2Cl_2) δ ppm 9.38 (d, ${}^{3}J = 7$ Hz, 2H, NC₅H₄), 8.01 (d, ${}^{3}J = 7$ Hz, 2H, NC₅H₄), 7.13 (d, ${}^{3}J = 9$ Hz, 2H, C₆H₄), 6.95 (d, ${}^{3}J = 9$ Hz, 2H, C₆H₄), 5.71 (s, 6H, C₆H₆), 3.98 (t, ${}^{3}J = 7$ Hz, 2H, OCH₂), 3.67 (dt, ${}^{3}J = 6$ Hz, ${}^{3}J = 7$ Hz, 2H, CH₂OH), 1.79 (quin, ${}^{3}J = 7$ Hz, 2H, CH₂), 1.58 $(m, 2H, CH_2), 1.46-1.33 (m, 12H, (CH_2)_6), 1.20 (t, {}^{3}J = 6 Hz, 1H, OH).$ ¹³C{¹H} NMR (100 MHz, CDCl3): δ 162.8 (1C, C=0), 157.5 (1C, C=0), 156.4 (2C, NCH), 143.5 (1C, C–O), 128.4 (1C, C_{pv}), 124.2 (2C, CH_{pv}), 122.0 (2C, CH), 115.3 (2C, CH), 85.0 (6C, C₆H₆), 68.5 (1C, OCH₂), 63.1 (1C, CH₂OH), 32.8–25.8 (8C, (CH₂)₈) ppm.

4.6.9. $[(p-MeC_6H_4Pr^1)RuCl_2NC_5H_4-4-COO-C_6H_4-p-O-(CH_2)_{10}-OH]$ (**9b**)

Yield: 0.2219 g, >99%. (Found: C, 56.13; H, 6.29; N, 2.08. Calc. for $C_{32}H_{43}NO_4Cl_2Ru \cdot 0.1 CH_2Cl_2$ (M = 685.56): C, 56.19; H, 6.35; N, 2.04%). IR (KBr, cm⁻¹): 3474(s), 2930(s, ν CH₂CH₃), 2862(m, ν CH₂), 2367(w), 1747(s, ν C = O), 1612(m), 1589(w), 1496(s, ν CN_{py}), 1454(m), 1404(m), 1251(m), 1192(s, ν OCH₂), 1100(s), 1054(s), 877(m), 825(s),

691(w, νNC₅H₄), 608(w), 484(w). UV-vis: $(0.6 \times 10^{-5} \text{ M}, \text{CH}_2\text{Cl}_2, 298 \text{ K})$: λ_{max} 329 nm (ε = 5530 M⁻¹ cm⁻¹), λ_{max} 277 nm (ε = 9914 M⁻¹ cm⁻¹), λ_{max} 229 nm (ε = 24,297 M⁻¹ cm⁻¹). ¹H NMR (400 MHz, *CDCl*₃) δ ppm 9.32 (d, ³J = 6 Hz, 2H, NC₅H₄), 8.00 (d, ³J = 6 Hz, 2H, NC₅H₄), 7.13 (d, ³J = 9 Hz, 2H, C₆H₄), 6.95 (d, ³J = 9 Hz, 2H, C₆H₄), 5.49 (d, ³J = 6 Hz, 2H, RuC₆H₄), 5.26 (d, ³J = 6 Hz, 2H, RuC₆H₄), 3.98 (t, ³J = 6 Hz, 2H, QCH₂), 3.66 (dt, ³J = 6 Hz, ³J = 7 Hz, 2H, CH₂OH), 3.02 (sept, ³J = 7 Hz, 1H, CH), 2.13 (s, 3H, CH₃), 1.79 (quin, ³J = 6 Hz, 2H, CH₂), 1.60 (m, 2H, CH₂), 1.48-1.28 (m, 18H, (CH₃)₂ and (CH₂)₆), 1.21 (t, ³J = 6 Hz, 1H, OH). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 162.9 (1C, C=O), 157.4 (1C, C-O), 156.1 (2C, NCH), 143.5 (1C, C-O), 138.3 (1C, C_{py}), 123.9 (2C, CH_{py}), 122.0 (2C, CH), 115.3 (2C, CH), 103.8 (1C, C_{arene}), 97.6(1C, C_{arene}), 83.3(2C, CH_{arene}), 82.6(2C, CH_{arene}), 85.0 (6C, C₆H₆), 68.5 (1C, OCH₂), 63.1 (1C, CH₂OH), 32.8-25.8 (8C, (CH₂)₈), 30.8 (1C, CH(CH₃)₂), 22.4 (2C, (CH₃)₂), 18.4 (1C, CH₃) ppm.

4.6.10. $[(C_6Me_6)RuCl_2NC_5H_4-4-COO-C_6H_4-p-O-(CH_2)_{10}-OH]$ (**9***c*)

Yield: 0.2136 g, >99%. (Found: C, 57.16; H, 6.70; N, 2.02. Calc. for $C_{34}H_{47}NO_4Cl_2Ru \cdot 0.1 CH_2Cl_2$ (*M* = 714.21): C, 57.35; H, 6.66; N, 1.96%). IR (KBr, cm^{-1}): 3481(s), 2929(s, $\nu CH_2 CH_3$), 2861(m, νCH_2), 2356(w), 1746(s, vC = 0), 1611(m), 1587(w), 1496(s, vCN_{pv}), 1454(m), 1404(m), 1278(m), 1250(m), 1188(s, vOCH₂), 1090(s), 1053(s), 877(m), 825(s), 689(w, $\nu NC_5H_4),$ 607(w), 482(w). UV–vis: (1.0 \times 10 $^{-5}$ M, CH_2Cl_2, 298 K): λ_{max} 329 nm (ε = 2318 M⁻¹ cm⁻¹), λ_{max} 277 nm (ε = 5422 M⁻¹ cm⁻¹), λ_{max} 229 nm (ε = 14,890 M⁻¹ cm⁻¹). ¹H NMR (400 MHz, *CDCl*₃) δ ppm 9.10 (d, ${}^{3}J = 6$ Hz, 2H, NC₅H₄), 7.97 (d, ${}^{3}J = 6$ Hz, 2H, NC₅H₄), 7.13 (d, ${}^{3}J = 9$ Hz, 2H, C₆H₄), 6.95 (d, ${}^{3}J = 9$ Hz, 2H, C_6H_4), 3.98 (t, ${}^{3}J = 6$ Hz, 2H, OCH₂), 3.66 (dt, ${}^{3}J = 5$ Hz, ${}^{3}J = 6$ Hz, 2H, CH_2OH , 2.02 (s, 18H, $C_6(CH_3)_6$), 1.79 (quin, ${}^3J = 6$ Hz, 2H, CH_2), 1.59 (m, 2H, CH₂), 1.47–1.26 (m, 12H, (CH₂)₆), 1.22 (t, ${}^{3}J = 5$ Hz, 1H, OH). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl3): δ 163.0 (1C, C=0), 157.3 (1C, C-0), 155.7 (2C, NCH), 143.2 (1C, C-O), 137.6 (1C, C_{py}), 123.6 (2C, CH_{py}), 121.9 (2C, CH), 115.2 (2C, CH), 91.6 (6C, (C₆), 68.4 (1C, OCH₂), 63.0 (1C, CH₂OH), 32.8-25.7 (8C, (CH₂)₈), 15.4 (6C, (CH₃)₆) ppm.

Acknowledgements

Financial support of this work from the Swiss National Science Foundation (grant no 200021-115821) is gratefully acknowledged. We also thank the Johnson Matthey Research Centre for a generous loan of ruthenium(III) chloride hydrate.

References

- [1] (a) G. Süss-Fink, Dalton Trans. 39 (2010) 1673;
 (b) A.M. Pizarro, A. Habtemariam, P.J. Sadler, Top. Organomet. Chem. 32 (2010) 21.
- [2] P.J. Dyson, Chimia 61 (2007) 698.
- [3] S.J. Dougan, P.J. Sadler, Chimia 61 (2007) 704.
- [4] L.D. Dale, J.H. Tocher, T.M. Dyson, D.I. Edwards, D.A. Tocher, Anti-cancer Drug Des. 7 (1992) 3.
- [5] C.S. Allardyce, P.J. Dyson, D.J. Ellis, S.L. Heath, Chem. Commun. (2001) 1396.
 [6] R.E. Morris, R.E. Aird, P.d.S. Murdoch, H. Chen, J. Cummings, N.D. Hughes, S. Pearsons, A. Parkin, G. Boyd, D.I. Jodrell, P.J. Sadler, J. Med. Chem. 44 (2001) 3616
- [7] P. Govender, B. Therrien, G.S. Smith, Eur. J. Inorg. Chem. (2012) 2853.
- [8] (a) F. Giannini, G. Süss-Fink, J. Furrer, Inorg. Chem. 50 (2011) 10552;
 (b) M. Gras, B. Therrien, G. Süss-Fink, O. Zava, P.J. Dyson, Dalton Trans. 39 (2010) 10305.
- [9] G.V. Tsarichenko, V.I. Bobrov, M.V. Smarkov, Pharm. Chem. J. 11 (1977) 481.
- [10] M.C.S. Lourenço, M.V.N. Souza, A.C. Pinheiro, M.L. Ferreira, R.S.B. Gonçalves, T.C.M. Nogueira, M.A. Peraltab, ARKIVOC 15 (2007) 181.
- [11] K.-G. Liu, X.-Q. Cai, X.-C. Li, D.-A. Qin, M.-L. Hu, Inorg. Chim. Acta 338 (2012) 78.
 [12] R. Schobert, S. Seibt, K. Effenberger-Neidnicht, C. Underhill, B. Biersack,
- G.L. Hammond, Steroids 76 (2011) 393. [13] S.G. Šipka, I. Ivanović, G. Rakić, N. Todorović, N. Gligorijević, S. Radulović,
- V.B. Arion, B.K. Keppler, Ž.L. Tešić, Eur. J. Med. Chem. 45 (2010) 1051.
- [14] J.G. Małecki, R. Kruszynski, M. Jaworska, P. Lodowski, Z. Mazurak, J. Organomet. Chem. 693 (2008) 1096.
- [15] G. Süss-Fink, F.-A. Khan, L.J. Jeanneret, P.J. Dyson, A.K. Renfrew, J. Cluster Sci. 21 (2010) 313.
- [16] M. Auzias, B. Therrien, G. Süss-Fink, P. Štěpnička, W.H. Ang, P.J. Dyson, Inorg. Chem. 47 (2008) 578.
- [17] A.K. Renfrew, L. Juillerat-Jeanneret, P.J. Dyson, J. Organomet. Chem. 696 (2011) 772.
- [18] A.K. Renfrew, R. Scopelliti, P.J. Dyson, Inorg. Chem. 49 (2010) 2239.
- [19] C.A. Vock, C. Scolaro, A.D. Phillips, R. Scopelliti, G. Sava, P.J. Dyson, J. Med. Chem. 49 (2006) 5552.
- [20] (a) D.J. Goldschmith, E. Kennedy, R.G. Campbello, J. Org. Chem. 40 (1995) 3571;
 (b) S.K. Kang, W.S. Kim, B.H. Moon, Synthesis 12 (1985) 1161;
 (c) A. Ravikrishnan, P. Sudhakara, P. Kannan, J. Mater. Sci. 45 (2010) 435;
 (d) J.M. Chong, M.A. Heuft, P. Rabbat, J. Org. Chem. 65 (2000) 5837.
- 21] Y. Fu, Y. Li, J. Li, S. Yan, Z. Bo, Macromolecules 37 (2004) 6395.
- [22] T.W. Green, P.G.M. Wuts, Protective Groups in Organic Synthesis, Wiley-Interscience, New York, 1999, pp. 76–86 and pp. 708–711.
- [23] K.I. Nättinen, K. Rissanen, Cryst. Growth Des. 3 (2003) 339.
- [24] T. Arthur, T.A. Stephenson, J. Organomet. Chem. 208 (1981) 369.
- [25] M.A. Bennett, G.B. Robertson, A.K. Smith, J. Organomet. Chem. 43 (1972) C41.
- [26] M.A. Bennett, T.W. Matheson, G.B. Robertson, A.K. Smith, P.A. Tucker, Inorg. Chem. 10 (1980) 1014.
- [27] (a) M. Marcos, M.B. Ros, J.L. Serrano, M.A. Esteruelas, E. Sola, L.A. Oro, J. Barberà, Chem. Mater. 2 (1990) 748;
- (b) M. Auzias, G. Süss-Fink, P. Stěpnicka, J. Ludvik, Inorg. Chim. Acta 360 (2007) 2023.
- [28] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.
- [29] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.