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Abstract: The sequential functionalisation of 2-phenylpyridine is
presented using selective ortho- and meta-directing processes. It
was found that performing a reaction sequence with meta function-
alisation first followed by ortho functionalisation provided novel
reaction products in good yields and with complete regioselectivity.
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The catalytic functionalisation of C–H bonds is an impor-
tant synthetic transformation and has been a topic of much
interest in recent years.1 Moreover, the ability to function-
alise aromatic C–H bonds regioselectively provides a
powerful tool for the efficient synthesis of complex mo-
lecular structures. Chelation-assisted ortho functionalisa-
tion of arenes is well established in the literature and a
wide variety of substituents and catalyst systems have
been developed.2 More recently, examples of meta-selec-
tive catalytic C–H functionalisation have been reported
offering diversity in molecular design through alternative
reaction strategies. These include substrate-controlled
systems,3 chelation-assisted directing groups such as a
pseudo meta-directing carboxylic acid moiety4 and teth-
ered nitrile groups.5 We have reported a catalytic σ-acti-
vation protocol for C–H functionalisation that allows the
meta sulfonation of 2-phenylpyridines via cyclometallat-
ed ruthenium intermediates (Scheme 1).6 Recently,
Ackermann and coworkers have reported similar reactiv-
ity with secondary alkyl halides.7 In this communication

the sequential functionalisation of an aromatic core is ex-
plored using selective ortho- and meta-directing process-
es (Scheme 2). The catalytic σ-activation protocol
presented here provides a unique mechanism of operation
and meta selectivity that complements other sequential C–
H functionalisation procedures.8 Several novel, highly
substituted aromatic motifs are accessible in good yield
and complete regioselectivity in two efficient, catalytic re-
action steps.

First, several ortho substituents were installed on the phe-
nylpyridine backbone via established C–H activation pro-
tocols including OMe, OAc, and Br.9 The ortho-

Scheme 1  Catalytic meta-directed sulfonation
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Scheme 2  Comparison of two opposing reaction sequences
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substituted phenylpyridines were then subjected to the
meta-sulfonation conditions using [RuCl2(p-cymene)]2 as
the catalyst.10 Several products were obtained from these
reactions as shown in Scheme 3. For substrate 3a the ex-
pected regioselectivity was obtained with substitution at
C8–C9 (3b) albeit in low yield, with the major product be-
ing dimer 3d. However, upon changing to an OAc substit-
uent 4a the opposite regioselectivity was obtained to give
C8–C11-substituted isomer 4c. This is likely due to a de-
crease in directing ability and an increase in steric bulk
making this the most favourable product. Increasing the
steric bulk even further and completely removing any sec-
ondary directing effects, as in 5a, prevented any reaction
from occurring, and only starting material was returned. 

In contrast to reaction pathway 1, pathway 2 proved to be
far more advantageous. Following an efficient catalytic
meta sulfonation of 2-phenylpyridine 2, a range of func-
tional groups were installed in the ortho position includ-
ing halogens, protected and unprotected alcohols, and a
sulfonamide (Scheme 4). Catalytic homocoupling to form
dimeric species 10 proceeded in good yield, including di-
brominated analogue 11. An important observation from
reaction pathway 2 is the complete regioselectivity it gave
for the C8–C11-substituted isomers.11 

As the ortho bromination product 6 was furnished in good
yield and holds the potential for further functionalisation,
the scope of that reaction was then explored with a range
of substituted sulfones.12 Scheme 5 shows the scope of
this two-step protocol. In general, electron-withdrawing
groups afforded the highest yields, with some weakly do-
nating groups being tolerated. Additional electron-donat-
ing functionality on the aromatic ring allowed the
selective synthesis of the tetrasubstituted benzene deriva-
tive 18 in good yield. The products from sequential C–H
functionalisation could be further elaborated as shown by
the Suzuki coupling of 6 with boronate 20 (Scheme 6).13 

In conclusion a reaction protocol for sequential chelation-
assisted aromatic C–H functionalisation has been demon-
strated, via a catalytic meta-directed C–S bond formation
followed by an ortho-directed C–C or C–X bond-forming
process to give complete control over the reaction prod-
ucts, which were obtained in good yield and high regiose-
lectivity. Ongoing studies are focussed on expanding the
catalytic σ-activation protocol to a broader range of syn-

thetic processes for extending the sequential C–H func-
tionalisation protocol.
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Scheme 3 Poor reactivity via ortho then meta functionalisation

N N

Ts

N

Ts

X X

N

X

N

X

TsCl
[RuCl2(p-cymene)]2

K2CO3, MeCN
120 °C, 16 h

X

3a =  OMe
4a =  OAc  
5a =  Br

N
Refs 9a–c

1 3b (12%)
–
–

–
4c (7%)

–

3d (37%)
–
–

+ +

Scheme 4 Excellent selectivity via meta then ortho functionaliza-
tion. Reagents and conditions: a Pd(OAc)2 (5 mol%), PhI(OAc)2,
Ac2O, in PhMe.9c b PdCl2 (5 mol%), tert-butylhydroperoxide in
PhCl.9b c Cu(OAc)2 (1 equiv), halogen source in MeCN.9a d [RuCl2(p-
cymene)]2 (2.5 mol%), FeCl3 in PhCl.14 For full experimental details,
see Supporting Information.
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Scheme 6  Product modification by Suzuki coupling
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