### Synthesis and Reactions of Polynuclear Polyhydrido Rare Earth Metal Complexes Containing "(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)LnH<sub>2</sub>" Units: A New Frontier in Rare Earth Metal Hydride Chemistry

Zhaomin Hou,\*<sup>[a]</sup> Masayoshi Nishiura,<sup>[a]</sup> and Takanori Shima<sup>[a]</sup>

Keywords: Rare earths / Hydride ligands / Cyclopentadienyl ligands / Cluster compounds / Hydrogenation

A series of tetranuclear octahydrido rare earth metal complexes of general formula  $[(C_5Me_4SiMe_3)Ln(\mu-H)_2]_4(THF)_n$ (Ln = Sc, Y, Gd, Dy, Ho, Er, Tm, Lu; n = 0, 1, or 2) that contain  $C_5Me_4SiMe_3$  as an ancillary ligand have been prepared and structurally characterized. These hydride clusters are soluble in common organic solvents such as THF, toluene, and hexane, and maintain their tetranuclear framework in solution. Such polynuclear polyhydrido complexes exhibit extremely high and unique reactivity toward a variety of unsaturated substrates including CO, CO<sub>2</sub>, and nitriles. The reaction of these neutral polyhydrides with one equivalent of  $[Ph_3C][B(C_6F_5)_4]$  affords the corresponding cationic hydride clusters  $[(C_5Me_4SiMe_3)_4Ln_4H_7(THF)_n][B(C_6F_5)_4]$ , which can act as catalysts for the syndiospecific polymerization of styrene and regio- and stereospecific *cis*-1,4-polymerization of 1,3-cyclohexadiene.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)

#### 1. Introduction

Metal hydrides are fundamental components in a wide range of stoichiometric and catalytic reactions, and their importance in modern inorganic and organic chemistry cannot be overemphasized.<sup>[1,2]</sup> A large number of monohydride complexes of the rare earth (group 3 and lanthanide) metals of the general type " $L_2MH$ " or "(L)(L')MH", which are supported by two anionic ancillary ligands per metal, have been synthesized and studied<sup>[2]</sup> since the first rare earth metallocene hydride complex was reported in the early 1980s.<sup>[3]</sup> In contrast, dihydrido rare earth metal complexes of the type "LMH2", which bear one anionic ancillary ligand per metal, have been much less extensively investigated even though such complexes are of great interest both structurally and chemically. A major factor that has hampered the investigation of rare earth metal dihydride or polyhydride complexes is the difficulty in isolating structurally well defined complexes. Early attempts to prepare a dihydrido rare earth metal complex by reaction of dialkyl complexes such as  $[(C_5Me_5)Lu(CH_2CMe_3)_2(THF)]^{[4]}$  or [(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)Y(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF)]<sup>[5]</sup> with H<sub>2</sub> did not afford a structurally characterized hydride species. The first structurally characterized dihydrido rare earth metal species was isolated as the SmIII/K heteropolymetallic form

 [a] Organometallic Chemistry Laboratory, RIKEN (The Institute of Physical and Chemical Research), and PRESTO, Japan Science and Technology Agency (JST), Hirosawa 2-1, Wako, Saitama 351-0198, Japan Fax: +81-48-462-4665
 E-mail: houz@riken.jp [{(C<sub>5</sub>Me<sub>5</sub>)Sm(μ-H)<sub>2</sub>}<sub>6</sub>{KH(THF)<sub>2</sub>}<sub>3</sub>], which formally consists of six "(C<sub>5</sub>Me<sub>5</sub>)SmH<sub>2</sub>" units and three "KH(THF)<sub>2</sub>" units.<sup>[6a]</sup> This complex was serendipitously obtained by the reaction (σ-bond metathesis and subsequent oxidation) of the Sm<sup>II</sup> alkyl complex [{(C<sub>5</sub>Me<sub>5</sub>)SmCH(SiMe<sub>3</sub>)<sub>2</sub>[(C<sub>5</sub>Me<sub>5</sub>)-K(THF)<sub>2</sub>]}<sub>n</sub>]<sup>[6]</sup> with an excess of PhSiH<sub>3</sub>. Very recently, a series of salt-free polynuclear polyhydrido rare earth metal complexes that contain "(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)LnH<sub>2</sub>" units has been synthesized from the C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>-ligated dialkyl complexes [(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)Ln(CH<sub>2</sub>SiMe<sub>3</sub>)<sub>2</sub>(THF)] (Ln = Sc, Y, Gd, Dy, Ho, Er, Tm, Lu). It has been found that these polyhydrido rare earth metal complexes show a unique reactivity that differs from that of conventional monohydride complexes. This article summarizes recent studies on this new class of rare earth metal hydride complexes.

# 2. Synthesis and Structures of Tetranuclear Octahydrido Rare Earth Metal Complexes

Hydrogenolysis of the C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>-ligated bis(trimethylsilylmethyl)scandium complex [(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)Sc(CH<sub>2</sub>-SiMe<sub>3</sub>)<sub>2</sub>(THF)] with H<sub>2</sub> in toluene at room temperature gives the THF-free tetranuclear octahydride complex [{(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)Sc( $\mu$ -H)<sub>2</sub>}<sub>4</sub>] (1) (Scheme 1).<sup>[7]</sup> This complex can be viewed as being the result of a self-assembly of four "(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)ScH<sub>2</sub>" units in a tetrahedron through "intermolecular" Sc–H interactions. There are a total of eight hydride ligands in the molecule, one of which is bodycentered in a  $\mu_4$ -H–Sc<sub>4</sub> fashion, one is face-capped in a  $\mu_3$ -





Scheme 1. Synthesis of a tetranuclear octahydrido scandium complex.

H-Sc<sub>3</sub> form, and six are edge-bridged in a  $\mu_2$ -H-Sc<sub>2</sub> style. The THF ligand bonded originally to the scandium metal center of the alkyl precursor is squeezed out in the hydride complex due to the formation of "intermolecular" Sc–H bonds.

Hydrogenolysis of the bis(trimethylsilylmethyl) complexes of larger rare earth metals such as Y, Er, and Tm in toluene affords the corresponding tetranuclear octahydride complexes [{( $C_5Me_4SiMe_3$ )Ln( $\mu$ -H)<sub>2</sub>}<sub>4</sub>(THF)] (**2**: Ln = Y;<sup>[8]</sup> **3**: Ln = Er;<sup>[9]</sup> **4**: Ln = Tm<sup>[9]</sup>) where one of the four metal centers in these complexes bears an additional THF ligand (Scheme 2). The overall structure of the mono(THF)-containing polyhydride complexes **2**–**4** is almost the same as that of the THF-free Sc complex **1**. In the case of the analogous complexes of larger metals such as Gd (**5**),<sup>[9]</sup> Dy (**6**),<sup>[9]</sup> and Ho (**7**),<sup>[9]</sup> an agostic interaction between the metal center and a methyl group of an adjacent C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub> ligand is also observed, probably due to the greater steric unsaturation of these larger metal centers (Scheme 2).<sup>[9,10]</sup> These results show that the fine structures of the tetranuclear octahydride complexes are, to some extent, dependent on the ionic radius of the metal centers.

In the case of lutetium, the reaction of the bisalkyl complex  $[(C_5Me_4SiMe_3)Lu(CH_2SiMe_3)_2(THF)]$  with  $H_2$  did not give a single hydride complex.<sup>[11]</sup> However, hydrogenolysis of the hydride-bridged dimeric mixed alkyl/hydride complex  $[\{(C_5Me_4SiMe_3)Lu(CH_2SiMe_3)(\mu-H)(THF)\}_2]$  (8), which was prepared by reaction of  $[(C_5Me_4SiMe_3)Lu(CH_2SiMe_3)_2(THF)]$  with one equivalent of PhSiH<sub>3</sub>, affords the tetranuclear mono(THF)-coordinated lutetium octahydride complex  $[\{(C_5Me_4SiMe_3)Lu(\mu-H)_2\}_4(THF)]$  (9) in THF (Scheme 3).<sup>[12]</sup> The structure of 9 is identical with those of the analogous mono(THF)-containing complexes 2–4. When the reaction of the alkyl/hydride complex 8 with H<sub>2</sub>



Zhaomin Hou was born in Shandong Province, China, in 1961. He received his B.Sc. from the China University of Petroleum (Shandong, China) in 1982, and his M.Sc. and Ph.D. from Kyushu University (Fukuoka, Japan) in 1986 and 1989, respectively. He joined RIKEN (The Institute of Physical and Chemical Research) in 1989, where he is now Chief Scientist and Director of the Organometallic Chemistry Laboratory. The current research activity in his group includes development of new catalysts for regio- and stereospecific olefin polymerization/copolymerization, new catalysts for efficient organic synthesis, and rare earth metal complexes with novel structures and reactivities, as well as synthesis of new functional materials. He is a recipient of the Japan Society of Coordination Chemistry Award for Young Scientists (1996), the Rare Earth Society of Japan Award for Young Scientists (1997), the Progress Award in Synthetic Organic Chemistry, Japan (2000), the JSPS Prize (2007), the Chemical Society of Japan Award for Creative Work for 2007, and the Mitsui Chemicals Catalysis Science Award (2007).



Masayoshi Nishiura was born in Hokkaido, Japan in 1971. He did his graduate studies at Chiba University under the supervision of Professor Tsuneo Imamoto, and received his Ph.D. in 2000 from the same University. He moved to RIKEN as a special postdoctoral researcher in 2000 and was promoted to Research Scientist at RIKEN in 2003. His research focuses on development of organometallic catalysts for organic synthesis and olefin polymerization.



Takanori Shima was born in Osaka, Japan, in 1972. He obtained his Ph.D. degree in 2001 from Tokyo Institute of Technology on the study of multinuclear polyhydrido complexes, under the supervision of Prof. Hiroharu Suzuki. He undertook postdoctoral research in the group of Prof. John A. Gladysz in the Institute für Organische Chemie of Friedrich-Alexander Universität (Erlangen, Germany) as an Alexander von Humboldt fellow in 2002. He joined RIKEN in 2004. His research interests include the synthesis and development of new rare earth metal polyhydrido complexes.



MICROREVIEW



Scheme 3. Synthesis of THF-free and mono(THF)-coordinated lutetium polyhydride complexes.

Scheme 2. Synthesis of mono(THF)-coordinated tetranuclear octahydrido rare earth metal complexes.

was carried out in toluene, the corresponding THF-free tetranuclear lutetium octahydride complex **10** was obtained (Scheme 3).<sup>[12]</sup> The octahydride complexes 1–7, 9, and 10 are all soluble in common organic solvents such as THF, toluene, and hexane, and their tetranuclear frameworks are maintained in solution. In the case of yttrium, recrystallization of the mono(THF) complex 2 from THF gives the structurally characterizable bis(THF)-coordinated complex 11 (Scheme 4);<sup>[9,12,13]</sup> formation of an analogous bis(THF)



Scheme 4. Formation of yttrium polyhydride complexes with and without THF ligands.



Figure 1. ORTEP drawings of the  $Y_4H_8$  core structures of 12 (left, THF-free), 2 (middle, with one THF ligand), and 11 (right, with two THF ligands).

complex was not observed under the same conditions for the smaller Sc and Lu complexes 1, 9, and 10. The bis(THF)-coordinated yttrium polyhydride 11 also adopts a tetrahedral metal skeleton, but it has four  $\mu_3$ -H and four  $\mu_2$ -H ligands whereas the mono(THF) analogue 2 possesses one  $\mu_4$ -H, one  $\mu_3$ -H, and six  $\mu_2$ -H ligands (Figure 1). Recrystallization of the bis(THF) complex 11 from hexane regenerates the mono(THF) complex 2, while treatment of the mono(THF) yttrium complex 2 with styrene followed by hydrogenolysis of the resultant product in benzene yields the corresponding THF-free octahydride complex 12 (Schemes 4 and 5).<sup>[8,14]</sup> ORTEP drawings of the Y<sub>4</sub>H<sub>8</sub> core structures of 2, 11, and 12 are shown in Figure 1.

## **3.** Reaction of Rare Earth Metal Polyhydrides with Unsaturated C–C Bonds

Reaction of the mono(THF)-coordinated tetranuclear yttrium octahydride complex 2 with styrene yields a product formed by insertion of a single molecule of styrene – the benzylic allyl heptahydride complex 13 – in which the allyl part is bonded to one Y atom in an  $\eta^3$ -fashion and the phenyl part is bonded to another Y atom in an  $\eta^2$ -form (Scheme 5).<sup>[8]</sup> No further reaction was observed even when an excess of styrene was present. Hydrogenolysis of the benzylic allyl complex 13 with H<sub>2</sub> (1 atm) in benzene affords ethylbenzene and the THF-free yttrium octahydride complex [{( $C_5Me_4SiMe_3$ )Y( $\mu$ -H)<sub>2</sub>}<sub>4</sub>] (12).<sup>[14]</sup> Under 1 atm of H<sub>2</sub>, styrene can be catalytically hydrogenated into ethylbenzene by 2 or 12.



Scheme 5. Formation of a tetranuclear yttrium benzylic allyl heptahydride complex and its reaction with  $H_2$ .



Scheme 6. Reaction of an yttrium polyhydride complex with 1,3-cyclohexadiene.  $Cp' = C_5Me_4SiMe_3$ .



Scheme 7. Reaction of an yttrium polyhydride complex with 1,4-bis(trimethylsilyl)-1,3-butadiyne.  $Cp' = C_5Me_4SiMe_3$ .

The reaction of **2** with 1,3-cyclohexadiene (CHD) yields the 1,4-addition product **14** in which the resulting allyl unit interacts with two Y atoms through the two "terminal" carbon atoms, each of which bonds to one metal center in an  $\eta^1$ -fashion (Scheme 6).<sup>[9]</sup> As in the case of styrene, the use of an excess amount of CHD does not lead to further reaction.

The reaction of 2 with 1,4-bis(trimethylsilyl)-1,3-butadivne affords the tetranuclear yttrium tetrahydride complex 15, which formally consists of a  $[(C_5Me_4SiMe_3)YH]_4^{4+}$  unit and a butene-tetraanion species (Scheme 7).<sup>[8]</sup> This butenetetraanion moiety is bonded to two yttrium atoms in a  $\pi, \eta^4$ -"inverse-sandwich" fashion and to the other two yttrium atoms in a  $\sigma_1,\mu_1$ -terminal form at the two terminal carbon atoms. The formation of 15 can be explained as follows. Addition of two Y–H units of 2 to the two C=C units of 1,4-bis(trimethylsilyl)-1,3-butadiyne in a "2,1" fashion yields the 1,3-butadien-1,4-diyl (or butadiene-dianion)/ hexahydride species A (Scheme 7). Subsequent 1,4-Y-H addition to the 1,3-butadiene unit in A could give the 2-buten-1,1'4-trivl/pentahydride species **B**. Deprotonation at the C4 position of the butene species by a Y-H unit in **B** should afford the 2-buten-1,1',4,4'-tetrayl/tetrahydride species C. This species can be regarded as a resonance structure (a localized form) of 15 (cf. alo D and E).

## 4. Reaction of Rare Earth Metal Polyhydrides with Unsaturated C–O Bonds

Reaction of the lutetium octahydride complex **9** with  $\gamma$ butyrolactone gives the tetranuclear mixed alkoxido/dihydrido complex **16** (Scheme 8).<sup>[8]</sup>  $\gamma$ -Butyrolactone is a stable, non-polymerizable cyclic ester. In this reaction, three molecules of  $\gamma$ -butyrolactone are completely reductively ringopened by six of the eight hydride ligands in **9** to give the linear diolate species "-O(CH<sub>2</sub>)<sub>4</sub>O-", thus demonstrating the unusually high reactivity of this rare earth metal polyhydride complex. Further reaction between **16** and  $\gamma$ -butyrolactone was not observed, even when an excess amount of  $\gamma$ -butyrolactone was present. However, both **9** and **16** show high activity for the ring-opening polymerization of  $\varepsilon$ -caprolactone.



Scheme 8. Reaction of a lutetium polyhydride complex with  $\gamma\text{-butyrolactone.}$  Cp' = C\_5Me\_4SiMe\_3.

The reaction of **2** with CO in toluene at -10 °C occurs rapidly to give the hexahydrido/oxymethylene yttrium complex **17** (Scheme 9).<sup>[15]</sup> When **17** is stirred at -10 °C in the presence of CO for a few minutes and then at room temperature in the absence of CO for 1 h, the dioxo/tetrahydrido complex [( $C_5Me_4SiMe_3Y$ )<sub>4</sub>( $\mu_3$ -O)<sub>2</sub>( $\mu$ -H)<sub>4</sub>(THF)] (**20**) is obtained with simultaneous release of ethylene. Complex **20** can also be isolated directly from the reaction of **2** with CO without isolating **17**. <sup>1</sup>H NMR monitoring of the reaction of **17** with CO in [D<sub>8</sub>]THF at low temperatures revealed the formation of an enolate intermediate such as [( $C_5Me_4Si-Me_3Y$ )<sub>4</sub>(OCH=CH<sub>2</sub>)( $\mu$ -O)( $\mu$ -H)<sub>5</sub>(THF)] (**19**). Further reaction of the yttrium tetrahydrido/dioxo complex **20** with CO gives the corresponding tetraoxo complex **21** and ethylene.



Scheme 9. Selective formation of ethylene by deoxygenative C–C coupling of carbon monoxide.  $Cp' = C_5Me_4SiMe_3$ .

Reaction of the lutetium octahydride complex 9 with CO (1 atm) affords the analogous lutetium hexahydrido/oxymethylene complex 18 and the tetraoxo lutetium cubane complex 22 with release of ethylene (Scheme 9); formation of a tetrahydrido/dioxo Lu complex intermediate analogous to 20 was not observed. The solid-state structure of 22 is shown in Figure 2.

Although the reactions of CO with various transition metal hydrides, including lanthanide and actinide metallocene hydrides, have been reported,<sup>[16]</sup> the selective formation of ethylene by reduction of CO is unprecedented. These results demonstrate again the unique reactivity of polyhydrido rare earth metal complexes.

A possible reaction mechanism for the formation of ethylene is shown in Scheme 10. Addition of two Y–H bonds in 2 across the C–O triple bond of one molecule of CO could give the oxymethylene complex 17. Subsequent inser-



Figure 2. ORTEP drawing of 22.

tion of another molecule of CO into the Y–CH<sub>2</sub> bond in 17 would afford an  $\alpha$ -oxyacetyl species such as F (or its carbenoid isomer). Y–H bond addition across the acyl C–O double bond in F could yield the oxametallacyclopropane species G, which would produce the enolate species 19 by rupture of a C–O and the C–Y bond. Addition of another Y–H bond across the C–C double bond of the enolate unit might give the  $\beta$ -oxyethylene species H, which, after cleavage of the C–Y and the C–O bond, yields the dioxo complex 20 with release of ethylene. Formation of the tetraoxo complex 21 and ethylene from the reaction of 20 with CO could follow an analogous process, although intermediate species analogous to the oxymethylene 17 or an enolate species 19 have not been observed.

Reaction of the octahydride complex 2 with  $CO_2$  also takes place very rapidly, although a characterizable product could not be isolated from this reaction. However, the structurally characterizable bis(methylene diolate) complex 23 was obtained in high yield from the reaction of the butenetetraanion/tetrahydrido complex 15 with  $CO_2$ , (Scheme 11).<sup>[17]</sup> In this reaction, the two C–O double bonds of CO<sub>2</sub> are completely reduced to C-O single bonds. This reaction takes place only at the hydride sites and the butene-tetraanion unit remains unchanged. Although a large number of studies on the hydrogenation of CO<sub>2</sub> with both homogeneous and heterogeneous systems have been reported, the observation of formation of a methylene diolate species remains rare.<sup>[18]</sup> The present formation of the methylene diolate species is in sharp contrast with what was observed previously in the case of other transition metal polyhydride complexes such as  $[\{(C_5H_5)Ti(\mu-H)\}_2(C_{10}H_8)],^{[19]}$  $[(C_5H_5)_2Zr(H)(\mu-H)(\mu-NtBu)Ir(C_5Me_5)],^{[20]} [H_2Ru(dmpe)_2],^{[21]}$ and  $[H_4Mo(dmpe)_2]$ ,<sup>[22]</sup> [dmpe = 1,2-bis(dimethylphosphanyl)ethane] which yield either bis(formate),<sup>[18,21]</sup> mixed hydride/formate,[19,20] or mixed hydride/carbonate complexes<sup>[21]</sup> upon reaction with CO<sub>2</sub>. Further insertion of CO<sub>2</sub> into the metal-diolate bonds in 23 could also take place to give the mono- and dicarbonate complexes 24 and 25 in a stepwise manner, with possible release of formaldehyde (HCHO; Scheme 11).



Scheme 10. A possible mechanism for the reaction of an yttrium polyhydride complex with carbon monoxide.  $Cp' = C_5Me_4SiMe_3$ .



Scheme 11. Reduction of  $CO_2$  into methylene diolate species and subsequent  $CO_2$  insertion reactions.  $Cp' = C_5Me_4SiMe_3$ .

To see how complex 15 would behave toward an isocyanate, which is a commonly accepted model for CO<sub>2</sub> with respect to reaction patterns,<sup>[23]</sup> the reactions of 15 with aryl isocyanates have been studied.<sup>[17]</sup> When 15 was allowed to react with two equivalents of phenyl isocyanate or 1-naphthyl isocyanate, the dioxo complex 26 was formed together with the corresponding aromatic imine compounds, probably via the bis(methylene olate/amido) intermediate I (Scheme 12). Exposure of the di- $\mu_3$ -oxo complex 26 to an atmosphere of CO<sub>2</sub> at room temperature led to immediate formation of the dicarbonate complex 25 (Scheme 12). Although formation of metal oxo complexes, such as  $[\{Cp_2ZrCl\}_2(\mu\text{-}O)], [^{24}] \quad [\{Cp_2Zr(\mu\text{-}O)\}_3], [^{25}] \quad and \quad [\{(C_5H_4\text{-}O)\}_3], [^{25}] \quad and \quad [\{(C_5H_4\text{-}O)\}_3], [^{25}] \quad and \quad [\{(C_5H_4\text{-}O)\}_3], [^{26}] \quad and \quad [[\{(C_5H_4), (C_5H_4), (C_5H$  $SiMe_3_3U_2(\mu-O)$ ],<sup>[26]</sup> has been observed in various CO<sub>2</sub> reduction reactions, the insertion of CO2 into such a metal oxo species has not been reported previously. The present reaction of 26 with CO<sub>2</sub> may provide, at a molecular level, a nice piece of evidence for interactions of CO<sub>2</sub> with metal oxides.[27]



Scheme 12. Formation of a  $\mu_3$ -oxo yttrium complex and its reaction with CO<sub>2</sub>. Cp' = C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>.

Polyhydride complexes such as **2**, **6**, and **9** can also act as single-component catalysts for the ring-opening homopolymerization of cyclohexene oxide (CHO) and the alternating copolymerization of CHO and CO<sub>2</sub>. The homopolymerization of CHO in bulk takes place much more rapidly than in solution and affords the corresponding polyethers  $[M_n = (60-80) \times 10^3$  and  $M_w/M_n \approx 2]$  in high yields in most cases. The copolymerization of CHO and CO<sub>2</sub> at 70–110 °C under 12 atm of CO<sub>2</sub> yields the corresponding polycarbonates  $[M_n = (20-40) \times 10^3, M_w/M_n = 4-5$ ; carbonate linkages



Scheme 13. Homopolymerization of cyclohexene oxide (CHO) and copolymerization of CHO with CO<sub>2</sub>.

= 95–99%] with a TOF of up to 2000 gpolymer/(mol Ln h)<sup>-1</sup> (Scheme 13).<sup>[28]</sup> The first step in the copolymerization could be the formation of a methylene diolate species by insertion of one molecule of CO<sub>2</sub> into two Ln–H bonds.

## 5. Reaction of Rare Earth Metal Polyhydrides with Nitriles

The reaction of the yttrium or lutetium octahydride complex (2, 9) with four equivalents of benzonitrile or acetonitrile affords the corresponding tetranuclear cubane-like imido complexes [{( $C_5Me_4SiMe_3$ )Ln( $\mu_3$ -NCH<sub>2</sub>Ph)}] (Ln = Y (27), Lu (28)] or  $[\{(C_5Me_4SiMe_3)Y(\mu_3-NCH_2Ph)\}_4]$  (29), respectively (Scheme 14).<sup>[8]</sup> The solid-state structure of the vttrium complex 27 is shown in Figure 3. In these reactions, the C-N triple bond of a nitrile compound is completely reduced to a C-N single bond by double Ln-H addition. This is in sharp contrast to the previously reported reactions of rare earth metallocene hydride complexes<sup>[29]</sup> or zirconocene dihydride complexes<sup>[30]</sup> with nitriles, which yielded only single-insertion products such as  $[{(C_5H_5)_2} Y(\mu-N=CHtBu)$  or  $[(C_5Me_5)_2Zr(H)(N=CHR)]$  (R =  $C_6H_4Me$ -p). The reaction of polyhydrido rare earth metal complexes with nitriles may offer a convenient salt-free route to the corresponding rare earth metal imido complexes, a class of compounds that are of considerable current interest but still remain very limited in number.<sup>[31]</sup>



Scheme 14. Formation of cubane-type imido complexes by reduction of nitriles.  $Cp' = C_5Me_4SiMe_3$ .

Further reactions of the rare earth metal imido complexes with nitriles can also take place. The reaction of the benzylimidolutetium complex [{( $C_5Me_4SiMe_3$ )Lu( $\mu_3$ -NCH<sub>2</sub>Ph)}<sub>4</sub>] (28) with four equivalents of benzonitrile at room temperature, for instance, gives the benzamidinate-dianion complex 30 (Scheme 15).<sup>[32]</sup> An X-ray analysis showed that 30 possesses a dimeric structure in which the two Lu atoms are bridged by the ketimido nitrogen atom and the amido nitrogen atom is bonded terminally to one Lu atom. The formation of 30 apparently proceeds by nucleophilic addition of the imido unit in 28 to the CN group of benzonitrile, which demonstrates that a rare earth metal imido bond, even in a bridging form, is very reactive. This



Figure 3. ORTEP drawing of 27. The Me<sub>3</sub>Si and Me groups in  $C_5Me_4SiMe_3$  have been omitted for clarity.

contrasts with what was observed previously for transition metal imido bridging bonds, which are usually robust and unreactive.<sup>[33]</sup>



Scheme 15. Nucleophilic addition of an imido complex to benzonitrile.  $Cp' = C_5Me_4SiMe_3$ .

In sharp contrast to the above-mentioned nucleophilic addition reaction of the benzylimido complex **28**, the reaction of the ethylimido complex  $[{(C_5Me_4SiMe_3)Y(\mu_3-$ 

NCH<sub>2</sub>CH<sub>3</sub>)<sub>4</sub>] (29) with benzonitrile gives the mixed benzaldimido/ethylimido complex **31** rather than an insertion product (Scheme 16). An X-ray analysis established that **31** adopts a tetranuclear crown-like core structure in which the four Y atoms are unsymmetrically bridged by four  $\mu_2$ -benzaldimido and two  $\mu_3$ -ethylimido ligands. Four molecules of benzonitrile are hydrogenated in this reaction to give four benzaldimido species (PhCH=N<sup>-</sup>) by abstraction of four methylene hydrogen atoms from two of the four ethylimido units (CH<sub>3</sub>CH<sub>2</sub>N<sup>2-</sup>) in **29** with the release of two molecules of acetonitrile (CH<sub>3</sub>CN); the other two ethylimido units remain unchanged (Scheme 16). This formation of an aldimido species through hydrogen transfer from an alkyl imido species to a nitrile compound is, as far as we are aware, unprecedented.

The reaction of 10 equivalents of benzonitrile with the benzylimido complexes 27 or 28 gives the benzonitrile tetramerization products 32 or 33, respectively (Scheme 17). The reaction of the benzamidinate-dianion complex 30 with three equivalents of benzonitrile also affords 33 in high yield. These results suggest that 30 should be an intermediate in the formation of 33 from 28. The reaction of the polyhydride complex 2 with 14 equivalents of benzonitrile also affords 32. A possible reaction mechanism for the formation of the benzonitrile tetramerization product 32 or 33 is shown in Scheme 18. The coordination of one molecule of benzonitrile to each metal atom in 30 should yield M. Hydrogen transfer from a methylene group to a coordinated PhCN in M (path a) should then afford N. Nucleophilic addition of the newly formed benzaldimido unit to the aldimine group (path b) could yield **O**, which gives **P** upon coordination of one molecule of PhCN. Migration of the



Scheme 16. Unique hydrogen transfer from ethyl imido species to benzonitrile.  $Cp' = C_5Me_4SiMe_3$ .

methine hydrogen to the PhCN unit in  $\mathbf{P}$  (path *c*), followed by addition of the resulting aldimido unit to the aldimine group in the resultant  $\mathbf{Q}$  (path *d*), should give 33.



Scheme 17. Tetramerization of benzonitrile.  $Cp' = C_5Me_4SiMe_3$ .



Scheme 18. Possible mechanism for the formation of 33.  $Cp' = C_5Me_4SiMe_3$ .

When an excess amount of benzonitrile was added to a toluene solution of **32** or **33**, the benzonitrile-cyclotrimerization product, namely triphenyl triazine (PhCN)<sub>3</sub>, is formed selectively (Scheme 19).<sup>[32]</sup> The recovery of **32** or **33** from these reactions confirms that these benzonitrile-tetramerized complexes are true catalysts. The polyhydride complexes **2** and **9**, the imido complexes **27** and **28**, and the benzamidinate-dianion complex **30** are also active for the catalytic trimerization of benzonitrile. A possible mechanism for the catalytic cyclotrimerization of benzonitrile by **32** or **33** is shown in Scheme 20. The coordination of one molecule of benzonitrile to a metal center in **32** (or **33**) could give **R**, and methine hydrogen transfer (step *e*) to coordinated benzonitrile would afford **S**. Subsequent intramolecular nucleophilic addition of the ketimido unit to the

newly formed imine moiety (step f) could give T, and aromatization of the resultant six-membered ring in T (step g, Ln–N bond cleavage and C=N bond formation and step h, C–N bond cleavage and Ln–N bond formation) should release the triazine and generate U. Insertion of benzonitrile into U would then give V, which resembles intermediate N in Scheme 18 and could regenerate **32** (or **33**) as described above. Thus, the combination of C–N bond formation, hydrogen transfer, and C–N bond cleavage steps constitutes a unique catalytic cycle for the cyclotrimerization of benzonitrile.<sup>[34]</sup>



Scheme 19. Catalytic cyclotrimerization of benzonitrile.  $Cp' = C_5Me_4SiMe_3$ .



Scheme 20. A possible mechanism for the catalytic cyclotrimerization of benzonitrile.  $Cp' = C_5Me_4SiMe_3$ .

#### 6. Cationic Rare Earth Metal Polyhydride Complexes

In contrast to cationic rare earth metal alkyl complexes, which have received much interest as novel polymerization catalysts,<sup>[35,36]</sup> cationic hydrido rare earth metal complexes remain almost unexplored. It has recently been found that tetranuclear rare earth metal octahydride complexes such as 1–7 and 9–12 are suitable precursors for the preparation of cationic hydrido rare earth metal species.<sup>[9]</sup> For example, the reactions of the yttrium octahydride complexes **2**, **11**, and **12** with one equivalent of [Ph<sub>3</sub>C][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] afford the corresponding cationic heptahydride complexes **35**, **36**, and **34**, respectively, in high yields (Scheme 21). An direct bonding interaction between the [(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)<sub>4</sub>Y<sub>4</sub>H<sub>7</sub>]<sup>+</sup> cation and

the  $[B(C_6F_5)_4]^-$  anion via a Y–F bond is observed in the THF-free complex 34, while complexes 35 and 36 are solvent (THF)-separated ion pairs. The X-ray structures of 34 and 36 are shown in Figures 4 and 5, respectively. These complexes are the first examples of well-defined cationic hydrido rare earth metal complexes.



Scheme 21. Synthesis of cationic yttrium polyhydride complexes.  $Cp' = C_5Me_4SiMe_3$ .



Figure 4. ORTEP drawing of 34. The Me<sub>3</sub>Si and Me groups in  $C_5Me_4SiMe_3$  have been omitted for clarity.



Figure 5. ORTEP drawing of **36**. The Me<sub>3</sub>Si and Me groups in  $C_5Me_4SiMe_3$  and the  $[B(C_6F_5)_4]$  ion have been omitted for clarity.

In contrast to the neutral hydride cluster 2, which yields a single Y–H addition product 13 or 14 on reaction with styrene or 1,3-cyclohexadiene (CHD), respectively, as described above, the THF-free or mono(THF)-coordinated cationic hydride clusters such as **34** or **35** (either isolated or generated in situ) are active catalysts for the syndiospecific polymerization of styrene and the regio- and stereoselective *cis*-1,4-polymerization of CHD (Scheme 22).<sup>[9]</sup> The bis(THF)-coordinated cationic complex **36**, however, is not catalytically activity under the same conditions, probably due to the occupation of the active metal centers by two strongly coordinative THF ligands.



Scheme 22. *cis*-1,4-Selective polymerization of 1,3-cyclohexadiene by cationic yttrium polyhydride complexes.

#### 7. Conclusion and Perspective

Hydrogenolysis of the bisalkyl complexes [(C<sub>5</sub>Me<sub>4</sub>SiMe<sub>3</sub>)- $Ln(CH_2SiMe_3)_2(THF)$  leads to the formation of a series of structurally characterizable polyhydrido polynuclear rare earth metal complexes. These polyhydride complexes show a unique reactivity towards various substrates, such as hydrogenation of the C-N triple bond of a nitrile compound into a C-N single bond, reduction of carbon dioxide into a methylene diolate species, and deoxygenative C-C coupling of CO into ethylene. These reactions are in sharp contrast with what has been observed for the analogous monohydrido metallocene complexes. A new class of polynuclear rare earth metal complexes, such as cubane-type imido and oxo complexes, has also been derived from the polyhydride complexes. Abstraction of a hydride ligand from the neutral hydride clusters leads to the formation of structurally characterizable cationic polyhydrido rare earth metal complexes.

It should also be noted, however, that the synthesis and reactivity studies of polyhydrido rare earth metal complexes is still in its infancy, and well defined polyhydrido rare earth metal complexes reported in the literature are limited essentially to those bearing a  $C_5Me_4SiMe_3$  ligand. As the expertise in this field increases and more complexes with new ligand systems are prepared,<sup>[37]</sup> the diverse chemistry of polyhydrido rare earth metal complexes will certainly be further extended. An exciting and prosperous future in this area can therefore be expected.

Selected reviews on d-block transition metal hydride complexes: a) G. S. McGrady, G. Guilera, *Chem. Soc. Rev.* 2003, 32, 383–392; b) H. Suzuki, *Eur. J. Inorg. Chem.* 2002, 1009–1023; c) F. Maseras, A. Lledós, E. Clot, O. Eisenstein, *Chem. Rev.* 2000, 100, 601–636; d) S. Sabo-Etienne, B. Chaudret, *Chem. Rev.* 1998, 98, 2077–2092; e) R. Bau, M. H. Drabnis, *Inorg. Chim. Acta* 1997, 259, 27–50; f) Z. Lin, M. B. Hall, *Coord. Chem. Rev.* 1994, 135/136, 845–879; g) R. H. Crabtree, in *Comprehensive Coordination Chemistry* (Eds.: G. Wilkinson, R. D. Gillard, J. A. McCleverty), Pergamon, Oxford, 1987, vol. 2, p. 689; h) G. G. Hlatky, R. H. Crabtree, *Coord. Chem. Rev.*

**1985**, 65, 1–48; i) L. M. Venanzi, *Coord. Chem. Rev.* **1982**, 43, 251–274.

- [2] Selected reviews on rare earth metal hydride complexes: a) Z. Hou, Bull. Chem. Soc. Jpn. 2003, 76, 2253–2266; b) J. Okuda, Dalton Trans. 2003, 2367–2378; c) S. Arndt, J. Okuda, Chem. Rev. 2002, 102, 1953–1976; d) G. A. Molander, J. A. C. Romero, Chem. Rev. 2002, 102, 2161–2186; e) Z. Hou, Y. Wakatsuki, Coord. Chem. Rev. 2002, 231, 1–22; f) Z. Hou, Y. Wakatsuki, in Science of Synthesis (Eds.: T. Imamoto, R. Noyori), Thieme, Stuttgart, 2002, vol. 2, p. 849–942; g) A. J. Hoskin, D. W. Stephan, Coord. Chem. Rev. 2002, 233–234, 107–129; h) M. Ephritikhine, Chem. Rev. 1997, 97, 2193–2242; i) H. Schumann, J. A. Meese-Marktscheffel, L. Esser, Chem. Rev. 1995, 95, 865–986; j) F. T. Edelmann, in Comprehensive Organometallic Chemistry II (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson, M. F. Lappert), Pergamon, Oxford, 1995, vol. 4, p. 11–212; k) C. J. Schaverien, Adv. Organomet. Chem. 1994, 36, 283–362.
- [3] W. J. Evans, J. H. Meadows, A. L. Wayda, W. E. Hunter, J. L. Atwood, J. Am. Chem. Soc. 1982, 104, 2008–2014.
- [4] H. van der Heijden, P. Pasman, E. J. M. de Boer, C. J. Schaverien, Organometallics 1989, 8, 1459–1467.
- [5] K. C. Hultzsch, T. P. Spaniol, J. Okuda, Angew. Chem. Int. Ed. 1999, 38, 227–230.
- [6] a) Z. Hou, Y. Zhang, O. Tardif, Y. Wakatsuki, J. Am. Chem. Soc. 2001, 123, 9216–9217; b) Z. Hou, Y. Zhang, M. Nishiura, Y. Wakatsuki, Organometallics 2003, 22, 129–135.
- [7] M. Nishiura, J. Baldamus, T. Shima, Z. Hou, manuscript in preparation.
- [8] D. Cui, O. Tardif, Z. Hou, J. Am. Chem. Soc. 2004, 126, 1312– 1313.
- [9] X. Li, J. Baldamus, M. Nishiura, O. Tardif, Z. Hou, Angew. Chem. Int. Ed. 2006, 45, 8184–8188.
- [10] R. D. Shannon, Acta Crystallogr., Sect. A 1976, 32, 751-767.
- [11] A mixture of trinuclear and tetranuclear polyhydride complexes was obtained (M. Nishiura, J. Baldamus, T. Shima, Z. Hou, unpublished results).
- [12] O. Tardif, M. Nishiura, Z. Hou, Organometallics 2003, 22, 1171–1173.
- [13] K. C. Hultzsch, P. Voth, T. P. Spaniol, J. Okuda, Z. Anorg. Allg. Chem. 2003, 629, 1272–1276.
- [14] Y. Luo, J. Baldamus, O. Tardif, Z. Hou, Organometallics 2005, 24, 4362–4366.
- [15] T. Shima, Z. Hou, J. Am. Chem. Soc. 2006, 128, 8124-8125.
- [16] For examples, see: a) T. Matsuo, H. Kawaguchi, J. Am. Chem. Soc. 2005, 127, 17198–17199; b) W. J. Evans, J. W. Grate, R. J. Doedens, J. Am. Chem. Soc. 1985, 107, 1671–1679; c) K. G. Moloy, T. J. Marks, J. Am. Chem. Soc. 1984, 106, 7051–7064; d) S. Gambarotta, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Am. Chem. Soc. 1983, 105, 1690–1691; e) D. A. Katahira, K. G. Moloy, T. J. Marks, Organometallics 1982, 1, 1723–1726; f) P. J. Fagan, K. G. Moloy, T. J. Marks, J. Am. Chem. Soc. 1981, 103, 6959–6962; g) P. T. Wolczanski, R. S. Threlkel, J. E. Bercaw, J. Am. Chem. Soc. 1979, 101, 218–220; h) J. M. Manriquez, D. R. McAlister, R. D. Sanner, J. E. Bercaw, J. Am. Chem. Soc. 1978, 100, 2716–2724.
- [17] O. Tardif, D. Hashizume, Z. Hou, J. Am. Chem. Soc. 2004, 126, 8080–8081.
- [18] a) N. E. Schlörer, S. Berger, Organometallics 2001, 20, 1703–1704; b) N. E. Schlörer, E. J. Cabrita, S. Berger, Angew. Chem. Int. Ed. 2002, 41, 107–109; c) J. C. Berthet, M. Ephritikhine, New J. Chem. 1992, 16, 767–768; d) A. Cutler, M. Raja, A. Todaro, Inorg. Chem. 1987, 26, 2877–2881.
- [19] J. Ni, Y. Qiu, T. M. Cox, C. A. Jones, C. Berry, L. Melon, S. Bott, Organometallics 1996, 15, 4669–4671.
- [20] T. A. Hanna, A. M. Baranger, R. G. Bergman, J. Am. Chem. Soc. 1995, 117, 11363–11364.
- [21] M. K. Whittlesey, R. N. Perutz, M. H. Moore, *Organometallics* 1996, 15, 5166–5169.

- [22] L. K. Fong, J. R. Fox, N. J. Cooper, Organometallics 1987, 6, 223–231.
- [23] P. Braunstein, D. Nobel, Chem. Rev. 1989, 89, 1927-1945.
- [24] a) N. E. Schlörer, E. J. Cabrita, S. Berger, Angew. Chem. Int. Ed. 2002, 41, 107–109; b) N. E. Schlörer, S. Berger, Organometallics 2001, 20, 1703–1704; c) A. Cutler, M. Raja, A. Todaro, Inorg. Chem. 1987, 26, 2877–2881; d) S. Gambarotta, S. Strologo, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Am. Chem. Soc. 1985, 107, 6278–6282; e) G. Fachinetti, C. Floriani, A. Roselli, S. Pucci, J. Chem. Soc., Chem. Commun. 1978, 269–270.
- [25] G. Fachinetti, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Am. Chem. Soc. 1979, 101, 1767–1775.
- [26] J. C. Berthet, M. Ephritikhine, New J. Chem. 1992, 16, 767-768.
- [27] a) I. A. Fisher, A. T. Bell, J. Catal. 1997, 172, 222–237; b)
  J. C. J. Bart, R. P. A. Sneeden, Catal. Today 1987, 2, 1–124; c)
  J. B. Peri, J. Phys. Chem. 1966, 70, 3168–3179; d) N. D. Parkyns, J. Chem. Soc. A 1969, 410–417; e) L. Fan, K. Fujimoto, J. Catal. 1997, 172, 238–242.
- [28] D. Cui, M. Nishiura, Z. Hou, *Macromolecules* 2005, 38, 4089– 4095.
- [29] W. J. Evans, J. H. Meadows, W. E. Hunter, J. L. Atwood, J. Am. Chem. Soc. 1984, 106, 1291–1300.
- [30] J. E. Bercaw, D. L. Davies, P. T. Wolczanski, *Organometallics* 1986, 5, 443–450.
- [31] a) H.-S. Chan, H.-W. Li, Z. Xie, *Chem. Commun.* 2002, 652–653; b) J. C. Gordon, G. R. Giesbrecht, D. L. Clark, P. J. Hay, D. W. Keogh, R. Poli, B. L. Scott, J. G. Watkin, *Organometallics* 2002, *21*, 4726–4734; c) G. R. Giesbrecht, J. C. Gordon, *Dalton Trans.* 2004, 2387–2393.
- [32] D. Cui, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2005, 44, 959–962.
- [33] a) J. R. Fulton, T. A. Hanna, R. G. Bergman, Organometallics 2000, 19, 602–614; b) D. A. Dobbs, R. G. Bergman, Organometallics 1994, 13, 4594–4605; c) S. Takemoto, T. Kobayashi, H. Matsuzaka, J. Am. Chem. Soc. 2004, 126, 10802–10803; d) J.-S. Song, S.-H. Han, S. T. Nguyen, G. L. Geoffroy, Organometallics 1990, 9, 2386–2395.
- [34] Although benzonitrile cyclotrimerization is known, the mechanistic aspects of this process are not well understood. For examples, see: a) J. H. Forsberg, V. T. Spaziano, T. M. Balasubramanian, G. K. Liu, S. A. Kinsley, C. A. Duckworth, J. J. Poteruca, P. S. Brown, J. L. Miller, *J. Org. Chem.* **1987**, *52*, 1017– 1021; b) F. Xu, J. H. Sun, H. B. Yan, Q. Shen, Synth. Commun. **2000**, *30*, 1017–1022.
- [35] Selected reviews on cationic rare earth metal alkyl complexes:
  a) P. M. Zeimentz, S. Arndt, B. R. Elvidge, J. Okuda, *Chem. Rev.* 2006, 106, 2404–2433;
  b) Z. Hou, Y. Luo, X. Li, *J. Organomet. Chem.* 2006, 691, 3114–3121;
  c) S. Arndt, J. Okuda, *Adv. Synth. Catal.* 2005, 347, 339–354;
  d) J. Gromada, J. F. Carpentier, A. Mortreux, *Coord. Chem. Rev.* 2004, 248, 397–410;
  e) W. E. Piers, D. J. H. Emslie, *Coord. Chem. Rev.* 2002, 233–234, 131–135;
  f) Z. Hou, Y. Wakatsuki, *Coord. Chem. Rev.* 2002, 231, 1–22.
- [36] a) Y. Luo, J. Baldamus, Z. Hou, J. Am. Chem. Soc. 2004, 126, 13910–13911; b) X. Li, Z. Hou, Macromolecules 2005, 38, 6767–6769; c) X. Li, J. Baldamus, Z. Hou, Angew. Chem. Int. Ed. 2005, 44, 962–964; d) L. Zhang, Y. Luo, Z. Hou, J. Am. Chem. Soc. 2005, 127, 14562–14563; e) L. Zhang, T. Suzuki, Y. Luo, M. Nishiura, Z. Hou, Angew. Chem. Int. Ed. 2007, 46, 1909–1913.
- [37] We recently found that the use of C<sub>5</sub>Me<sub>5</sub> instead of C<sub>5</sub>Me<sub>4</sub>-SiMe<sub>3</sub> as an ancillary ligand led to formation of the corresponding octahedral dodecahydride complexes (M. Nishiura, K. Mori, T. Mashiko, Z. Hou, unpublished results).

Received: January 23, 2007 Published Online: April 17, 2007