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15N-labelled pyridines are liquid and solid state NMR probes for chemical and biological 

environments because their 15N chemical shifts are sensitive to hydrogen-bond and 

protonation states. By variation of the type and number of substituents different target 

pyridines can be synthesized exhibiting different pKa values and molecular volumes. Various 

synthetic routes have been described in the literature, starting from different precursors or 

modification of other 15N-labelled pyridines. In this work we have explored the synthesis of 

15N labelled pyridines using a two-step process via the synthesis of alkoxy-3,4-dihydro-2H-

pyran as precursor exhibiting already the desired pyridine substitution pattern. As an 

example, we have synthesized 3,5-dimethylpyridine-15N (lutidine-15N) as demonstrated by 

15N-NMR spectroscopy. That synthesis starts from methacrolein, propenyl ether and 15N-

labelled NH4Cl as nitrogen source. 
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1 INTRODUCTION 

 

15N-labelled pyridines and related heterocycles are important liquid and solid state NMR 

probes for chemical and biological environments.1-6 That feature arises on one hand from the 

basicity of pyridines and their ability to form hydrogen bonds. On the other hand 15N 

chemical shifts are very sensitive to the 15N-1H distance and can be used to monitor the local 

H-bond and protonation state.7-9 Therefore, 15N-labelled pyridines have been used to explore 

the acidity of mesoporous surfaces or of biological environments using high-resolution solid 

state NMR spectroscopy. Moreover, the mobility of pyridines to jump from one proton donor 

to another allows one to obtain interesting information about local structures.2  

 So far, 15N pyridine is the only representative that is commercially available in a 15N-

labelled form. Thus, syntheses of various 15N labelled pyridine derivatives with a large range 

of pKa values have been reported so far, applying several routes as illustrated in Scheme 1. 

Route I starts from the appropriate pyrylium salt containing already the desired pyridine 

substituents, using 15NH4Cl as nitrogen source. In route II alkoxy-3,4-dihydro-2H-pyrans 

exhibiting the desired substituents are firstly synthesized as precursors via a Diels-Alder 

addition of vinyl ethers to ,-unsaturated carbonyl compounds. The pyrans can then easily 

be converted into the corresponding 15N labelled pyridines using 15NH4Cl. Finally, easily 

available labelled pyridines can be converted into other derivatives (Route III). Some 

examples are depicted in Scheme 2. 

 

Up to date, most 15N-labelled pyridines have been synthesized following route I, namely 

2,4.6-trimethyl-pyridine 4 also called collidine,10 2,6-di-tert-butyl-4-methyl-pyridine 5,11 4-

dimethylamino-2,6-dimethy-pyridine 6,12 and 4-diethylamino-2,6-di-tert-butyl-pyridine 7.11 

However, route I is limited to pyridines with aliphatic substitutions at C2 and C6. Route II 

has been used to synthesize 15N-labelelled plain pyridine 1 12,13 and 4-methyl-pyridine 2.9 

Route III was used for the synthesis of 15N-labelled 2,4.6-trimethyl-3-nitro-pyridine 8, 2,4.6-

trimethyl-3-bromo-pyridine 9 and 4-N,N-dimethylamino-pyridine 10.12  

 

As we wanted to obtain 3,5-dimethyl-pyridine-15N (3) as molecular sensor for comparison 

with pyridine-15N (1) and collidine-15N (4) we explored the most suitable route to synthesize 

3. We could not use route I as pyrylium salts without substituents in 2- and 6- position are 

rare and not very stable.14 In addition, it is not possible to obtain 3 from 1 via route III. 
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Therefore, we checked in more detail route II. That route had been used to synthesize 

pyridine-15N (1). The required precursor 3,4-dihydro-2-methoxy-2H-pyran is commercially 

available, and can be synthesized in solution at high pressures up to 15 000 bar15 or under 

milder conditions using either dry state adsorption conditions16 or an ytterbium catalyst.17 

The original synthesis of Longley et al.18 did not use a solvent or additives but only the neat 

reactants, heating them up to about 200 °C in a normal laboratory autoclave. The pressure 

achieved was not reported, but they probably did not exceed about 15 bar.18 Therefore, that 

method seemed to us preferable as only small quantities of the pyran are needed. We found 

that this method was suitable and succeeded to synthesize in a similar way also 4-methyl-

pyridine-15N (2).9 Therefore, we want to describe here in more detail how to prepare 

pyridines for which commercial precursors are not available, using the example of 15N-

labelled 3,5-dimethylpyridine (3). 

 

2 RESULTS AND DISCUSSION 

 

In the first stage of this work, we checked out alternative routes starting from unlabelled 3,5-

dimethyl pyridine, but these efforts were not successful. 

 

As precursor of the Diels-Alder reaction we used methacrolein 11 and ethyl 1-propenyl ether 

12 leading to 2-ethoxy-3,4-dihydro-3,5-dimethyl-2H-pyran 13 (Scheme 3). Methacrolein was 

stabilized with a small amount of hydroquinone to avoid polymerization. NMR spectroscopy 

revealed a cis/trans mixture of compound 13 in the ratio of 2:3 (Figure 1), the chemical shifts 

are listed and compared to literature values in Table 1). The chemical shifts and coupling 

constants of the two 2H-pyran ring isomers fit very well to previous reports for 2-

benzoyloxy-3,4-dihydro-3,5-dimethyl-2H-pyran from Yamamoto et al.19 and 2-methoxy-3,4-

dihydro-3,5-dimethyl-2H-pyran from Descotes et al.20 Although the diastereomers could 

potentially be separated by chromatography, a separation was not required, because both 

diastereomers are an in situ source of 1,5-pentane-dial that is generated in the initial part of 

the second step of the synthesis. A side product of the reaction was the Diels-Alder reaction 

of methacrolein with itself forming 3,4-dihydro-2H-pyran-2-carbaldehyde, which was 

however reduced by using an excess of the dienophile and was separated by distillation. 

 In the second step the dihydropyran mixture was converted to 3,5-dimethylpyridine 

according to Scheme 4. 15N-labelled 3,5-dimethylpyridine was isolated as an aqueous 
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azeotrope by steam distillation of the basified reaction mixture, after volatile substances were 

initially removed by distillation of the acidic reaction mixture. Methylene chloride was used 

to extract the product from the azeotrope with yields of ~ 55% relative to the amount of the 

15N isotope used. 

 

2.1 NMR characterization of 3,5-dimethylpyridine 

 

The 1H NMR spectrum of 15N-labelled 3,5-dimethylpyridine was identical to the unlabelled 

compound, except that the protons adjacent to the 15N nucleus show a splitting of 10.6 Hz due 

to the 2JHN scalar coupling. The coupling is in agreement with previous reports measured in 

the same solvent.21 The observed 1H and 13C resonances agree with previously reported 

values measured in the same solvent,22 except that we assigned the 13C signal at 137.0 ppm to 

C3/C5 and 132.4 ppm to C4 (swapped in Pazderski et al.). Our 13C assignment agrees also 

with the data measured in DMSO-d6 and D2O despite small deviations due to the different 

solvents.23,24 Although the 13C spectrum of labelled and unlabelled 3,5-dimethylpyridine 

looked virtually identical, a closer interpretation revealed a small splitting of two signals due 

to small nJCN scalar couplings. Interestingly, no splitting was observed for the two carbons 

directly adjacent to the nitrogen nucleus, but the signals of C3, C5 and C4 showed a splitting. 

Values of 3.1 Hz for 2JCN and of 3.5 Hz for 3JCN were observed, which are in a similar range 

as those observed in 15N-labelled pyridine (2JCN = –2.53 Hz and 3JCN = –3.85 Hz 25). 1JCN was 

too small to be detectable in a splitting in agreement with a 1JCN of 0.67 Hz observed for 15N-

labelled pyridine.26 The observed 15N resonance of –69.7 ppm referenced to CH3NO2 agrees 

well with previously reported chemical shifts measured at natural abundance.21,22 A 

comparison with 15N chemical shifts of other methyl-substituted pyridine derivatives is given 

in Supplementary Table 1.  

 In addition to NMR spectroscopy, mass spectrometry confirmed the chemical identity of 

compound 3, whose mass spectrum differed from the unlabelled 3,5-dimethylpyridine,27 only 

for the 15N-containing fragments.  

 

3  CONCLUSION 

 

15N-labelled 3,5-dimethylpyridine could be conveniently synthesized in two steps starting 

from methacrolein, 1-ethoxypropene and 15NH4Cl.  
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4  EXPERIMENTAL  

 

Unlabelled reagents were purchased from Sigma-Aldrich. 15N-labelled NH4Cl was purchased 

from Chemotrade Chemiehandelsgesellschaft (Leipzig, Germany). 

 

4.1  NMR spectroscopy and mass spectrometry 

 

Unless stated otherwise, NMR spectra were recorded either on a Bruker AMX 500 or a 

Bruker AMSY 270 with CDCl3 as solvent at 298K.  1H and 13C chemical shifts were 

referenced to TMS. The solvent signals of signals were set for DMSO-d6 to 2.49 ppm (1H) 

and 39.51 ppm (13C) and for CDCl3 to 7.24 ppm (1H) and 77.2 ppm (13C).  15N resonances 

were indirectly referenced to CH3NO2, using a saturated solution of 15NH4Cl in H2O (~5.64 

M) with a chemical shift of –352.89 ppm.28 Mass spectra were recorded on a Varian MAT 

711. 

 

4.2 Synthesis of 2-ethoxy-3,4-dihydro-3,5-dimethyl-2H-pyran 13 

14 g (0.2 mol) of methacrolein 11, 26 g (0.3 mol) 1-ethoxypropene 12 and 0.1 g 

hydroquinone (0.25% of mixture) were heated in a 200 ml autoclave (high pressure 

laboratory autoclave model II from Carl Roth, Germany) at 190 ºC for 16 h. During that time 

the pressure first rose to 15 bar and then fell to 8 bar. After cooling, the reaction mixture was 

distilled under reduced pressure of 48 mbar, yielding at 97ºC 18.8 g of a fruity smelling 

colourless oil. The product 13 was further purified by column chromatography (Al2O3, 

hexane/ethyl acetate 10:1, column dimensions 40  6 cm). Yield: 11.7 g (74.8 mmol; 37%). 

nD
20 = 1.4420. TLC (Al2O3 hexane/ethyl acetate 10:1): Rf = 0.727.  1H-NMR (DMSO-d6): 

6.02 (s, 0.59H, H6trans), 5.99 (s, 0.41H, H6cis), 4.73 (d, 0.41H, H2cis, J=2.3 Hz), 4.52 (d, 

0.59H, H2trans, J=4.6 Hz), 3.5-3.7 (m, 2H, CH2CH3), 1.5-2.6 (m, 3H, H3/H4), 1.5 (s, 3H, 5-

CH3), 1.12 (q, 3H, CH2CH3), 0.91 (2d, 3H, 3-CH3). 
13C-NMR (DMSO-d6): 134.1 (C6), 

108.1 (C5cis), 107.0 (C5trans), 100.0 (C2trans), 97.9 (C2cis), 62.9 (CH2CH3), 29.4-30.4 (C3 

and C4), 17.9 (5-CH3), 16.2 (3-CH3 trans), 15.7 (3-CH3 cis), 15.0 CH2CH3). MS (EI): 156 

(18, M+), 111 (19), 86 (100, retro-Diels-Alder), 58 (90).  
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4.3  Synthesis of 3,5-dimethylpyridine 3 

 

In a three-necked flask equipped with a reflux condenser, addition funnel and magnetic stirrer 

150 ml deionized water were poured, followed by 4.4 ml concentrated H2SO4, 15 g (39.7 

mmol) methylene blue and 2 g (36.7 mmol) 15NH4Cl. The solution was brought to reflux and 

a solution of 5.78 g (37 mmol) 2-ethoxy-dihydro-3,5-dimethyl-2H-pyran 13 in 5 ml ethanol 

was added dropwise over a period of 1 h and refluxed for 17 h. After cooling, 150 ml 

deionized water were added and the mixture was distilled until the odour of glutaraldehyde 

disappeared in the distillate (ca. 200 ml). After cooling of the remaining reaction mixture, 

250 ml of 1.3 M NaOH were added gradually and distilled until ~200 ml of distillate were 

collected. 0.1 g Na2CO3 was added and CH2Cl2 was used to extract the organic base. The 

combined organic layers were dried with Na2SO4 and the solvent was removed with a rotary 

evaporator. Yield: 2.18 g (20.2 mmol; 55%). 1H-NMR (CDCl3): 8.21 (d, 2H, H2/H6, 2JNH= 

10.6 Hz), 7.26 (s, 1H, H4), 2.25 (s, 6H, CH3), 
13C-NMR (CDCl3): 147.3 (C2/C6), 137.0 (d, 

3JNC=3.5 Hz, C4), 132.4 (d, 2JNC=3.1 Hz, C3/C5), 18.1 (CH3). 
15N-NMR (CDCl3): –69.7 ppm 

referenced to CH3NO2.  MS (EI): 108 (100, C7H9
15N+), 93 (21), 79 (35), 77 (11).  
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Table 1: Chemical shifts of the mixture of 2-ethoxy-3,4-dihydro-3,5-dimethyl-2H-pyran 

diastereomers and comparison with values of cis and trans 2-benzoyloxy-3,4-dihydro-3,5-

dimethyl-2H-pyran from Yamamoto et al. 19 and 2-methoxy-3,4-dihydro-3,5-dimethyl-2H-

pyran from Descotes et al.  20. 

Atom observed 

(DMSO-d6) 

trans 

observed 

(DMSO-d6) 

cis 

Yamamoto 

(CDCl3) 

trans 

Yamamoto 

(CDCl3) 

cis 

Descotes 

(CCl4) 

trans 

Descotes 

(CDCl4) 

cis 

H2 4.52, d, 
J=4.6 Hz 

4.73, d,  
J=2.3 Hz 

4.60, d,  
J=4.0 Hz 

4.79, d,  
J=2.1 Hz 

4.35, d,  
J=3.4 Hz 

4.52, d, 
 J=1.7 Hz 

H3 1.5-2.2 ov a 1.5-2.2 ov a 1.98 dddt 1.90 m   

H41 1.5-2.2 ov a 1.5-2.2 ov a 2.24 dd 1.76 m   

H42 1.5-2.2 ov a 1.5-2.2 ov a 1.53 dd 0.96 m   

H6 6.02, d,  

J=1.4 Hz 

5.99, d, 

J=1.4 Hz 

6.03, d, 

J=1.2 Hz 

6.02, d, 

J=1.2 Hz 

5.91 5.91 

H7 0.90, d, 

J=6.9 Hz 

0.92, d, 

J=6.5 Hz 

0.96, d, 

J=7.0 Hz 

1.00, d, 

J=6.4 Hz 

0.91-1.51 0.96-1.52 

H8 1.50 ov 1.50 ov 1.54, d, 

J=1.2 Hz 

1.55, d, 

J=1.2 Hz 

0.91-1.51 0.96-1.52 

H1’/H1” 3.50-3.70 ov 3.50-3.70 ov 4.82 d, 4.57 d 4.78 d, 4.55 d 3.32 3.33 

H2’ 1.13 ov 1.13 ov - -   

C2 100.1 97.9 99.8 97.8   

C3 29.9 b 30.5 30.3 31.0   

C4 29.8 b 29.4 30.2 29.7   

C5 107.0 108.1 108.2 109.7   

C6 134.1 134.0 134.0 133.8   

C7 16.2 15.8 16.5 16.2   

C8 18.0 17.9 18.4 18.3   

C1’ 62.9 62.9 69.4 69.1   

C2’ 15.0 14.9     

 
a individual assignment could not be achieved due to overlapping signals (ov: overlap) 
b assignment might be swapped 

 

  



 

 

This article is protected by copyright. All rights reserved. 

 
 

FIGURE 1. 1H NMR spectrum of 2-ethoxy-3,4-dihydro-3,5-dimethyl-2H-pyran 13 

consisting of a 2:3 cis/trans mixture measured in DMSO-d6. For clarity, only one enantiomer 

is shown for each diastereomer (2R,3R for trans and 2S,3R for cis). The dominating trans 

form shows a larger 3JH2H3 scalar coupling. Signals between 1.5 and 2.2 ppm were only 

tentatively assigned. 
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Scheme 1: Synthetic routes to 15N-labelled pyridine derivatives. 
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Scheme 2. Overview of so far reported 15N-labelled pyridine derivatives obtained either by 

Route II (a), Route I (b) or Route III (c). 
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Scheme 3: Synthetic route to 15N-labelled lutidine used in this work. 
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Scheme 4. Proposed mechanism of the formation of 3,5-dimethylpyridine in analogy to 

Whaley and Ott 1974.13 
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