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A step-economical one-pot nucleophilic catalysis/thermal Claisen-rearrangement protocol for the direct
synthesis of a-formyl-a-allylacetates from allylic alcohols and activated alkynes has been developed. The
product a-formyl-a-allylacetates were further reacted in situ to give either protected enol ethers or b-
hydroxy-4-pentenoates.
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Scheme 1. Proposed one-pot synthesis of a-formyl-a-allylacetates.
a-Formyl-a-allylacetates are found in a number of biologically
active natural products1 and are important intermediates in the syn-
thesis of peptide inhibitors,2 as well as biologically active uracils3

and pyrimidines.4 These compounds are challenging substrates to
synthesize via conventional enolate chemistry due to their propen-
sity to undergo dimerization reactions and multiple allylations.5,6

The most common method for a-formyl-a-allylacetate formation
is via formylation of a c,d-unsaturated ester,2 which itself must be
synthesized. Thus, a more step-economical method to these impor-
tant compounds from commercial starting materials would be
highly beneficial. A one-pot synthesis would be an ideal approach
as it minimizes the transfer of material and avoids the purification
steps.7,8 a-Formyl-a-allylacetates can be formed in a one-pot nucle-
ophilic addition/Claisen-rearrangement process (Scheme 1).9,10 This
efficient method for the synthesis ofa-formyl-a-allylacetates would
be step-economical and limit the overall production costs in terms of
time, expense and waste. Thus, addition of allyl alcohols 1 to acti-
vated ynones 2, promoted by a nucleophilic catalyst (DABCO), would
result in the formation of allyl vinyl ethers 3. Subsequent thermal
Claisen rearrangement of dienes 3 would give a-formyl-a-allylace-
tates 4. Herein, we report a novel one-pot procedure based on this
approach for the synthesis of a-formyl-a-allylacetates as well as
their subsequent in situ derivatization to either protected enol
ethers or b-hydroxy-4-pentenoates.

The formation of allyl vinyl ethers11,12 from the addition of allyl
alcohols to activated alkynes was initially investigated. Impor-
tantly, the conditions need to be viable under the subsequent ther-
mal rearrangement conditions (vide infra). Building on the initial
ll rights reserved.

. Camp).
work of Inanaga et al.,13 a number of researchers have employed
a nucleophilic catalysis approach, notably the use of trialkyl phos-
phines,14 DMAP,15 and N-methylmorpholine,16 for the formation of
allyl vinyl ethers from allylic alcohols and activated alkynes. In our
previous work on the one-pot nucleophilic catalysis / thermal rear-
rangement approach towards the synthesis of highly substituted
pyrroles from oximes and activated alkynes, it was found that
DABCO17 was the best catalyst for processes that required heat-
ing.18 Thus, the reaction of both primary and secondary allyl alco-
hols 1 with ethyl propiolate (2a) in CH2Cl2 at rt in the presence of
10 mol % DABCO gave the desired allyl vinyl ethers 3 in moderate
to good yields (Scheme 2).19 The only exception was triene 3g,
which was produced in a yield that was too low to be synthetically
useful in a one-pot process. All of the vinyl ethers 3 were isolated
as the E-isomer as determined by their 3JHH coupling constants.

The second phase of this work was directed towards the thermal
rearrangement of allyl vinyl ethers 3 to a-formyl-a-allylacetates 4.
The temperature at which the thermal Claisen rearrangement of
allyl vinyl ethers will proceed is highly dependent on the nature of
the substituent on the alkene moiety.10 Substrates that contained
electron-withdrawing groups required higher temperatures.20,21
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Scheme 4. Synthesis of enol ethers 5 and 6.
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Scheme 2. Synthesis of allyl vinyl ethers 3 via nucleophilic catalysis.
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Therefore, we wanted to establish the minimum temperature for the
rearrangement of allyl vinyl ethers 3 to aldehydes 4. Thus, heating a
solution of allyl vinyl ether 3c to 150 �C in either an oil bath or in a
microwave oven led to quantitative and 39% conversion to a-for-
myl-a-allylacetate 4c, respectively (Scheme 3). While the thermal
rearrangement was clean by 1H NMR analysis, attempts to purify
the microwave derived material by column chromatography (1:9
EtOAc/petrol with 1% Et3N) resulted in complete degradation. In
solution, a-formyl-a-allylacetates 4c existed as a 1:1 mixture of
keto-enol tautomers.

Having demonstrated the feasibility of both of the proposed
steps independently, a one-pot synthesis of a-formyl-a-allylace-
tates from allyl alcohols and ethyl propiolate was investigated.
As the purification of a-formyl-a-allylacetates 4 proved to be prob-
lematic (vide supra), the product aldehydes were converted into
enol ethers. Thus, the reaction of allyl alcohols 1 with ethyl propi-
olate (2a) gave a-formyl-a-allylacetates 4 (Scheme 4). Addition of
TBS-Cl22 or Boc2O23 to the reaction mixture resulted in the forma-
tion of enol ethers 5 or 6, respectively. Several features of the one-
pot method are noteworthy. It was found that a 0.5 h mixing of the
reagents at room temperature prior to increasing the temperature
to 150 �C was necessary in order to form the a-formyl-a-allylace-
tate. This method proved to be very expedient for both primary
and secondary alcohols. Additionally, slightly better yields were
obtained using the TBS-protocol. For example, subjection of 1e
and 2a to the optimized conditions gave either enol ether 5e or
6e depending on the trapping agent that was employed. All of
the enol ethers 5 and 6 were isolated as a single geometric isomer,
though the configuration of the isomer was not determined.
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Scheme 3. Thermal vs. microwave rearrangement of allyl vinyl ether 3c.
Having demonstrated the feasibility of the one-pot synthesis of
protected a-formyl-a-allylacetates, the synthesis of a series of
reduced b-hydroxy-4-pentenoate derivatives 7 was also investi-
gated.24 This one-pot process involved an initial 1,4-addition fol-
lowed by a thermal Claisen rearrangement and in situ reduction of
the a-formyl-a-allylacetate. Thus, subjection of allyl alcohols 1
and ethyl propiolate (2a) to the standard conditions followed by sol-
vent exchange and reduction with NaBH4 gave b-hydroxy-4-pente-
noates 7 in moderate to good yields (Scheme 5).25 The products of
both primary 7a,c,f,h,i and secondary alcohols 7e,j were amenable
to this process. Cyclic alcohols 1i,j were also subjected to the
three-step process to give alcohols 7i,j in moderate yields. b-Hydro-
xy-4-pentenoates 7c,f,i,j were formed as inseparable mixtures of
diastereomers due to facile epimerization prior to reduction.
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Scheme 5. One-pot synthesis of b-hydroxy-4-pentenoates 7. aRatio of two insep-
arable diastereoisomers.
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Additionally, this method was extended to the synthesis of di-
methyl 2-(but-3-en-2-yl)-3-oxosuccinate (8) via the reaction of
(E)-2-buten-1-ol (1c) with dimethyl acetylenedicarboxylate (2b)
using the standard protocol. Diester 8 was isolated in moderate
yield as a 5:4 mixture of diastereomers (Scheme 6).26

In conclusion, we have developed a simple one-pot approach to
the synthesis of a-formyl-a-allylacetates as well as their protected
enol ether or b-hydroxy-4-pentenoate derivatives based on a novel
nucleophilic catalysis/thermal rearrangement protocol.
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