THE STEROIDAL GLYCOSIDES OF THE FLOWERS OF YUCCA GLORIOSA*

KIMIKO NAKANO, EMI MATSUDA, KAORI TSURUMI, TOKUSHI YAMASAKI, KOTARO MURAKAMI, YOSHIHISA TAKAISHI and TOSHIAKI TOMIMATSU

Faculty of Pharmaceutical Sciences, Tokushima University, Shomachi 1-78, Tokushima 770, Japan

(Received in revised form 8 February 1988)

Key Word Index-Yucca gloriosa; Liliaceae; tigogenin glycoside; gitogenin glycosides; furostanol glycoside.

Abstract—Four steroidal compounds were isolated from the fresh flowers of *Yucca gloriosa* and their structures were elucidated as tigogenin $3-O-\beta$ -D-xylopyranosyl- β -lycotetraoside, gitogenin $3-O-\beta$ -D-xylopyranosyl- β -lycotetraoside, gitogenin $3-O-\beta$ -D-xylopyranosyl- β -lycotetraoside and proto-type of gitogenin $3-O-\beta$ -D-xylopyranosyl- β -lycotetraoside, on the basis of physical and chemical investigations.

INTRODUCTION

Considerable phytochemical work on the plants of the *Yucca* genus has been done and the isolation of several steroidal sapogenins [1-4] and saponins [5-9] has been reported. However, no detailed chemical investigation appears to have been performed on *Yucca gloriosa* growing in Japan. The present communication reports the isolation and characterization of four new steroidal glycosides.

RESULTS AND DISCUSSION

The methanolic extract of the fresh flowers of Y. gloriosa L., on repeated chromatographic purification, gave four new steroidal glycosides, tentatively designated as YG-1 (1), YG-2 (2), YG-3 (3) and YG-4 (4).

YG-1 (1), colourless needles, mp 273-274° (decomp.) $[\alpha]_{\rm D}$ -28.0° (Py), showed a strong absorption band of hydroxy groups and characteristic absorption bands of a (25R)-spiroketal moiety in the IR spectrum [10]. On hydrolysis with 1M sulphuric acid -50% ethanol, 1 gave glucose, galactose, xylose and tigogenin. The FABMS spectrum of 1 showed $[M + Na]^+$ at m/z 1189. Accordingly, compound 1 was considered to be a pentaglycoside of tigogenin. The permethylate (1a) of 1 prepared by Hakomori's method [11], showed terminal permethylated pentosyl and pentosyl-hexosyl cations at m/z 175 and 379, respectively, in the mass spectrum. In the ¹HNMR spectrum of 1a, five doublet signals with J = 7-8 Hz at δ 4.30, 4.69, 4.72, 4.88 and 5.01 ascribable to the anomeric protons were detected, indicating that all glycosidic linkages are β . Compound **1a** was methanolized to afford 2,3,4-tri-O-methyl-D-xylopyranoside, methyl methyl 2,4,6-tri-O-methyl-D-glucopyranoside, methyl 2,3,6-tri-O-methyl-D-galactopyranoside and methyl 4,6-di-O-methyl-D-glucopyranoside. On partial hydrolysis with 0.1 M hydrochloric acid methanol 1 gave two prosapogenins, P-1 and P-2. The FABMS spectra of P-1 and P-2 showed

 $[M + Na]^+$ at m/z 1057 and 925, respectively. On hydrolvsis P-1 gave galactose, glucose and xylose, P-2 gave galactose and glucose. Based on the analysis of the ¹³C NMR spectra, the structures of P-1 and P-2 were determined to be tigogenin 3-O- β -D-xylopyranosyl-(1 \rightarrow 3)- $\lceil\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)$]- β -D-glucopyranosyl- $(1 \rightarrow 4)$ - β -D-galactopyranoside (tigogenin 3-O- β -lycotetraoside) tigogenin 3-O- β -D-glucopyranosyl- $(1 \rightarrow 2)$ - β -Dand glucopyranosyl- $(1 \rightarrow 4)$ - β -D-galactopyranoside, respectively. P-1 was suggested to be desgalactotigonin and this was confirmed by direct comparisons with an authentic sample SN-1 obtained from Solanum nigrum L. [12]. From the above evidence, 1 could be represented as 3-*O*- β -D-xylopyranosyl-(1 \rightarrow 3)-[β -D-xylopytigogenin ranosyl- $(1 \rightarrow 3)$ - β -D-glucopyranosyl- $(1 \rightarrow 2)$]- β -D-glucopyranosyl- $(1 \rightarrow 4)$ - β -D-galactopyranoside.

YG-2 (2), colourless needles, mp 224–227°, $[\alpha]_{\rm p}$ –43.0° (Py), showed hydroxy absorption bands and characteristic absorption bands (25R)-spiroketal side chain in the IR spectrum. On acid hydrolysis, 2 liberated glucose, galactose, xylose and an aglycone (5), which showed the M^+ at m/z 432 in the mass spectrum. Acetylation of 5 with Ac₂O and pyridine gave a diacetate 5a, which showed a signal of two acetoxyl groups ($\delta 2.00, s, 6H$) and signals due to the proton adjacent to the acetoxyl functions (δ 4.80 and 5.05, one proton each). Based on the chemical and physical properties described in the experimental section, 5 was inferred to be gitogenin [(25R)-5 α spirostan- 2α , 3β -diol] and this was confirmed by direct comparisons with an authentic sample obtained from Solanum biflorum Lour. [13]. The FABMS spectrum of 2 showed $[M + K]^+$ peak at m/z 1221 indicating that 2 is a gitogenin pentaglycoside constituted from 3 mol of hexose and 2 mol of xylose. Partial hydrolysis of 2 gave prosapogenins, Ps-1, Ps-2, Ps-3 and Ps-4, whose FAB-MS spectra showed $[M + K]^+$ at m/z 1089, 957, 795 and 633, respectively. On hydrolysis, Ps-4 gave galactose, Ps-3 and Ps-2 gave galactose and glucose whereas Ps-1 gave galactose, glucose and xylose. The ¹³C NMR spectra of Ps-1 and Ps-2 were compared with those of P-1 and P-2. The signals due to the sugar moieties were coincident with those of prosapogenins, and the signals of the

^{*}Part 1 in the series 'The constituents of Yucca gloriosa'.

aglycone were superimpossible on those of gitogenin except for those of C-2, C-3 and C-4, which were somewhat different due to glycosylation shifts [14-18] caused by sugar bonding to the C-3 hydroxyl of gitogenin. Based on the above result Ps-1 was suggested to be F-gitonin [19] and this was confirmed by direct comparisons with an authentic sample. The permethylate (2a) of 2 prepared by Hakomori's method showed terminal permethylated pentosyl and pentosyl-hexosyl cations at m/z 175 and 379, respectively, in its mass spectrum and five doublet signals (all J = 7-8 Hz) at $\delta 4.35$, 4.73 (2H), 4.87 and 5.05 ascribable to the anomeric protons in the ¹H NMR spectrum, suggesting all sugar moieties to be β -linked. Methanolysis of 2a afforded an aglycone derivative (5b) and a mixture of methylated sugars identical to those given by 1c. Acetylation of **5b** with Ac_2O and pyridine gave the methylated gitogenin acetate (5c).

Consequently, the structure of YG-2 (2) was assigned as $3-O-\beta$ -D-xylopyranosyl- $(1 \rightarrow 3)-[\beta$ -D-xylopyranosyl- $(1 \rightarrow 3)-\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)]-\beta$ -D-glucopyranosyl- $(1 \rightarrow 4)-\beta$ -D-galactopyranosyl gitogenin.

YG-3 (3), colourless needles, mp 242–248°, $[\alpha]_D - 54.3°$ (CHCl₃–MeOH 1:1), showed hydroxy absorptions and characteristic absorptions (25*R*)-spiroketal side chain in the IR spectrum. Acid hydrolysis of 3 gave glucose, galactose, xylose, rhamnose and gitogenin. The FABMS spectrum of 3 showed a peak due to $[M + K]^+$ at m/z1235 indicating that 3 is a gitogenin pentaglycoside constituted from three mol of hexose and one mol each of rhamnose and xylose. The permethylate (3a) of 3 prepared by Hakomori's method, showed terminal permethylated methylpentosyl and hexosyl cations at m/z 189 and 219, respectively, in its mass spectrum. The ¹H NMR spectrum of 3a exhibited signals ascribable to five anomeric protons at $\delta 4.36$ (1H, d, J = 8 Hz), 4.75 (1H, d, J =7 Hz), 4.88 (1H br s), 4.90 (1H, d, J = 8 Hz) and 5.05 (1H,

d, J = 8 Hz), which indicated the presence of four β linkages and one α -linkage. On methanolysis, 3a yielded methyl 2,3,4-tri-O-methyl-L-rhamnopyranoside, methyl 2,3,4,6-tetra-O-methyl-D-glucopyranoside, methyl 2,3,6tri-O-methyl-D-galactopyranoside, methyl 2,3-di-Omethyl-D-xylopyranoside and methyl 4,6-di-O-methyl-Dglucopyranoside. On enzymic hydrolysis with crude hesperidinase, 3 liberated a glycoside and rhamnose. The former was identical with Ps-1 (F-gitonin) in terms with physical data and ¹³CNMR spectrum. Moreover, the ¹³C NMR spectrum of **3** showed the significant glycosylation shift at the xylopyranosyl C-4. Therefore, YG-3 (3) was deduced to be gitogenin 3-O-x-L-rhamnopyranosyl- $(1 \rightarrow 4)$ - β -D-xylopyranosyl- $(1 \rightarrow 3)$ - $\lceil \beta$ -D-glucopyranosyl- $(1 \rightarrow 2)$]- β -D-glucopyranosyl- $(1 \rightarrow 4)$ - β -D-galactopyranoside.

YG-4 (4), amorphous powder, $[\alpha]_D + 21.0^\circ$ (Py), showed absorptions due to hydroxyls, but no spiroketal side chain absorptions in the IR spectrum, and was positive to the Ehrlich reagent [20] suggesting that it is a furostanol glycoside. The FABMS spectrum of 4 showed a peak due to $[M + K]^+$ at m/z 1401. On enzymic hydrolysis with β -glucosidase, 4 gave D-glucose and a glycoside, which was identical with YG-2 (2) in terms with physical data and ¹³C NMR spectrum. Therefore, YG-4 (4) was deduced to be furostanol glycoside corresponding to YG-2, $3-O-\beta$ -D-xylopyranosyl- $(1 \rightarrow 3)$ - β -D-glucopyranosyl- $(1 \rightarrow 2)$ - $[\beta$ -D-glucopyranosyl- $(1 \rightarrow 3)$ - β -D-glucopyranosyl- $(1 \rightarrow 4)$ - β -D-glactopyranosyl (22ξ , 25R)-furost-5x-spirostan-2x, 3β , 22,26-tetraol 26-O- β -D-glucopyranoside.

EXPERIMENTAL

Mps: uncorr. Chemical shifts are given on a δ (ppm) scale with TMS as an internal standard. CC was carried out with Sephadex

С	YG-1(1)	YG-2(2)	С	YG-1(1)	YG-2(2)	YG-3(3)	PS-1
1	37.2	45.5	gal — 1'	102.4	103.2	103.2	102.9
2	29.8	70.7	-2'	73.0	72.4	73.8	72.5
3	77.5	84.2	- 3'	74.9	75.0	75.1	75.5
4	34.8	33.9	-4 ′	79.5	79.1	79.2	79.3
5	44.7	44.6	- 5'	75.4	75.6	75.6	75.9
6	28.9	28.1	-6'	60.6	60.5	60.5	60.6
7	32.4	32.1	glc - 1''	103.8	103.7	103.2	104.5
8	35.2	34.6	-2"	80.6	80.5	81.1	81.1
9	54.4	54.4	-3"	86.7ª	87.0	86.8	87.1
10	35.8	36.8		70.3	70.4	70.4	70.3
11	21.3	21.4	- 5"	78.2 ^b	78.3ª	78.3ª	78.1ª
12	40.1	40.2	-6"	62.1	62.8	62.6	62.4
13	40.8	40.8	glc -1'''	104.7	104.3	104.6	104.6
14	56.4	56.4	-2'''	74.9	74.9	75.4	75.0
15	32.1	32.4	- 3'''	86.8ª	87.0	78.0ª	78.3ª
16	81.1	81.1	-4‴	70.6	70.6	71.3	71.3
17	63.0	63.0	-5‴	77.4 ^b	77.7ª	77.3ª	78.6ª
18	16.6	16.6	- 6'''	62.9	62.8	62.8	62.6
19	12.3	13.4	xyl −1‴″	104.7	104.7	104.6	104.9
20	42.0	42.0	-2''''	75.2	75.3	75.1	75.7
21	15.0	15.0	-3""	77.5°	77.7ª	75.9	77.5ª
22	109.1	109.2	-4""	70.6	70.7	76.0	70.7
23	31.8	31.8	-5''''	67.0	66.8	64.0	67.2
24	29.2	29.3	xyl - 1'''''	105.9	105.9	99.7	
25	30.6	30.5	(rha) - 2'''''	75.2	75.1	72.3	
26	66.8	66.8	-3"""	77.4 ^b	77.5ª	72.4	
27	17.3	17.3	-4"""	69.1	69.3	74.7	
			- 5'''''	67.1	67.1	69.8	
			(-6"")			18.5	

Table 1. ¹³C NMR spectral data of YG-1, YG-2, YG-3 and PS-1 (C₅D₅N)

^{a, b} Signals may be interchanged in each vertical column.

LH-20 (Pharmacia), silica gel (Merck) and MCI-gel CHP 20P (Mitsubishi). TLC was performed on precoated Kieselgel 60 F_{254} plates (Merck) and detection was achieved by spraying 10% H_2SO_4 followed by heating. GLC was performed on a column of 1.5% neopenthylglycol succinate with N_2 gas carrier-gas (17 ml/min) initial 130° programme at 4°/min to final 190°.

Extraction and isolation of saponins. The fresh flowers (3.85 kg) of Yucca gloriosa L., collected at the campus of this Faculty in December, were extracted with hot MeOH (10 1 × 3). The methanolic extract was evapd to give residue (588 g), which was partitioned between *n*-BuOH and H₂O (11 of each). The BuOH soluble fraction was concd *in vacuo* to afford a residue (90 g), which was subjected to CC over silica gel (solv. CHCl₃-MeOH-H₂O 90:10:1 \rightarrow 14:6:1) to afford Fr. 1-Fr. 10. Frs. 4 and 6 were rechromatographed over Sephadex LH-20 (MeOH and 80% MeOH) and silca gel to afford YG-1 (1) (1.23 g), YG-2 (2) (1.54 g) and YG-3 (3) (352 mg). Chromatography of Fr. 8 on MCI-gel CHP 20P (10 \rightarrow 90% MeOH) gave YG-4 (4) (76 mg).

Properties of YG-1, 2, 3 and 4. YG-1 (1). Colourless needles from dil. MeOH, mp 273–274° (dec.), $[\alpha]_D^{21} - 28.0°$ (pyridine; c 1.0), IR v_{max}^{KBr} cm⁻¹: 3400 (OH), 980, 920, 900, 860 [intensity 900>920, (25*R*)-spiroketal]. FAB-MS (*m/z*): 1189 [M + Na]⁺. YG-2 (2), colourless needles from dil. MeOH, mp 224–227°, $[\alpha]_D^{27} - 43.0°$ (pyridine; c 1.0), IR v_{max}^{KBr} cm⁻¹: 3400 (OH), 980, 920, 900, 860 (900>920, 25*R*-spiroketal), FABMS (*m/z*): 1221 [M +K]⁺. YG-3 (3), colourless needles from dil. MeOH, mp 242–248° (dec.), $[\alpha]_D^{20} - 54.3°$ (CHCl₃–MeOH 1:1; c 1.1), IR v_{max}^{KBr} cm⁻¹: 3400 (OH), 980, 920, 900, 860 (900>920, 25*R*- spiroketal), FABMS (*m/z*): 1235 $[M + K]^+$. YG-4 (4), amorphous powder, $[\alpha]_{b}^{1.9} + 21.0^{\circ}$ (pyridine; *c* 1.0), IR ν_{max}^{KBr} cm⁻¹: 3400 (OH), FABMS (*m/z*): 1401 $[M + k]^+$. Ehrlich reagt: positive.

Acid hydrolysis of 1-3. A soln of 1 (22 mg) in 1 M H₂SO₄-50% EtOH was refluxed for 2 hr and the reaction mixture was diluted with H₂O. The ppt. was collected by filtration and purified by recrystallization from MeOH to afford colourless needles (10 mg), mp 198–200°, $[\alpha]_{D}^{19} - 48.0^{\circ}$ (CHCl₃; c 0.5), IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400 (OH), 980, 920, 900, 860 (900 > 920). This was identified as tigogenin by direct comparisons with an authentic sample. The aq. hydrolysate was neutralized and concd in vacuo. The residue was examined by TLC, D-xylose, Dgalactose and D-glucose were detected (soly. CHCl₃-MeOH-Me₂CO-H₂O = 3:3:3:1, R_f 0.47, 0.30 and 0.32, respectively). 2 (100 mg) and 3 (10 mg) were hydrolysed with 1 M $H_2SO_4-50\%$ EtOH as described above, to afford an aglycone (5) (25 mg), colourless needles, mp 268–270° (dec.), $[\alpha]_{D}^{22} - 59.5^{\circ}$ (CHCl₃; c 0.4), EIMS (m/z): 432 (M⁺, C₂₇H₄₄O₄⁺), 417, 318, 289, 139 (C₉H₁₅O⁺), IR ν_{max}^{KBr} cm⁻¹: 990, 960, 930, 905, 870 [intensity 905>930, (25R)-spiroketal]. ¹H NMR (CDCl₃): 0.76 (3H, s, 18-Me), 0.77 (3H, d, J = 6 Hz, 27-Me), 0.86 (3H, s, 19-Me), 0.96 (3H, d, J = 6.6 Hz, 21-Me), 3.30-3.64 (4H, m), 4.38 (1H, m, 16-H). Compound 5 was acetylated in the usual manner to afford the diacetate (5a), colourless needles, mp 238–240°, $[\alpha]_{D}^{21} = -91.9^{\circ}$ (CHCl₃; c 0.56). ¹H NMR (CDCl₃): 0.76 (3H, s), 0.78 (3H, d, J = 6.3 Hz), 0.92 (3H, s), 0.96 (3H, d, J = 6.8 Hz), 2.00 (6H, s, OAc × 2), 3.30-3.45 (2H, m, 26-H₂), 4.38 (1H, m, 16-H), 4.86 (1H, ddd, J = 6, 10, 10, Hz, 3-H), 5.04 (H, ddd, J = 5, 10, 10 Hz, 2-H). This compound was identified as gitogenin by direct comparison with an authentic sample. The hydrolysate from 2 provided the same sugar components as in 1, while the hydrolysate from 3 revealed rhamnose (R_1 0.52) in addition.

Partial hydrolysis of 1 and 2. Compound 1 (250 mg) was heated at 80° with 0.1 M HCl-MeOH (10 ml) for 1 hr. The reaction mixture was neutralized with 3% KOH-MeOH and evapd to dryness in vacuo. The residue was chromatographed on silica gel (solv. CHCl₃-MeOH-H₂O, 40:10:1) to afford two prosapogenins P-1 (70 mg) and P-2 (35 mg). P-1, colourless needles, mp 230-233', $[\alpha]_D^{19} = 18.1$ (pyridine; c 0.5), FABMS m/z: 1057 [M $+ Na^{+}_{+}$, ¹³C NMR (C₅D₅N): sugar moiety: 102.4, 73.1, 75.0^{a*}, 79.8, 75.5, 60.6 (galactosyl C-1'-C-6'), 104.7, 81.3, 86.9, 70.4, 78.0^b, 62.5 (glucosyl C-1"-C-6"), 104.9, 75.2ª, 77.8b, 70.8, 78.5b, 61.9 (glucosyl C-1"'-C-6"), 105.0, 75.3, 77.5^b, 70.7, 67.3 (xylosyl C-1""-C-5""). This spectrum was superimposable on that of an authentic sample of SN-1 [12]. P-2, colourless needles, mp 214–217[°], $[\alpha]_{D}^{1.9} = 38.5^{\circ}$ (pyridine; c 1.5), FABMS m/z: 925 [M $+ Na]^+$, ${}^{13}CNMR$ (C₅D₅N): sugar moiety: 102.3, 73.1, 75.5, 80.8, 76.6, 60.4 (galactosyl C-1'-C-6'), 105.0, 85.9, 77.4, 70.3, 78.3ª, 61.6 (glucosyl C-1" C-6"), 106.8, 75.0, 78.0ª, 71.7, 78.8ª, 63.1 (glucosyl C-1""-C-C-6""). Partial hydrolysis of 2 (500 mg) as carried out with 0.25 M HCl-MeOH (50 ml) gave a mixture of prosapogenins and gitogenin, which was purified by CC (CHCl₃-MeOH-H₂O, 4:1:0.1) to afford Ps-1 (72 mg), Ps-2 (31 mg), Ps-3 (28 mg) and Ps-4 (15 mg). Ps-1, colourless needles, mp 262–265', $[\alpha]_{\rm P}^{26}$ – 60.0' (CHCl₃–MeOH, 1:1, c 0.6), FABMS m/z: 1089 [M+K]⁺. It was found identical to F-gitonin by co-TLC and superimposable IR spectra. Ps-2, colourless needles, mp 220 -227°, $[\alpha]_{D}^{26}$ + 1.0° (pyridine; c 1.0), FABMS m/z: 957 [M +K]⁺. Ps-3, colourless needles, mp 220–223, $[\alpha]_D^{21}$ - 30.0 (pyridine, c 1.0), FABMS m/z: 795 $[M + K]^+$. Ps-4, colourless needles, mp 220–222^{$^{\circ}$}, FABMS m/z: 633 [M+K]^{$^{\circ}}</sup>$

Permethylation of 1-3. Compound 1 (227 mg), 2 (160 mg) and 3 (100 mg) were separately permethylated by Hakomori's method [11]. The products from 1, 2 and 3 were purified by CC (hexane-Me₂CO 5:1) to yield 1a (150 mg), 2a (132 mg) and 3a (17 mg), respectively. Compound **1a**, white powder, $[\alpha]_{D}^{14}$ --- 40.0 (CHCl₃, c 0.25), ¹H NMR (CDCl₃): 0.76 (3H, s), 0.78 (3H, d, J = 6 Hz), 0.82 (3H, s), 0.96 (3H, d, J = 6.5 Hz), 3.35–3.62 (OMe \times 14), 4.30 (1H, d, J = 7.5 Hz), 4.69 (1H, d, J = 7 Hz), 4.72 (1H, d, J = 7.5 Hz), 4.88 (1H, d, J = 7.3 Hz), 5.01 (1H, d, J = 7.5 Hz). E1-MS m/z: 551, 391, 379 (C₁₇H₃₁O₉), 187, 175 (C₈H₁₅O₄), 143, 111. Compound 2a, white powder, $[\alpha]_{D}^{21} = 50.0^{\circ}$ (CHCl₃, c 1.0), ¹H NMR (CDCl₃): 0.76 (3H, s), 0.78 (3H, d, J = 7 Hz), 0.85 (3H, s), 0.98 (3H, d, J = 6.8 Hz), 3.3-3.65 (OMe \times 15), 4.35 (1H, d, J=7.3 Hz), 4.73 (2H, d, J=7.3 Hz), 4.88 (1H, d, J=7.3 Hz), 5.05 (1H, d, J = 7.8 Hz). EIMS m/z: 743, 551, 487, 429, 379 $(C_{17}H_{31}O_9^+)$, 201, 187, 175 $(C_8H_{15}O_4^+)$, 155, 143, 111, 101, 88. Compound **3a**, syrup, $[\alpha]_{D}^{19} = 55.7^{\circ}$ (CHCl₃, c 1.37), ¹H NMR $(CDCl_3)$: 0.76 (3H, s), 0.78 (3H, d, J = 6 Hz), 0.84 (3H, s), 0.96 (3H, d, J = 7 Hz), 1.27 (3H, d, J = 6 Hz, rha-Me), 3.35–3.65 (OMe × 15), 4.36 (1H, d, J = 8 Hz), 4.75 (1H, d, J = 7 Hz), 4.88 (1H, br s, rha 1-H), 4.90 (1H, d, J = 8 Hz), 5.05 (1H, d, J = 8 Hz. EIMS m/z; 429, 391, 349, 219, $(C_{10}H_{19}O_5^{+})$ 189 $(C_{9}H_{12}O_4^{+})$, 187, 155, 111, 88.

Methanolysis of 1a, 2a and 3a. Compounds 1a (10 mg), 2a (80 mg) and 3a (10 mg) were separately refluxed with 1 M HCl-MeOH. The neutralized and concd methanolysate from 1a was subjected to CC over silica gel (hexane-Me₂CO 10:1) to afford tigogenin and the methylated sugars (a-d). Compounds c and d were identified by TLC and GLC, with the aid of authentic samples, as methyl 2,3,4-tri-O-methyl-D-xylopyranoside and methyl 4,6-di-O-methyl-D-glucopyranoside. Compound b was

*¹³C NMR data: ^{a, b} assignments are interchangeable between carbons marked with similar sign in a compound.

characterized as methyl 2,4,6-tri-O-methyl-x-D-glucopyranoside [acetate of **b**; MS m/z: 247 (C₁₁H₁₉O₆⁺), 187 (C₉H₁₅O₄⁺), 116 (C₅H₈O₃⁺), 101 (C₅H₉O₇⁺), 88, 75, 74, 71. ¹H NMR (CDCl₃): 2.12 (3H, s, OAc), 3.30 (1H, dd, J = 3.4, 9.5 Hz, 2-H), 3.41 (6H, s, OMe \times 2), 3.42, 3.43 (each 3H, s, OMe), 4.88 (1H, d, J = 3.4 Hz, 1-H), 5.36 (1H. t. J = 9.5 Hz, 3-H)]. Compound c was identified as methyl 2,3,6-tri-O-methyl-a-D-galactopyranoside [acetate of c; MS m/z 247, 187, 101, 88, 75, 74. ¹H NMR (CDCl₃): 2.14 (3H, s, OAc), 3.36, 3.41, 3.42, 3.45 (each 3H, s, OMe), 4.93 (1H, d, J = 3.2 Hz, 1-H), 5.49 (1H, dd, J = 1.2, 2.0 Hz, 4-H]. The methanolysate from 2a gave gitogenin monomethylether (5b, 32 mg), colourless needless mp 216–218°, $[\alpha]_{D}^{23}$ – 100.0° (CHCl₃; c 0.2), and the same methylated sugars from 1a. Compound 5b was acetylated with Ac₂O-pyridine (each 1 ml) in the usual manner to give the corresponding monoacetate (5c, 7 mg) colourless needles, mp 201–204°, $[\alpha]_{D}^{23}$ –117.8° (CHCl₃; c 0.9), ¹H NMR $(CDCl_3)$: 0.77 (3H, s), 0.78 (3H, d, J = 6.3 Hz), 0.86 (3H, s), 0.96 (3H, d, J = 6.5 Hz), 2.06 (3H, s, OAc), 3.37 (3H, s, OMe), 3.26-3.51 (3H, m), 4.38 (1H, m, 16-H), 4.68 (1H, ddd, J = 6, 10, 10 Hz, 3-H).

From the methanolysate of **3a**, methyl 2,3,4-tri-*O*-methyl-Lrhamnopyranoside, methyl 2,3,4.6-tetra-*O*-methyl-D-glucopyranoside, methyl 2,3,6-tri-*O*-methyl-D-galactopyranoside and methyl 4,6-di-*O*-methyl-D-glucopyranoside were identified. In addition, methyl 2,3-di-*O*-methyl- α -D-xylopyranoside was characterized [acetate; MS *m/z*: 203 (C₉H₁₅O⁺), 143 (C₉H₁₁O⁺), 101, 71. ¹H NMR (CDCl₃): 2.08 (3H, *s*, OAc), 3.43, 3.53, 3.55 (each 3H, *s*, OMe), 4.83 (1H, *d*, *J* = 3.4 Hz, 1-H), 4.84 (1H, *m*, 4-H)].

Enzymic hydrolysis of **3**. Compound **3** (15 mg) was dissolved in CHCl₃-MeOH (1:1, 1 ml), added AcOH--NaOAc buffer (pH 4.5, 2 ml) and crude hesperidinase (10 mg), and then incubated at 80° for 2 hr. The reaction mixture was evapd to dryness *in vacuo*. The residue was chromatographed over silica gel (solv. CHCl₃-MeOH H₂O, 7:3:0.5) to give a glycoside (8 mg), colourless needles, mp 262-267', $[\alpha]_{D}^{20}$ = 56.0° (CHCl₃-MeOH, 1:1, c 0.4), IR v^{KBr}_{max} m⁻¹: 3400 (OH). 980, 920, 900, 860 (900 > 920). It was found identical to Ps-1 by co-TLC (solv. CHCl₃-MeOH-H₂O 7:3:0.5 and CHCl₃-MeOH-EtOAc-H₂O 3:3:4:0.5), superimposable IR and ⁻¹³C NMR spectra.

Enzymic hydrolysis of 4. A solution of 4 (31 mg) in H₂O was incubated with almond emulsin (20 mg) at 37° overnight. The reaction mixture was extracted with BuOH and the organic layer was coned in vacuo to afford a residue, which was subjected to CC over silica gel (solv. CHCl₃-MeOH-H₂O 14:6:1), yielding a glycoside (20 mg), colourless needles from dil. MeOH, mp 228–230°, $[\alpha]_{b^3}^{23} = -36.0°$ (pyridine; c 1.0), IR ν_{max}^{Bar} cm⁻¹: 3400 (OH), 980, 920, 900, 860 (900 > 920). It was identified with YG-2 (2) by co-TLC, IR and ¹³C NMR spectra.

Acknowledgements — The authors are grateful to Prof. Tetsuya Komori (Kyushu University) for valuable advice and to Prof. Kadzumoto Miyahara (Setsunan University) for supplying an authentic sample (F-gitonin).

REFERENCES

- Marker, R. E., Wagner, R. B., Ulshafer, P. K., Wittbecker, E. L., Goldsmith, D. P. J. and Ruof, C. H. (1947) *J. Am. Chem. Soc.* 69, 2167.
- Marker, R. E. and Lopez, J. (1947) J. Am. Chem. Soc. 69, 2375, 2389.
- Waclaw-Rozkrutova, B. (1969) Dissert. Pharm. Pharmacol. 21, 425.
- Pkheidze, T. A., Benidze, M. M. and Kemertelidze, E. P. (1985) Rastit. Resur. 21, 452.
- Backer, R. C., Bianchi, E. and Cole, J. R. (1972) J. Pharm. Sci. 61, 1665.

- 6. Dragalin, I. P. and Kintya, P. K. (1975) Phytochemistry 14, 1817.
- 7. Dragalin, I. P. and Kunitya, P. K. (1975) *Khim. Prir. Soedin.* 11, 806.
- Limieux, R. U., Ratcliffe, R. M., Arreguin, B., Romo de Vivar, A. and Castillo, M. (1977) Carbohydr. Res. 55, 113.
- 9. Pkheidze, T. A. (1979) Izv. Akad. Nauk. Gruz. SSSR. Ser. Khim. 5, 311.
- Rothman, E. S., Wall, M. E. and Eddy, C. R. (1952) J. Am. Chem. Soc. 74, 4013.
- 11. Hakomori, S. (1964) J. Biochem. 55, 209.
- 12. Saijo, R., Murakami, K., Nohara, T., Tomimatsu, T., Sato, A. and Matsuoka, K. (1982) Yakugaku Zasshi, 102, 300.
- 13. Fuke, T., Murakami, K., Nohara, T. and Tomimatsu, T. (1982) The 29th Annual meeting of Japanese Society of Pharmacognosy, Sapporo.

- Usui, T., Yamaoka, N., Matsuda, K., Tuzimura, K., Sugiyama, H. and Seto, S. (1973) J. Chem. Soc., Perkin Trans. 1, 2425.
- 15. Kasai, R., Suzuo, S., Asakawa, J. and Tanaka, O. (1977) Tetrahedron Letters 175.
- 16. Tori, K., Seo, S., Yoshimura, Y., Arita, A. and Tomita, Y. (1977) Tetrahedron Letters 179.
- 17. Seo, S., Tomita, Y., Tori, K. and Yoshimura, Y. (1978) J. Am. Chem. Soc. 100, 3331.
- Kasai, R., Okihara, M., Asakawa, J., Mizutani, K. and Tanaka, O. (1979) Tetrahedron, 35, 1427.
- Kawasaki, T., Nishioka, I., Komori, T., Yamauchi, T. and Miyahara, K. (1965) *Tetrahedron* 21, 299.
- Kiyosawa, S., Hutoh, M., Komori, T., Nohara, T., Hosokawa, I. and Kawasaki, T. (1968) Chem. Pharm. Bull. 16, 1162.