Received February 7, 1990, accepted April 17, 1990

4-ELUORO-2-BUTYNAL. PREPARATION AND SOME EXAMPLES OF DIENOPHILIC PROPERTIES

A. KHANOUS, A. GORGUES*

Laboratoire de Synthèse Organique et d'Electrochimie, Ensemble Scientifique, Université d'Angers, 2 Boulevard Lavoisier, 49045 Anger Cedex (France)

and J. COUSSEAU*

Laboratoire de Chimie Organique, Ensemble Scientifique, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex (France)

SUMMARY

4-Fluoro-2-butynal FCH₂-C=C-CHO (5) is prepared in good yield by formolysis of the corresponding fluoro-acetal FCH₂-C=C-CH(OEt)₂ (4) The dienophilic properties of (5) are investigated towards 2,3-dimethyl-1,3-butadiene (6), cyclopentadiene (7) and 1,3-cyclohexadiene (8) [possible hazards during the reaction with (6)] The results emphasize the activating effect of the FCH₂ group on the electrophilic character of the -C=C-bond in (5)

INTRODUCTION

Electrophilic alkynes are attractive synthetic intermediates, especially when the -C=C- bond bears an aldehyde group [1-4]. Following our studies in this field, we became interested in 4-fluoro-2-butynal (5) which can be a useful reagent for synthesizing fluoromethyl substituted molecules. In particular, Diels-Alder reactions of (5) seemed to be promising since dienophilic properties of the CHO-activated triple bond might be enhanced by the vicinal position of the highly electronegative fluorine atom [5-7] We report here the preparation and the careful isolation of the rather unstable [8] fluorotetrolic aldehyde (5), and show the latter to be a fairly good dienophile

0022-1139/90/\$3 50

© Elsevier Sequoia/Printed in The Netherlands

RESULTS AND DISCUSSION

The synthetic route we used for obtaining (5) utilizes two key steps substitution of the methanesulfonate group for the fluoro group from 1,1-diethoxy-4-methylsulfonyloxy-2-butyne (3), followed by the formolysis of the obtained fluorinated acetal (4) into the expected (5)

1) F⁻ CH₃SO₃-CH₂-C≡C-CH(OEt)₂ ------> FCH₂-C≡C-CHO (3) 2) HCO₂H (5)

Preparation of CH₃SO₃-CH₂-C=C-CH(OEt)₂ (3)

Previously this compound (3) was obtained by reaction of 1-methylsulfonyloxy-2- propyne and triethyl orthoformate according to the Howk-Sauer's procedure [9] In fact this method did not appear to us to be quite reproducible and safe, an important degradation, generally accompanied with explosion, was observed in the end of the distillation of (3) whose yield did not exceed 20%

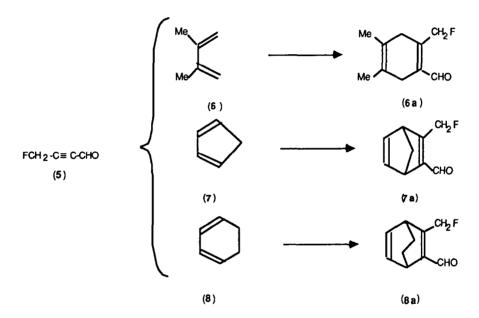
We preferred the following sequence .

OCH-C≡C-CH(OEt) ₂	>	HOCH ₂ -C≡C-CH(OEt) ₂
(1)		(2)

(3)

4,4-Diethoxy-2-butynal (1), readily obtained by formolysis of 1,1,4,4-tetraethoxy-2-butyne [10], is reduced in good yield by NaBH₄ in methanol at 0°C, thus leading to 4,4-diethoxy-2-butyn-1-ol (2) (over 90% as crude product) Then the alcohol (2) is transformed into the corresponding methanesulfonate (3) in 90% yield, according to the Crossland-Servis method [11], the crude product is pure enough for being used in the following step

Preparation of FCH2-C=C-CHO (5)


Using Bu₄NF 3H₂O (TBAF) as fluorinating agent [12] allows us to obtain the fluoro- acetal (4) from the corresponding methanesulfonate CH₃SO₃CH₂-C=C-CH(OEt)₂ (3), the reaction proceeds smoothly in toluene at 95°C, giving rise to the compound (4) with a 70% yield (crude product) in 40 h

4-Fluoro-2-butynal (5) was readily formed by formolysis [2] of (4) (followed by ¹H NMR) in the presence of an excess of dry formic acid The isolation of (5) is somewhat difficult and requires

several steps. Firstly, after dissolving the reaction mixture in cold diethyl ether, the unreacted formic acid is gently neutralized with aq. Na₂CO₃, and the aqueous phase is extracted many times with diethyl ether. Then, after drying and evaporating under normal pressure, the pressure is reduced little by little under nitrogen and the residue is distilled off, affording (5) as a light yellow, very lachrymatory, liquid which rapidly darkens unless stored at -20°C.

Diels-Alder reactions

The dienophilic character of (5) was investigated towards 2,3-dimethyl-1,3-butadiene (DMB) (6), cyclopentadiene (CPD) (7) and 1,3-cyclohexadiene (CHD) (8) These reactions were performed, both from the formic acid medium where (5) is formed after the formolysis of the acetal (4) and/or from isolated pure (5) under neutral conditions; in the latter case, when (6) is the diene, the reaction must be stopped before completion in order to avoid explosive decomposition

The results (Table I) clearly show that (5) is a good dienophile, the expected Diels-Alder cycloadducts (6a), (7a) and (8a) being readily obtained

As expected from the classification of dienes reactivity towards tetracyanoethylene and maleic anhydride as the dienophiles [13], cyclopentadiene (7) is the most reactive diene, while 2,3-dimethyl-1,3-butadiene (6) and 1,3-cyclohexadiene (8) display roughly similar reactivities. Under acidic conditions, compared to neutral ones, the Diels-Alder reaction rates are slightly enhanced by acid catalysis [1,4] but the yields are lowered in the case of acid sensitive dienes and/or cycloadducts (Table I).

TABLE I

	Acidic medium			Neutral medium		
	Temp	Time	Yield	Temp.	Time	Yıeld
	(°C)	(hr)	(%)	(°C)	(hr)	(%)
(6a)	40	1	degrad.	40	48	80
(7a)	r.t.	(°)	40	-25-0	0.2	87
(8a)	40	30	94	40	36	90

Formation of the cycloadducts (6a), (7a) and (8a)

(*) instantaneous.

In an attempted experimental rationalization of comparative dienophilicity of α -acety lenic aldehydes R-C=C-CHO towards (8) (neutral conditions), fluorotetrolic aldehyde (5) (R=CH₂F) appears as an activated alkyne far less reactive than the highly electron deficient alkynals with R = CHO, CO₂Et, CONMe₂, but slightly better than the fairly good dienophile with R= CH(OEt)₂ [2,4] (Table II).

TABLE II

R-C ≡ C-CHO	Тетр. (°С)	Tıme (hr)	Adduct (%)	Ref.
R = CHO	20	1	75	4
= CO ₂ Et	20	2	89	2
= CONMe ₂	46	2	57	2
= CH ₂ F	40	36	90	this work
= CH(OEt)2	80	10	42	2

The IR spectra were run on a Beckman Acculab 2 spectrometer The ¹H NMR (60 MHz) and ¹⁹F NMR (84.7 MHz) were recorded respectively with a Varian EM 360 and a JEOL FX-90 instruments. Chemical shifts are reported in δ units downfield relative to internal Me₄Si for ¹H NMR and external CFCl₃ for ¹⁹F NMR; the coupling constants (J) are expressed in hertz (Hz) High-resolution mass spectra (HRMS) were obtained on a Varian MAT 311 mass spectrometer at an ionization potential of 70 eV. Elemental analyses were carried out by The Service Central d'Analyse (CNRS)

Formic acid used in the formolysis reactions was previously dried over anhydrous CuSO₄.

4.4 -Diethoxy-2-butyn-1-ol (2)

To a solution of 4,4-diethoxy-2-butynal (1) [10] (1 44 g, 10 mmol) in methanol (10 mL), cooled to 0°C, is added under stirring sodium borohydride (0.19 g, 5 mmol) by portions in 15 min , and stirring is kept for a further 30 min period. Then the reaction mixture is poured into dichloromethane (40 mL) and washed with water (3 x 20 mL), the aqueous phase is extracted with dichloromethane, and the combined organic extracts are dried (anhydrous Na₂SO₄), giving 1.43 g (90 5%) crude 4,4-diethoxy-2-butyn-1-ol (2); vacuum distillation provides pure (2) (1.1 g, 69.5 %) as a colourless liquid, b p. 88.5-89°C (4 mm Hg) [litt. [14], b p. 100-102° C (1 mm Hg)]. IR (neat). 3420, 2250 and 2295 (possible Fermi resonance). ¹H NMR (CCl₄) 1 23 (t, J=7, 6H), 3.00 (t, J=4 5, 1H), 3.65 (m, 4H), 4.25 (dd, J=4 5 and J= .5, 2H), 5 25 (t, J=1.5, 1H)

4.4 -Diethoxy-1-methanesulfonyloxy 2-butyne (3)

Methanesulfonyl chloride (0.36 g, 3.14 mmol) is added dropwise at -10°C in 30 min. to a stirred solution of 4,4-diethoxy-2-butyn-1-ol (2) (0 45 g, 2 85 mmol) and triethylamine (0.44 g, 4,37 mmol) in CH₂Cl₂ (14 6 mL) After a further stirring for 15 min. at 0°C, the reaction mixture is poured into ice water (20 mL) The extracted organic phase is washed with a diluted aq. H₂SO₄ solution, then with water until pH 7, and dried over anhydrous Na₂SO₄. After evaporation, 0 61 g (90.7%) of 4,4-diethoxy-1-methanesulfonyloxy-2-butyne (3) is obtained (purity checked by ¹H NMR, IR and mass spectrometry). HRMS. m/e [M-H]·+ Calcd. for C₉H₁₆O₅S: 235 06401; found. 235.0640. IR (neat) : no band near 2200. ¹H NMR (CCl₄)· 1.20 (t, J = 7, 6H), 3 08 (s, 3H), 3 60 (m, 4H), 4.85 (d, J=1.6, 2H), 5.20 (t, J=1.6, 1H).

Bu₄NF 3H₂O (4.3 g, 13.65 mmol) is added to a solution of methanesulfonate (3) (2.93 g, 12.41 mmol) in toluene (15 mL) This heterogeneous mixture is heated under stirring at 90-95°C, from NMR analysis of the reaction mixture, a 70% conversion of (3) into the fluoro derivative (4) is observed after 40 hrs and does not appear to increase any more. Toluene is evaporated under reduced pressure at <u>ca</u>.30°C and replaced by dichloromethane (30 mL). The reaction mixture is then washed with water and the extracted organic phase dried over anhydrous Na₂SO₄. Pure 4,4-dietho-xy-1-fluoro-2-butyne (4) is obtained (1.19 g, 60%) by distillation under reduced pressure b p. 64°C (4.5 mm Hg). HRMS. m/e [M-H] + Calcd. for C₈H₁₃O₂F: 159.0821, found 159.0812. IR (neat) : no band at 2200 cm⁻¹. ¹H NMR (CCl₄) 1.2 (t, J = 7, 6H), 3.6 (m, 4H), 4.95 (dd, J_{HH}= 1.4, J_{HF} = 48, 2H), 5.18 (dt, J_{HH}= 1.4, J_{HF} = 4.8, 1H). ¹⁹F NMR (CCl₄) -218.5 (td, J_{HF}= 4.7, J_{HH} = 5.1)

4-Fluoro-2-butyn-1-al (5) (nc)

A solution of fluoroacetal (4) (3 32 g, 20 mmol) in formic acid (5 52 g, 0.12 mol), previously dried over CuSO₄, is heated under stirring at 45°C The complete formolysis of (4), monitored by ¹H NMR, is achieved in 2 5 hours. Then the reaction mixture is poured into diethyl ether (100 mL) cooled to 0°C. Excess of formic acid (0 08 mol) is neutralized at 0°C by slowly adding Na₂CO₃ (5.42 g, 0 05 mol) dissolved in 8 mL water. After CO₂ is evolved, and warming to room temperature, the separated aqueous phase is extracted many times with diethyl ether [until the odor of (5) is not detected] and the combined ethereal extracts are dried over anhydrous Na₂SO₄. The most part of diethyl ether is slowly evaporated under ambient pressure, then the pressure is reduced little by little under nitrogen and the residue is distilled off Pure 4-fluoro-2-butyn-1-al (5) (1.07 g, 62%) is obtained as a light yellow liquid which must be stored at - 20°C ; b p 54°C at <u>ca</u>. 50 mm Hg Anal Calcd for C₄H₃OF: C, 55 82; H, 3 48 Found C, 55 21, H, 3 71. HRMS. m/e [M]+ Calcd 86 01679 ; found 86.0166 ¹H NMR (CCl₄) 5 15 (dd, ⁵J_{HH}= 0 6, ²J_{HF} = 47.4, 2H), 9 27 (dt, ⁵J_{HH}= 0 5, ⁵J_{HH} = 3.2, 1H) ¹⁹F NMR (CCl₄) : -221.7 (td, ²J_{HH}= 47, ⁵J_{HH} = 3.4).

Cycloadduct (6a) (nc)

A mixture of fluoro-aldehyde (5) (0.13 g, 1.51 mmol) and DMB (6) (0 136 g, 1.66 mmol) is heated at 40-45°C. The reaction, followed by ¹H NMR, is stopped after heating for 47 hrs when <u>ca</u> 80-85% adduct (6a) is formed (when the conversion yield reaches <u>ca</u>_90-95%, the reaction mixture decomposes with explosion). Cooling the reaction mixture to -20°C gives a crude white solid which is dissolved in diethyl ether (5 mL) and the solution is evaporated. The resulting white solid which still contains traces of starting products (5) and (6) is purified by washing with 2 x 8 mL pentane and dried under vacuum, giving the adduct (6a) (0 203 g, 80%), m p. 62°C HRMS⁻ m/e [M]⁺ Calcd

for C₁₀H₁₃FO. 168 09504, found 168.0954. IR (CHCl₃)⁻ 1660 (strong) ¹H NMR (CDCl₃): 1 69 (s, 6H) 2.88 (s, 4H), 5 36 (d, J_{HF}=48, 2H), 10 17 (s, 1H).

Cycloadduct (7a) (nc)

(a) Acidic medium

A solution of fluoro-acetal (4) (0.576 g, 3 6 mmol) in dned formic acid (1 02 g, 22 mmol) is heated under stirring at 45°C in a nitrogenous atmosphere until the complete formolysis of (4) is achieved (<u>ca</u> 2h, reaction followed by NMR) Then CH₂Cl₂ (10 mL) and fresty distilled CPD (7) (0.475 g, 7 2 mmol) are added at room temperature Instantaneous Diels-Alder reaction occurs, as it appears from t I.c. The reaction mixture is added with a further 10 mL CH₂Cl₂ then washed with water, the organic phase is extracted and dried over anhydrous Na₂SO₄ After evaporation of CH₂Cl₂, the residue is purified by column chromatography on silica gel (ether/pentane · 2/8, then 3/7). The cycloadduct (7a) is obtained as an orange liquid (0 22 g, 40%)

(b) Neutral medium

CPD (7) (0.109 g, 1.66 mmol) is added to fluoro-aldehyde (5) (0.13 g,1 51 mmol) cooled to -25°C. The reaction proceeds instantaneously (1.1.c), providing a quantitative formation of adduct (7a) (NMR analysis) which is purfied as above by columm chromatography Isolated product : 0.206 g, 90% HRMS m/e [M]+ Calcd for C₉H₉FO. 152.06374; found. 152 064. IR (neat): 1645 (strong), 1710 (shoulder), 1555. ¹H NMR (CCl₄). 2 8 (broad s, bridged CH₂), 3 7 (broad s, bridgehead CH), 4 05 (broad s, bridgehead CH), 5 37 (d, J_{HF} =47.6, 2H), 6 8 (m, 2H), 9.95 (s, 1H) ¹⁹F NMR (CCl₄): -218.9 (t, J_{HF}=47). Note: by comparison with ¹H NMR data provided by cycloadducts obtained from reactions between CPD (7) and various α-acetylenic aldehydes [2], the larger $\delta_{\rm H}$ from the bridgehead CH groups is preferably assigned to the CH group in the β-position with respect to the CHO group

Cycloadduct (8a) (nc)

(a) Acidic medium

The formolysis of the fluoro-acetal (4) is performed in the same conditions as previously and followed by the addition of CHD (8) (0.432 g, 5.4 mmol). Then the reaction mixture is heated under stirring at 40°C (CH₂Cl₂ refluxing) for 48h. After the usual work- up, the crude cycloadduct (8a) (0 572 g, 95 7%) is purfled by column chromatography (ether/pentane \cdot 3/7), giving pure (8a) (0 532 g, 90 %) as a colourless liquid.

(b) Neutral medium

A mixture of CHD (8) (0.133 g, 1.66 mmol) and fluoro-aldehyde (5) (0,13 g, 1.51 mmol) is heated at 40°C for 36 hr. Then the reaction mixture is purified by columm chromatography as above,

giving the pure cycloadduct (8a) (0 225 g , 90%) HRMS m/e [M]+ Calcd for C₁₀H₁₁FO: 166 07939; found: 166 0791. IR (neat): 1655 (strong), 1700 (shoulder),1595 ¹H NMR (CCl₄) .1.37 (m, bndged CH₂, 4H), 3 82 (m,bridgehead CH, 1H), 4 26 (m, bridgehead CH, 1H), 5 33 (d, J_HF=47 6, 2H), 6 33 (m, 2H), 9 83 (s, 1H). ¹⁹F NMR (CCl₄) -217 9 (I, J_HF= 47) <u>Note</u> : as in the case of (7a), the larger δ_{H} from bridgehead CH groups may be assigned to the CH group in the β-position with respect to the CHO group

REFERENCES

- R.L. Bol'shedvorskaya and L1 Vereshchagin, <u>Russian Chem. Rev., Engl. Transl., 42</u> (1973), 2250
- A. Gorgues, A. Simon, A Le Coq, A Hercouet and F. Corre, <u>Tetrahedron</u>, <u>42</u> (1986), 351.
- 3 D Stéphan, A Gorgues, A Belyasmine and A Le Coq, <u>J. Chem.Soc. Chem.Commun.</u>, (1988), 263
- 4 A Gorgues, D. Stéphan, A. Belyasmine, A Khanous and A Le Coq, <u>Tetrahedron</u>, (1990), in the press.
- 5 R. N. Haszeldine, <u>J. Chem. Soc.</u>, (1952), 3490
- 6 R. D. Chambers, S Partington and D B. Speight, <u>J. Chem. Soc.. Perkin Trans. I</u>, (1974), 2673.
- 7 R. D. Chambers, C G P. Jones, M J Silvester and D.B. Speight, <u>J Fluorine Chem.</u>, <u>25</u> (1984), 47
- 8 For difficulties of isolation, compare to. i) L Brandsma, Preparative Acetylenic Chemistry, Elsevier, Amsterdam, (1971), 170; ii) E R H Jones, J S. Stephenson, W.B. Turner and M.C Whiting, J. Chem. Soc., (1963), 2048
- 9 R. Epsztein and I. Marszak, Bull Soc. Chim. Fr., (1968), 313
- 10 These two acetals of ADCA are marketed by Janssen Chimica ; for a rewiew, see . A Gorgues, <u>Janssen Chim. Acta. 4</u> (1986), 21.
- 11 R.K. Crossland and K.L. Servis, J. Org.Chem., 35 (1970), 3195
- 12 P.A. Grieco, E. Williams and T. Sugahara, J.Org. Chem., 44 (1979), 2194
- 13 C. Rücker, D Lang, J Sauer, H Friege and R Sustmann, <u>Chem. Ber.</u>, <u>113</u> (1980), 1663
- 14 T.A. Macrides et V. Thaller, J. Chem. Res., (M), (1981), 2001.