Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Synthesis of 3-((2,4-dichlorophenoxy)methyl)-1,2,4-triazolo(thiadiazoles and thiadiazines) as anti-inflammatory and molluscicidal agents

M.F. El Shehry^a, A.A. Abu-Hashem^b, E.M. El-Telbani^{a,*}

^a National Research Centre, Green Chemistry Department, 12622 Dokki, Cairo, Egypt ^b National Research Centre, Photo Chemistry Department, 12622 Dokki, Cairo, Egypt

ARTICLE INFO

Article history: Received 27 October 2009 Received in revised form 14 January 2010 Accepted 15 January 2010 Available online 21 January 2010

Keywords: Triazolothiadiazole Triazolothiadiazine 2.4-Dichlorophenoxyacetic acid Triazoles Molluscicidal Anti-inflammatory activities

1. Introduction

1,2,4-Triazole derivatives are known to exhibit antibacterial, antifungal [1], antitubercular [2], anticancer [3], anticonvulsant [4], anti-inflammatory [5], analgesic [6], and molluscicidal properties [7–10]. Among the pharmacological profiles of 1,2,4-triazoles, their antimicrobial, anticonvulsant, and antidepressant properties seem to be best documented. The arrangement of three basic nitrogen atom in the triazole ring induces antiviral activity in the compounds containing a triazole ring [11]. The 1,2,4-triazole nucleus has been incorporated into a wide variety of therapeutically interesting drug candidates including H_1/H_2 histamine receptor blockers, cholinesterase active agents, CNS stimulants, antianxiety, and sedatives agents [12]. Some of the modern day drugs with triazole nucleus are Ribavirin (antiviral agent), Alprazolam (anxiolytic agent), Fluconazole, Itraconazole (antifungal agent) and Rizatriptan (antimigrane agent).

The ambient nucleophilic centers present in 3-substituted-4amino-5-mercapto-1,2,4-triazoles render them as useful synthons for the synthesis of various *N*-bridged heterocycles. Moreover, synthesis of triazole fused to other heterocycles has attracted attention widely due to their diverse applications.

ABSTRACT

A series of fused and non fused 1,2,4-triazoles with (2,4-dichlorophenoxy) moiety are prepared utilizing 3-((2,4-dichlorophenoxy))-4-amino-4H-1,2,4-triazole-5-thiol (**3**). The latter on reaction with carboxylic acids, ethylchloroformate, ethylcyanoacetate and sodium nitrite gives five membered fused triazole derivatives **4a**–**d**, **5**, **6**, **7** and **10**, respectively. The six membered heterocycles **11**, **12** and **14** are prepared by cyclization of compound **3** with phenacyl bromide, chloroacetic acid and α -bromoketone respectively. Most of the newly synthesized compounds were screened for their anti-inflammatory and molluscicidal activities. The compounds **4b**, **4d**, **11** and **14** showed potent anti-inflammatory activities in dose dependent manner while compounds **3**, **4b**, **8** and **10** exhibited promising molluscicidal activities. \otimes 2010 Elsevier Masson SAS. All rights reserved.

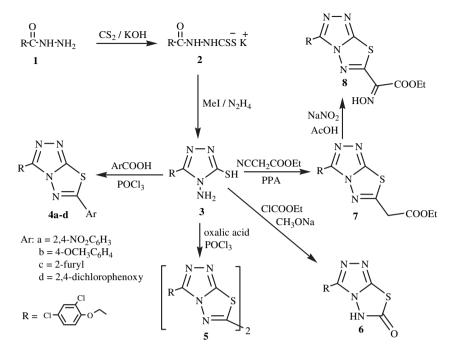
Prompted by these observations, it was contemplated to synthesize some newly *N*-bridged heterocycles containing (2,4-dichlorophenoxy) moiety (which possess an excellent herbicidal activity) [13] with a view to explore their potency as better chemotherapeutic agents. Some newly synthesized compounds were screened for the anti-inflammatory and molluscicidal activities.

175

L.

2. Results and discussion

2.1. Chemistry


3-((2,4-Dichlorophenoxy)methyl)-4-amino-4H-1,2,4-triazole-5-thiol (**3**), was prepared according to a methodology involves the condensation of 2,4-dichlorophenoxyacetic acid hydrazide (**1**) with carbon disulfide and potassium hydroxide to yield the potassium dithiocarbazate **2** which, after *s*-alkylation with methyl iodide, underwent ring closure with an excess of hydrazine to produce the aminothiol **3** in good yield [14].

Cyclocondensation of the SH and NH₂ functions of **3** with aromatic carboxylic acids and oxalic acid in the presence of phosphoryl chloride, to give 3-((2,4-dichlorophenoxy)methyl)-6-aryl-s-triazolo[3,4-b]-1,3,4-thiadiazoles **4a–d** and bis(3-(2,4-dichlorophenoxy)methyl)-6,6'-s-triazolo[3,4-b][1,3,4]thiadiazole **5**, respectively. The structure of the isolated products **4a–d** and **5** was elucidated on the basis of

^{*} Corresponding author. Tel.: +202 333 711211x1428; fax: +202 33370931. *E-mail address*: e_misbah@yahoo.co.uk (E.M. El-Telbani).

^{0223-5234/\$ –} see front matter @ 2010 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.ejmech.2010.01.030

Scheme 1. Synthesis of triazolo-thiadiazole derivatives 4_{a-d} -8.

their spectral (MS, IR and ¹H NMR) and elemental analyses data. (cf. Scheme 1 and Tables 1 and 2).

Compound **3** reacted with ethylchloroformate in the presence of sodium methoxide affording a cyclized product, 3-((2,4-dichlorophenoxy)methyl)-1,2,4-triazolo[3,4-*b*][1,3,4]thiadiazol-6(5*H*)-one (**6**) in good yield. Treatment of **3** with ethylcyanoacetate in polyphosphoric acid afforded triazolo[3,4-*b*][1,3,4]thiadiazole derivative **7** in good yield. Nitrosation of **7** with sodium nitrite in

Table 1				
Physical	constants	of newly	synthesized	compounds.

T-1-1- 4

Compd.	Yield	m.p. (°C)	Mol. form. (Mol. wt)	Microanalysis		
no.	(%)			С	Н	N
4a	(77)	215-217	C ₁₆ H ₈ Cl ₂ N ₆ O ₅ S (467.24)	41.13	1.73	17.99
				41.22	1.88	17.80
4b	(70)	247-249	$C_{17}H_{12}Cl_2N_4O_2S$ (407.27)	50.13	2.97	13.76
				50.01	2.79	13.86
4c	(60)	207-209	C ₁₄ H ₈ Cl ₂ N ₄ O ₂ S (367.21)	45.79	2.20	15.26
				45.87	2.12	15.38
4d	(55)	176–178	C ₁₇ H ₁₀ Cl ₄ N ₄ O ₂ S (476.16)	42.88	2.12	11.77
				42.79	2.20	11.68
5	(60)	162–164	$C_{20}H_{10}Cl_4N_8O_2S_2$ (600.29)	40.02	1.68	18.67
				40.13	1.76	18.58
6	(50)	187–189	C ₁₀ H ₆ Cl ₂ N ₄ O ₂ S (317.15)	37.87	1.91	17.67
_				37.94	1.84	17.74
7	(40)	178–180	C ₁₄ H ₁₂ Cl ₂ N ₄ O ₃ S (387.24)	43.42	3.12	14.47
•	(60)	101 100		43.33	3.04	14.58
8	(60)	184–186	$C_{14}H_{11}Cl_2N_5O_4S$ (416.24)	40.40	2.66	16.83
0.	(70)	110 120	C U CIN OS (270.2C)	40.32	2.73	16.77
9a	(70)	118–120	C ₁₆ H ₁₂ Cl ₂ N ₄ OS (379.26)	50.67	3.19	14.77
9b	(60)	149–151	C ₁₆ H ₁₀ Cl ₄ N ₄ OS (448.15)	50.59 42.88	3.26 2.25	14.68 12.50
90	(60)	149-151	$C_{16}\Pi_{10}CI_4\Pi_4OS(446.15)$	42.00 42.94	2.25	12.50
9c	(77)	252-254	C ₂₇ H ₁₈ Cl ₂ N ₆ O ₂ S (561.44)	42.94 57.76	3.23	12.58
30	(n)	232-234	C271118C12146O25 (301.44)	57.68	3.25 3.30	14.97
10	(65)	171–173	(C ₉ H ₅ Cl ₂ N ₅ OS (304.16)	35.54	2.32	23.03
10	(05)	1/1-1/5	(C9115C12115C3 (304.10)	35.60	2.22	23.03
11	(55)	214-216	C ₁₇ H ₁₂ Cl ₂ N ₄ OS (391.27)	52.18	3.09	14.32
	(33)	211 210	c1/11/201211400 (001127)	52.10	3.17	14.26
12	(60)	179-181	C ₁₁ H ₈ Cl ₂ N ₄ O ₂ S (331.18)	39.89	2.43	16.92
	(00)	1.0 101	c111.60.2.14020 (331.10)	39.96	2.37	16.88
14	(70)	235-237	C37H22Cl2N6O3S (701.58)	63.34	3.16	11.98
	(, 0)		-5,220.21.0050 (101.00)	63.41	3.09	11.92

the presence of acetic acid, afforded hydroxyimino derivative **8** in fairly good yield.

When compound **3** was treated with some aromatic aldehydes namely, benzaldehyde, 2,4-dichlorobenzaldehyde and 3-(benzo-furan-2-yl)-1-phenyl-1*H*-pyrazole-4-carbaldehyde; a Schiff base derivatives **9a–c** were obtained in good yields. Reaction of **3** with sodium nitrite in hydrochloric acid, give *s*-triazolo[3,4-*b*][1,3,4]thia-triazole **10**.

3-((2,4-Dichlorophenoxy)methyl)-6-phenyl-7*H*-[1,2,4]triazolo [3,4-*b*][1,3,4]thiadiazine (**11**) was successfully achieved on treatment of **3** with equimolar amounts of phenacyl bromide in refluxing absolute ethanol. Structure **11** was deduced from microanalytical and spectral data.

Chloroacetic acid in the presence of sodium acetate reacts with **3** affording in one step 3-((2,4-dichlorophenoxy)methyl)-5*H*-1,2,4-triazolo[3,4-*b*][1,3,4] thiadiazine-6-(7*H*)-one (**12**). On the other hand, when **3** was treated with α -bromopropenone derivative **13** [15] in the presence of potassium hydroxide in ethanol, the arylidenetriazolothiadiazine **14** was formed in good yield. Both spectral and elemental analyses were in accord with the suggested structure. (cf. Scheme 2 and Tables 1 and 2).

2.2. Pharmaclogical screening

2.2.1. Molluscicidal activity

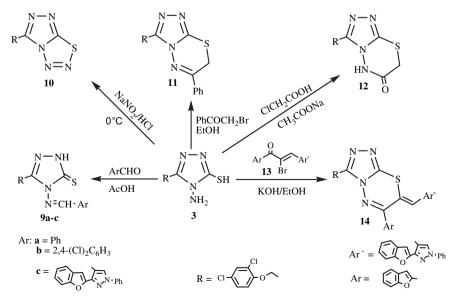
The toxicity of compounds **3**, **4a**–**d**, **5**, **6**, **7**, **8**, **9a**–**c**, **10**, **11**, **12** and **14** toward *Biomphalaria alexandrina* snails was evaluated. An insight inspection of the results listed in (Table 3) shows that compounds **3**, **4b**, **8** and **10** have high effect on the snails but all the other compounds have moderate to low effects on the snails, and they all showed very weak activity below 5 ppm. A data obtained showed promising results especially compounds possess a triazolo-thiatriazole moiety and hydroxyimino residue and this data was in a good agreement with previous reports [7–10].

A comparison of the molluscicidal activity of the new compounds reported here with the international standard 2',5-dichloro-4-nitrosalicylanilide (Bayluscide) [16,17]; showed that our compounds are still far inferior as molluscicidal agents.

Table	2
-------	---

Mass, IR,	¹ H NMR spectral	data of newly synthesi	zed compounds.

Compd.	Mass (<i>m</i> / <i>z</i>) (%)	IR (ν, cm ⁻¹)	¹ H NMR (δ , ppm) (DMSO- d_6)
no.			
4a	[M] ⁺ , 466 (30)	1600 (C=N), 2970, 2950 (CH aryl)	δ 5.77 (s, 2H, CH ₂ phenoxy), 7.45–7.60 (m, 6H, Ar-H)
4b	[M] ⁺ , 406 (60)		δ 3.64 (s, 3H, CH ₃), 5.70 (s, 2H, CH ₂ phenoxy), 7.16–7.93 (m, 7H, Ar-H)
4c	[M] ⁺ , 366 (38)	1594 (C=N). 2975, 2960 (CH aryl)	δ 5.68 (s, 2H, CH ₂ phenoxy), 6.85–6.88 (m, 1H, furyl H-4), 7.45–7.63 (m, 4H, Ar-H and furyl H-3), 8.12–8.16 (m, 1H, furyl H-5)
4d	[M] ⁺ , 474 (45)		δ 5.69 (s, 2H, CH ₂ phenoxy), 5.74 (s, 2H, CH ₂ phenoxy), 7.41–7.71 (m, 6H, Ar-H)
5	[M] ⁺ , 598 (50)		δ 5.60 (s, 2H, CH ₂ phenoxy), 5.65 (s, 2H, CH ₂ phenoxy), 7.21–7.62 (m, 6H, Ar-H)
6	[M] ⁺ , 316 (63)	1640 (CO), 3120 (NH)	δ 5.23 (s, 2H, CH ₂ phenoxy), 7.31–7.58 (m, 3H, Ar-H), 13.87 (s, 1H, NH)
7	[M] ⁺ , 386 (35)		δ 1.28 (m, 3H, CH ₃), 4.15 (m, 2H, CH ₂ ester), 4.41 (s, 2H, CH ₂), 5.71 (s, 2H, CH ₂ phenoxy), 7.31–7.72 (m, 3H, Ar-H)
8	[M] ⁺ , 415 (35)		δ 1.31 (t, 3H, CH ₃), 4.24 (q, 2H, CH ₂ ester), 5.21 (s, 2H, CH ₂ phenoxy), 7.35–7.81 (m, 3H, Ar-H), 10.63 (s, 1H, OH)
9a	[M] ⁺ , 378 (63)	1268–1248 (C—S), 1590 (C—N), 2955, 2980 (CH aryl), 3210 (NH)	δ 5.40 (s, 2H, CH ₂ phenoxy), 7.38–7.77 (m, 8H, Ar-H), 8.12 (s, 1H, N=CH), 11.85 (br.s, 1H, NH)
9b	[M] ⁺ , 446 (74)		δ 5.48 (s, 2H, CH ₂ phenoxy), 7.43–7.93 (m, 6H, Ar-H), 8.00 (s, 1H, N=CH), 10.84 (br.s, 1H, NH)
9c	[M] ⁺ , 560 (70)		δ 5.45 (s, 2H, CH ₂ phenoxy), 7.35–7.64 (m, 13H, Ar-H and furan H-2), 8.10 (s, 1H, N=CH), 9.24 (s, 1H, pyrazole H-3), 10.47 (br.s, 1H, NH)
10	[M] ⁺ , 303 (54)		δ 5.23 (s, 2H, CH ₂ phenoxy), 7.31–7.58 (m, 3H, Ar-H)
11	[M] ⁺ , 390 (80)		δ 4.45 (s, 2H, thiadiazin CH ₂), 5.51 (s, 2H, CH ₂ phenoxy), 7.39–7.95 (m, 8H, Ar-H)
12	[M] ⁺ , 330 (70)	1686 (CO), 3200 (NH)	δ 5.22 (s, 2H, thiadiazinone CH ₂), 5.63 (s, 2H, CH ₂ phenoxy), 7.32–7.60 (m, 3H, Ar-H), 13.86 (br.s, 1H, NH)
14	[M] ⁺ , 700 (50)		δ 5.34 (s, 2H, CH ₂ phenoxy), 7.14–8.11 (m, 19H, Ar-H and methylene H)


2.2.2. Anti-inflammatory activity

The anti-inflammatory activity of the synthesized compounds (Table 4) was evaluated by carrageenan-induced paw oedema method of Winter and Nuss [18]. Compounds **4b**, **4d**, **11**, **14** showed significant anti-inflammatory effect, which protected rats by 36–56% from inflammation other tested compounds did not show any significant anti-inflammatory effect which might be permeated to their solubility issue (DMSO is not physiologically accepted solvent for in vivo experiment; and accordingly it was used with limitation). From the view point of structure activity relationship (SAR), it is clear that the triazolothiadiazole derivatives having 2,4-dichlorophenoxy **4d** and 4-methoxyphenyl **4b** at C-6 position possess highest activity compared with indomethacin. Moreover, the triazolothiadiazine derivatives having 2,4-dichlorophenoxy at C-3 and phenyl or benzofuryl at C-6 positions having significant activity. The obtained results were in accordance with previous reports [19,20].

3. Experimental

3.1. General

All melting points were determined on an Electrothermal 9100 digital melting point apparatus. IR, ¹H NMR and mass spectra were recorded on: IR spectra (KBr): Pye-Unicam SP-1100. ¹H NMR spectra: Jeol GLM EX 270 MHz FT NMR spectrophotometer, DMSO- d_6 , TMS as internal standard, chemical shift in δ (ppm). Mass spectra: 70 eV, Varian MAT 311 A. Elemental analysis (in accord with the calculated values) was carried out in the microanalytical unit, Faculty of Science, Cairo University. Yields are not optimized. Anti-inflammatory activities were carried out at pharmacology unit, National Research Centre. 2,4-Dichlorophenoxyacetic acid hydrazide **1** and 4-amino-5-((2,4-dichlorophenoxy) methyl)-4H-1,2,4-triazole-3-thiol **3** were prepared as previously described [14].

Scheme 2. Synthesis of triazolo-thiadiazine derivatives.

Table 3

Molluscicidal activity of compounds **3**, **4a–d** and **5–14** on *Biomphalaria alexandrina* snails (10 snails by concentrations) under Laboratory conditions and after 24 h exposure.

Compd. No.	Different concentration used in (ppm)		
	1	5	10
3	0	6	10
4a	0	1	5
4b	0	3	7
4c	0	1	6
4d	0	0	3
5	0	2	6
6	0	2	5
7	0	0	4
8	0	3	8
9a	0	0	3
9b	0	1	5
9c	0	0	4
10	0	5	10
11	0	3	6
12	0	2	5
14	0	1	5
Bayluscide	10	10	10

3.2. General procedure for synthesizing of (4a-d)

A mixture of **3** (10 mmol) and aromatic acids (10 mmol) in the presence of POCl₃ (15 mL) was refluxed for 2–3 h. After removal of the excess of POCl₃ under reduced pressure, the residual added to crushed ice and the mixture stirred at room temperature for 1 h. During this time the solution was gradually neutralized with (Na₂CO₃), the solid product was filtered off, washed with water, dried and recrystallized from appropriate solvent to afford the title compounds.

3.2.1. 3-((2,4-Dichlorophenoxy)methyl)-6-(2,4-dinitrophenyl)-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazole (**4a**)

The compound was obtained from the reaction of 2,4-dinitrobenzoic acid (10 mmol), as white solid (EtOH).

3.2.2. 3-((2,4-Dichlorophenoxy)methyl)-6-(4-methoxyphenyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (**4b**)

The compound was obtained from the reaction of 4-methoxybenzoic acid (10 mmol), as white solid (EtOH).

3.2.3. 3-((2,4-Dichlorophenoxy)methyl)-6-(furan-2-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (**4c**)

The compound was obtained from the reaction of furan-2-carboxylic acid (10 mmol), as white solid (EtOH).

3.2.4. 3,6-Bis((2,4-dichlorophenoxy)methyl)-[1,2,4]triazolo[3,4-b]-[1,3,4]thiadiazole (**4d**)

The compound was obtained from the reaction of 2,4-dichlorophenoxyacetic acid (10 mmol), as white solid (EtOH).

3.3. 3-((2,4-Dichlorophenoxy)methyl)-6-(3-((2,4-dichlorophenoxy)methyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole (**5**)

Compound **5** was synthesized from **3** (20 mmol) and oxalic acid (10 mmol) in a manner similar to that described for **4a**–**d** as white solid (EtOH).

3.4. 3-((2,4-Dichlorophenoxy)methyl)-[1,2,4]triazolo[3,4-b]-[1,3,4]thiadiazol-6(5H)-one (**6**)

To **3** (10 mmol), sodium methoxide (10 mmol) in (50 mL) methanol and ethylchloroformate (10 mmol) was added. The reaction mixture was refluxed for 5 h, then evaporated under vacuum, the solid obtained washed with water and recrystallized to yield **6** as white solid (EtOH).

3.5. Ethyl-2-(3-((2,4-dichlorophenoxy)methyl)-[1,2,4]triazolo[3,4-b]-[1,3,4]thiadiazol-6-yl)acetate (7)

A mixture of **3** (10 mmol) and ethylcyanoacetate (10 mmol) in PPA (15 mL) was stirred at 60 °C for 6 h. After cooling the reaction mixture was added to crushed ice and the mixture stirred at room temperature for 1 h. During this time the solution was gradually neutralized with NaHCO₃. The solid product was filtered off, washed with water, dried and recrystallized to give **7** as white solid (EtOH).

3.6. Ethyl 2-(3-((2,4-dichlorophenoxy)methyl)-[1,2,4]triazolo[3,4b][1,3,4]thiadiazol-6-yl)-2-(hydroxyimino)acetate (**8**)

To a solution of **7** (10 mmol) in (20 mL) acetic acid, aqueous sodium nitrite (20 mmol) was added portionwise, with stirring at 0-5 °C, over a period of 20 min. After 3 h, the reaction mixture was poured onto water, a precipitate was formed, filtered off, and crystallized to give **8** as white solid (EtOH).

3.7. General procedure for synthesizing of (**9a**-c)

A solution of **3** (10 mmol) in glacial acetic acid (10 mL) was allowed to react with the appropriate aldehydes (10 mmol) under reflux for 1 h. The reaction mixture was then cooled and the

Table 4

Anti-inflammatory activity of compounds 3,	, 4a-d and	10–14 against ca	rrageenan-induced ra	it paw oedema over 4 h.

Group	(% Inhibition of oedema) \pm S.E.	(% Inhibition of oedema) \pm S.E.					
	1 h	2 h	3 h	4 h			
3	$(49.99675)^{a} \pm 8.852533$	$(60.30075)^{a} \pm 6.318443$	$(102.8511)^{a} \pm 6.44741$	$(81.74565)^{a} \pm 13.4234$			
4a	$(32.16216)^{\rm a}\pm 5.542188$	$(66.06168)^{a} \pm 16.70769$	$(68.04117)^{\rm a}\pm 8.771818$	$(63.95059)^{\rm a}\pm 6.462582$			
4b	$(26.74506)^{\rm b}\pm1.651259$	$(46.22208)^{\rm b}\pm10.17494$	$(56.33506)^{\mathrm{b}} \pm 9.240293$	$(44.33871)^{\rm b}\pm 9.676857$			
4c	$(51.37782)^{a} \pm 12.46712$	$(54.62069)^{a} \pm 12.6645$	$(99.24333)^{a}\pm13.43806$	$(93.97222)^{a}\pm20.89291$			
4d	$(26.94604)^{ m b}\pm 2.755955$	$(48.39525)^{\rm b}\pm7.749848$	$(63.15481)^{\mathrm{b}} \pm 7.584049$	$(58.48116)^{ m b}\pm 6.456058$			
10	$(70.78083)^{\rm a}\pm 25.75219$	$(94.79833)^{a} \pm 22.14129$	$(108.482)^{\rm a}\pm 37.94043$	$(74.03251)^{a}\pm19.40933$			
11	$(27.65508)^{\rm b}\pm 2.601153$	$(45.62023)^{\rm b}\pm 5.10145$	$(60.42211)^{b} \pm 7.215277$	$(48.51348)^{\rm b}\pm10.54937$			
14	$(29.71395)^{\rm b}\pm 5.692312$	$(41.31841)^{\rm b}\pm 6.448136$	$(59.66482)^{\rm b}\pm12.636069$	$(35.77512)^{ m b}\pm 9.791311$			
Cont	$(48.54701)\pm 4.955791$	$(66.60562)\pm9.022303$	$(72.88156)\pm10.1965$	$(72.97924)\pm14.61699$			
Indomethacin	$(24.80194)^{\mathrm{b}} \pm 15.32791$	$(20.97271)^{\rm b}\pm17.03966$	$(26.28741)^{\rm b}\pm15.27344$	$(20.19146)^{b} \pm 17.59208$			

Values represent the mean ± S.E. of six animals for each group. Data were analyzed by One-way T-test using Indomethacin as anti-inflammatory standard agent.

^a Represents not significance level at P < 0.05.

^b Represents the significance level at P < 0.05.

precipitated arylidene derivatives were filtered off, washed with water, dried and recrystallized from appropriate solvent to afford the title compounds.

3.7.1. 5-((2,4-Dichlorophenoxy)methyl)-4-(benzylideneamino)-2H-1,2,4-triazole-3(4H)-thione (**9a**)

The compound was obtained from the reaction of benzaldehyde (10 mmol), as white solid (EtOH).

3.7.2. 4-(2,4-Dichlorobenzylideneamino)-5-((2,4-dichlorophenoxy)methyl)-2H-1,2,4-triazole-3(4H)-thione (**9b**)

The compound was obtained from the reaction of 2,4-dichlorobenzaldehyde (10 mmol), as white solid (EtOH).

3.7.3. 4-((3-(Benzofuran-2-yl)-1-phenyl-1H-pyrazol-4-yl)methyleneamino)-5-((2,4-dichlorophenoxy)methyl)-2H-1,2,4-triazole-3(4H)-thione (**9c**)

The compound was obtained from the reaction of 3-(benzo-furan-2-yl)-1-phenyl-1*H*-pyrazole-4-carbaldehyde (10 mmol), as white solid (MeOH).

3.8. 4-((2,4-Dichlorophenoxy)methyl)-[1,2,4]triazolo[4,3-d]-[1,2,3,4]thiatriazole (**10**)

A solution of **3** (10 mmol) in HCl (50 mL) was cooled to 0 $^{\circ}$ C and a cold solution of sodium nitrite (10 mmol) in water (10 mL) was gradually added. The reaction mixture was kept at 0–5 $^{\circ}$ C with stirring for 2 h, left overnight and diluted with water where upon precipitation took place. The solid that precipitated was collected and recrystallized to give **10** as white solid (EtOH).

3.9. 3-((2,4-Dichlorophenoxy)methyl)-6-phenyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine (**11**)

A mixture of **3** (10 mmol) and phenacyl bromide (10 mmol) in absolute ethanol (50 mL) was refluxed for 8 h. The solvent was then removed by distillation and the remaining residue was washed with water, filtered, dried and recrystallized to give **11** as white solid (EtOH).

3.10. 3-((2,4-Dichlorophenoxy)methyl)-5H-[1,2,4]triazolo[3,4-b]-[1,3,4]thiadiazin-6(7H)-one (**12**)

To **3** (10 mmol) in acetic acid (50 mL), chloroacetic acid (20 mmol) and fused sodium acetate (15 mmol) were added. The reaction mixture was refluxed for 6 h, cooled and the solid obtained filtered off, washed with water, and recrystallized to give **12** as white solid (EtOH).

3.11. 3-((2,4-Dichlorophenoxy)methyl)-7-((3-(benzofuran-2-yl)-1-phenyl-1H-pyrazol-4-yl)methylene)-6-(benzofuran-3-yl)-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine (**14**)

A mixture of **3** (10 mmol), 1,3-diaryl-2-bromo-2-propen-1-ones 13 (10 mmol), and ethanolic potassium hydroxide (15 mmol) was refluxed in ethanol (15 mL) for 8 h. The precipitated solid was filtered off, washed with water, and recrystallized to give **14** as white solid (AcOH).

4. Biological screening

4.1. Molluscicidal activity tests

The molluscicidal activity tests were carried out for each compound under investigation. *B. alexandrina* snails (ca. 7 mm

shell diameter) were collected from the field (water canals) and maintained under laboratory conditions for a period of 10 days before the test and fed daily by lettuce leaves. Three concentrations of each compound under investigation were prepared ranging from 1 to 10 ppm. The required amount of the compound under investigation was mixed thoroughly with few drops of Tween 20 and 2 mL of DMSO to render the compounds completely soluble. followed by addition of the appropriate volume of untreated raw water (taken directly from the Nile River or its subsidiary branches/canals) to get a homogeneous suspension with the requisite concentration and placed in glass jar vessels $15 \times 25 \times 20$ cm dimensions fitted with air bubblers. Ten snails were used in each experiment and maintained in the test solution under laboratory conditions at 25 °C for 24 h. Each experiment was repeated three times, and the mean number of killed snails was taken for each concentration (Table 3). A control group was taken by placing 10 snails in water containing few drops of Tween 20 and 2 mL of DMSO. Bayluscide was used as a reference molluscicidal agent. These bioassays are in accordance with the W.H.O guidelines [21] slightly modified by using two mixed solvents to dissolve the compounds.

4.2. Methodology of anti-inflammatory activity

1 h after drug oral administration, rats weighting ≈ 200 gm each were injected subplanter into the hind left paw with 1 mg carrageenan dissolved in 100 mL physiological solution. Paw volumes were measured every hour using standard fluid displacement procedures (plethysmometer) by dipping the hind left paw in 0.45% saline solution every 1 h interval for total of 4 h. The percent change in paw volume compared to base line measurement was taken as the criteria of comparison. Indomethacin was used as an internal standard anti-inflammatory agent. The method adopted resembles essentially that described by Winter et al. (Table 4).

5. Conclusions

In summary, a series of new *s*-triazole and fused triazole derivatives carrying the 2,4-dichlorophenoxy moiety (2,4-D) could be synthesized and evaluated for their anti-inflammatory and molluscicidal activities. Some of triazolothiadiazole and triazolothiadiazine showed highly significant anti-inflammatory effect, which protected rats by 36–56% from inflammation as compounds **4b**, **4d**, **11**, **14** comparable to the standard (Indomethacin). The compounds **4b**, **8** and **10** showed potent molluscicidal activities as compared to the standard molluscicidal agent (Bayluscide).

References

- [1] G.T. Zitoun, Z.A. Kaplancikl, M.T. Yildiz, P. Chevallet, D. Kaya, Eur. J. Med. Chem. 40 (2005) 607.
- [2] K. Walczak, A. Gondela, J. Suwinsk, Eur. J. Med. Chem. 39 (2004) 849.
- [3] B.S. Holla, B. Veerendra, M.K. Shivananda, B. Poojary, Eur. J. Med. Chem. 38 (2003) 759.
- [4] M. Amir, K. Shikha, Eur. J. Med. Chem. 39 (2004) 535.
- [5] A. Almasirad, S.A. Tabatabai, M. Faizi, A. Kebria, N. Mehrabi, A. Dalavand, A. Shafiee, Bioorg. Med. Chem. 14 (2004) 6057.
- [6] D.V. Thomas George, R. Mehta, J.D. Tahilramani, P.K. Talwalker, J. Med. Chem. 14 (4) (1971) 335–338.
 - [7] G.A.M. Nawwar, B.M. Haggag, R.H. Swellem, Arch. Pharmacol. 326 (1993) 831.
 - [8] N. Grant, N. Mishriky, F.M. Asaad, N.G. Fawzy, Pharmazie 53 (1998) 543.
 - [9] N.A. Shafik, L.M. Chabaka, G.A.M. Nawwar, Afinidad 63 (2006) 523.
 - [10] G.A.M. Nawwar, L.M. Chabaka, N.A. Shafik, M.S. Hany, Afinidad 63 (2006) 153.
 [11] K. Masuda, T. Toga, N. Hayash, J. Labelled Compd. 11 (1975) 301;
 - Chem. Abstr. 84 (1976) 121730f.
 - [12] E. Schreier, Helv. Chim. Acta 59 (1976) 585.
 - [13] C.R. Worthing, The Pesticide Manual a World Compendium, eighth ed. The British Crop Protection Council, 1987, p. 150 and 840.

- [14] J.R. Reid, N.D. Heindel, J. Heterocycl. Chem. 13 (1976) 925.
 [15] M.S. Karthikeyn, B.S. Holla, S. Shenoy, Monatsh Chem. 139 (2008) 707.
 [16] P. Andrews, J. Thyseen, D. Lorke, Pharmacol. Ther. 19 (1983) 245–295.
 [17] WHO, Niclosamide Technical Material, WHO Specifications, 2002, p. 599.
 [18] E.A.R. Winter, G.W. Nuss, Proc. Soc. Exp. Biol. Med. III (1962) 544–547.
- [19] B. Tozkoparan, S.P. Aytac, G. Aktay, Arch. Pharm. Chem. Life Sci. 342 (2009) 291-298.
- [20] M. Amir, H. Kumar, S.A. Javed, Eur. J. Med. Chem. 43 (2008) 2056–2066.
 [21] WHO, World Health Organisation: The Control of Schistosomiasis, Geneva, (WHO Technical Report Series, No. 830), 1993.