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Abstract
2-substituted thiophene compounds with electron donating and electron withdrawing p-phenyl substitution were synthesized and
studied their radical scavenging properties using DPPH assay and DFT method. It is shown that p-hydroxy and p-amino phenyl
substituted compound exhibit radical scavenging activity. From DFT and radical scavenging studies, a correlation between IC50

with the bond dissociation enthalpy, proton affinity, ground state dipole moment and optical band gap of compound is found.
Compounds 1–3 with electron withdrawing substituent (NO2, CN, Cl) do not show any radical scavenging properties, whereas
compounds 6–7 with electron donating substituent (OH, NH2) show antiradical properties. Further, the antiradical activity is
reduced drastically by replacing the -OH and -NH2 with methoxy and -N-alkylating group respectively in 6 and 7.The compound
with p-hydroxy phenyl substitution, exhibits stronger antiradical activity as compared to the p-amino phenyl substitution due to
smaller O-H bond dissociation energy as compared to the N-H bond. FromDPPH and DFT studies, it is suggested that the radical
scavenging activity in 2-substituted thiophene is occurred through proton transfer mechanism. The other possible SET, SPLET
mechanisms are also corroborated.
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Introduction

Radical scavengers are active molecules, which play important
role inmany area of chemistry, biology andmaterial science such
as in food storage, cosmetic, pharmaceuticals, oil, rubber,

petroleum products and in electronic device applications [1–4].
Some of the well known naturally occurring radical scavengers
are flavonoids [5–11], glutathione [12, 13], vitamin A, vitamin C
[14, 15], vitamin E [16], uric acid [17], caffeic and ferulic acids
[18, 19], β-carotene [10], curcumin [20–22], bilirubin [23].
However, some of these anti-radicals like β-carotene, vitamin
A, and vitamin E have no suppressing effect towards abnormal
biological activity. [24–26]. Thus, in recent years, there have
been growing interest in developing novel radical scavengers that
fulfill the need for industrial and pharmaceutical applications.
Many synthetic antioxidants were designed and synthesized to
improve the radical scavenging properties that can be used in
biological and industrial applications [27–34]. For example, an-
tiradicals based on stilbenoid [35–38], butylated hydroxy phenyl
compounds, BHA, BHT [1], dihydroquinoline ethoxyquin [39]
are useful for above applications. Recently, some of the thio-
phene based hybrid compounds, such as dithinyldene cyclohex-
anone (IC50: 4 μM) [40], thiophene based schiff base (IC50:
5 μM) [41] are known to exhibit remarkably higher radical scav-
enging properties and useful in wide range of applications
[42–46]. Thus, in order to grasp the basic fundamental of radical
scavenging activity, studies on the antiradical properties on var-
ious donor and acceptor substituted ethenyl thiophenes (1–8)
(Fig. 1) were carried out using DPPH assay and DFT methods.
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It is shown that the thiophene compounds with donor substituent
(-OH and -NH2) exhibit antiradical properties, whereas the activ-
ity is reduced in presence of withdrawing substituent. In the
presence of thiophene compound, the DPPH radical is mostly
quenched through proton transfer mechanism. The results are
also supported by various thermodynamic parameters obtained
through TDDFT calculation.

Experiment

Material and Methods

Chemicals are purchased fromM/s. Sisco Research Laboratory.
Radleys make, Carousel 6 plus reaction station was used for the
synthesis of compounds 1–8. Perkin Elmer Lambda 750 UV/
VIS/NIR spectrophotometer is used to record the absorption
spectra and Perkin Elmer LS-55 fluorescence spectrophotome-
ter is used to record the fluorescence spectra using a red PMT
detector system. FTIR spectra were recorded on a Impact
Nicolet-400 spectrophotometer using KBr discs. The 1H
NMR and 13C NMR spectra were recorded in CDCl3 on a
JEOL 500 MHz FTNMR instruments. GC-MS spectra were
recorded on a GCD 1800A Hewlett packard GC-mass spec-
trometer. CHNS analyses were carried out on a Theoquest CE
instrument 1112 series CHNS auto analyzer. Melting points
were determined on a Lab India make melting point apparatus.
For spectroscopic studies, UV grade solvents were used.

Synthesis of Compounds 1–8

The synthetic scheme of all compounds are shown in Fig. 2.
The substituted p-phenyl ethenyl-E-thiophenes (1, 3–6) were
synthesized by the condensation of p-substituted phenyl acetic
acid with the corresponding 2-formylthiophene (2:1 M ratio)

in presence of pyridine-piperidine mixture as described earlier
[47–54], e.g. typical synthetic protocol for compound 1 is as
follows: 2-formyl thiophene (0.93 mL, 0.01mol) was refluxed
with mixture of 10 mL of freshly distilled pyridine, 0.6 mL of
piperidine and 3.62 g, (0.02 mol) of p-nitrophenyl acetic acid
at 100 °C for eight hours and the progress of the reaction was
monitored by thin layer chromatography. The reaction mix-
ture was then cooled and poured in ice-cold water and treated
with 100 mL of diluted hydrochloric acid to remove excess of
pyridine from the reaction mixture. A yellow colored product
was extracted in chloroform and purified by column chroma-
tography using 2% ethyl acetate in petroleum ether as the
eluting solvent, when the desired compound was obtained in
30% yield. Compound 7 was obtained through reduction re-
action of 1 [52]. For this purpose, ethenyl thiophene 1 in
ethanol was refluxed in presence of aqueous ferrous sulfate
and ammonia solution at 100 °C for 3 h. All the products were
purified by column chromatography using 2–10% ethyl ace-
tate in petroleum ether (60–80 °C) as the eluting solvent.
Compound 8 was synthesized through alkylation of com-
pound 7 in presence of potassium-tert-butoxide. Compound
2 was prepared through condensation of 2-formyl thiophene
and corresponding phosphite using Wadsworth-Emmons re-
action [52, 55, 56]. All compounds show satisfactory physico-
chemical data (UV-Vis, FTIR, 1H and 13C NMR, GC-MS and
CHNS analysis).

Radical Scavenging Activities

For radical scavenging act ivi ty, 2,2-diphenyl-1-
picrylhydrazyl (DPPH) assay was carried out by following
the protocol described elsewhere [57]. In a typical experimen-
tal procedure, 100 μM concentration of DPPH solution was
prepared by adding 0.4 mL of 1 × 10−3 M methanolic solution
of DPPH. A varying concentration of testing compound (0 to

Fig. 1 Structure of compounds 1–
8
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400 μM) was then added to DPPH solution depending upon
the antiradical activity. The decrease in the absorbance of
DPPH radical at 517 nmwas then measured at regular interval
of time (0–45 min duration). The DPPH solution with stan-
dard antioxidant, vitamin E is used as a positive control. All
the experiments were performed in triplicate and the average
of absorbance was taken for calculating the inhibition concen-
tration. The 50% inhibition concentration (IC50) is the concen-
tration of antioxidant at which the 50% of absorbance of
DPPH radical is quenched with respect to the control

(Ablank). The IC50 is calculated from the plot of % inhibition
vs. concentration of antioxidant, and using the eq. 1.

%Inhibition of DPPH free radical

¼
hn

Ablank−Asample

�
= Ablankð Þ

i
x 100 ð1Þ

where Ablank = Absorbance of DPPH radical in absence of
antioxidant; Asample = Absorbance of DPPH radical in pres-
ence of varying concentration of antioxidant.

Fig. 2 Synthetic scheme for
ethenyl thiophenes (1–8); (i) pyr-
idine-piperidine, 100 °C, 8 h; (ii)
(a) p-cyano benzyl bromide,
P(OEt)3, 150 °C, 3 h; (b) DMF,
NaH, 0 °C, 1 h; (iii) FeSO4, aqu.
NH3, ethanol, 100 °C, 2 h; (iv)
Potassium-tert-butoxide, tert-bu-
tyl alcohol, Butyl bromide, r.t. 3 h

Table 1 Ground state dipole moment (μg), absorption (λabs) and fluorescence wavelength maximum (λem), extinction coefficient (ε), optical band gap,
DPPH radical inhibition concentration (IC50) of ethenyls thiophenes in methanol

Com μg (Debye) λabs (nm)a λem (nm)a ε (M−1 cm−1) Band Gap(eV)b Band Gap(eV)c Band Gap(eV)d IC50 (μM)

1 -NO2 6.65 372 614 21,500 2.89 3.14 3.51 –

2 -CN 5.60 340 412 39,000 3.28 3.31 3.73 –

3 -Cl 1.87 327 384 30,400 3.46 3.49 3.90 –

4 -H 0.34 321 385 21,000 3.51 3.55 3.98 –

5 -OCH3 1.19 332 387 44,500 3.43 3.44 3.85 –

6 -OH 1.42 325 378 24,280 3.47 3.53 3.90 45

7-NH2 3.00 343 435 27,500 3.20 3.19 3.75 165

8-NR2 3.48 367 420 12,400 2.88 3.16 3.64 322

a Experimentally obtained; Vitamin E (IC50, 26 μM, μg: 0.80); ascorbic acid (IC50 ~ 11 μM); 4-hydroxy stilbene (IC50 ~ 24 μM);
bObtained through Tauc plot,
c Obtained through intersection of absorption and fluorescence spectra,
d Obtained through DFT
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Time Dependent Density Functional Theory (TDDFT)

For the calculation of thermodynamic parameters (BDE, IP,
PA, PDE, ETE), the ab initio quantum chemical software
package ORCA is used [58]. The ground state dipole moment,
absorption and fluorescence wavelength maximum, the verti-
cal excitation energy and oscillator strength (ƒ) is computed
using time-dependent density functional theory (TDDFT) [59,
60]. The ground and excited state of the neutral, free radical,
cationic radical and anionic thiophenes are optimized through
B3LYP and BLYP functional using def2-SVP and aug-cc-
pVDZ basis set respectively [61]. The minimized geometry
is further confirmed by vibrational analysis, resulting in no
imaginary frequencies. This geometry is used as the input
for further calculations to obtain the frontier molecular orbitals
(FMOs), UV-Vis and fluorescence spectra. The TDDFT

predicted bond dissociation energy is most reliable and com-
parable with other computational methods [62, 63]. The DFT
method is validated using known compounds, vitamin E, 4-
hydroxy stilbene, 2,4,6-tri-tert-butylphenol, hydrogen radical,
whose results are well matched with the previously reported
experimental and theoretical data [64–66].

Results and Discussion

Radical Scavenging Properties of Ethenyl Thiophene

The radical scavenging properties of thiophene compounds
(1–8) are carried out using DPPH assay in methanol. In gen-
eral, the DPPH free radical is quenched at 517 nm in presence
of an antioxidant. It is observed that the absorbance of DPPH
radical is quenched in the presence of thiophene compounds
6–8, whereas, the absorbance of DPPH radical is almost

Fig. 3 A typical absorption spectra of 100μMof DPPH radical alone and
in presence of 25 μM concentration of ethenyl thiophenes 6–8 and
vitamin E

Fig. 4 Plot of % of DPPH radical quenching vs. concentration of ethenyl
thiophenes 1–8

Fig. 5 Absorption spectra of compounds 1–8 in methanol

Fig. 6 Fluorescence spectra of compounds 1–8 in methanol
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unaffected in presence of other thiophene compounds 1–5.
The % of quenching of DPPH radical is obtained from the
plot of % of inhibition vs. compound concentration (Fig. 3
and 4). The hydroxy (6) and amino (7) substituted thiophene
compounds exhibit radical scavenging properties with IC50:
45μMand 165 μM respectively (Table 1). UponO-alkylation
and N-alkylation of hydroxy and amino functional group re-
spectively, the radical quenching activity of 5 and 8 is drasti-
cally reduced (IC50 ~ 322 μM for 8 and no activity for 5). On
the other hand, thiophene compounds (1–5) do not show any
radical scavenging activity. Thus, the hydroxy and amino
compounds are capable of transferring hydrogen to the
DPPH radical and subsequently, the quenching of DPPH rad-
ical is occurring. These indicate that the thiophene compounds
quench the DPPH radical predominantly through the hydro-
gen atom transfer (HAT) mechanism, which leads to the for-
mation of neutral DPPHH molecule.

Correlation of Antiradical Activity with Optical
Properties

In order to understand the anti-radical activity in detail, the
optical properties of the molecule are studied. The absorption
and fluorescence spectra of 1–8 were recorded in solvent of
varying polarity (Fig. S1-S2). It is shown that the absorption
(λabs) and fluorescence wavelength (λem) of all these thio-
phenes are red shifted from non-polar solvent n-hexane to
polar solvent DMF (Table S1). The molar extinction coeffi-
cient (ε) of thiophene compounds lies in between
10,000 M−1 cm−1 to 30,000 M−1 cm−1. These indicate the
π→ π* nature of transition in thiophene compounds 1–8
(Table 1, Figs. 5 and 6). The λabs is moderately red shifted
from non-polar solvent, n-hexane to polar solvent, DMF, by
15 nm, 3 nm, 4 nm, 4 nm, 5 nm, 3 nm, 17 nm and 17 nm,
whereas the λem is red shifted by 156 nm, 6 nm, 8 nm, 13 nm,
9 nm, 0 nm, 45 nm and 24 nm for 1–8 respectively. As com-
pared to 2-[phenyl ethenyl-E thiophene](4), the λabs and λem
of 2-[4-nitro phenyl ethenyl-E-thiophene](1) are red shifted by
51 nm and 229 nm respectively. Similarly, λabs and λem of 8
are red shifted by 45 nm and 35 nm, whereas a minimal
change of 0–4 nm is observed for thiophenes 3–6. The λem
is highly sensitive to solvent polarity and p-phenyl substituent.
The large red shift of λem in 1 suggest the involvement of
charge transfer excited state for 1, whereas, a moderate red
shift in 7 and 8 suggest a partial charge transfer in the excited
state of amine compounds 7 and 8. These type of charge
transfer phenomena are very common in nitro and amine com-
pounds [51–54]. The change in excited state dipole moment is
obtained for 1–8 as 13.85 Debye, 2.54 Debye, 2.47 Debye,
4.41 Debye, 1.91 Debye, 1.78 Debye, 6.52 Debye and 5.20
Debye respectively using McRay Plot (Fig. 7, Table S2).
These further indicate that compound 1 is highly dipolar and
exhibits charger transfer excited state, whereas amine

Fig. 7 McRay Plot, Stokes’ shift vs. solvent polarity parameter, F(ε,n) of
1–8

Fig. 8 TDDFT computed HOMO-LUMO energy of ethenyls 1–8
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compounds 7 and 8 undergo partial charge transfer and other
compounds have non-polar excited state.

The optical band gap of these compounds were obtained
using both experimental and theoretical methods (Table 1,
Table S3, Fig. S3). In all the methods, the optical band gap
follows the similar trend. The ground and excited state of thio-
phene compound are stabilized more in presence an electron
withdrawing p-phenyl substituent. However, as compared to
the unsubstituted thiophene compound 4, the optical band gap
of substituted compound is decreased either by an electron
withdrawing or electron donating p-phenyl substituent
(Table 1). The optical band gap obtained through DFT method
is little larger than the experimental method. The effect of sol-
vent is not taken in to account in DFTmethod and thus, there is
a less stabilization of ground and excited state in DFT method.
This leads to a shorter emission wavelength with little larger
optical band gap (Figs. 8, 9, 10 and 11, Fig. S3).

The HOMO and LUMO energy of ethenyl thiophene are
gradually increased in presence of an electron donating sub-
stituent. For nitro, cyano and chloro compounds (1–3), a

lowest HOMO energy is observed (1: HOMO: −6.09 eV,
LUMO: −2.58 eV; 2: −5.92 eV, LUMO -2.18 eV; 3:
−5.60 eV, LUMO -1.69 eV; 4: −5.51 eV, LUMO -1.53 eV),
whereas a highest HOMO energy is computed for hydroxy
and amine compounds (6: HOMO: −5.21 eV, LUMO -
1.31 eV, 7:HOMO: −4.88 eV, LUMO -1.13 eV, 8: HOMO:
−4.77 eV, LUMO: −1.12 eV).

Similarly, the ground state dipole moment is computed for
1–8 using DFT method. It is shown that 1, 2, 7 and 8 exhibit
large ground state dipole moment (1: 6.65 Debye, 2: 5.60
Debye, 7: 3.00 Debye, 8: 3.48 Debye), whereas other thio-
phene compounds (3–6) show a small dipole moment
(Vitamin E: 0.80 Debye, 3: 1.87 Debye, 4: 0.34 Debye, 5:
1.19 Debye, 6: 1.42 Debye). As compared to 4, the dipole
moment is increased with increasing the electron withdrawing
capacity of p-pheny substituent (1-NO2: 6.65 Debye, 2-CN:
5.60 Debye, 3-Cl: 1.87 Debye, 4-H: 0.34 Debye) and also
with increasing the electron donating capacity of p-phenyl
substituent (8-NR2: 3.48 Debye, 7-NH2: 3.00 Debye, 6-OH:
1.42 Debye, 4-H: 0.34 Debye) (Fig. 12).

Thus, thiophene is acting as an electron donor or electron
acceptor depending upon the nature of p-phenyl substitution.
Interestingly, thiophenes with electron withdrawing substitu-
ent (NO2, CN, Cl) do not show any radical scavenging

Fig. 9 TDDFT computed UV-Vis absorption spectra of compounds 1–8

Fig. 10 TDDFT computed fluorescence spectra of compounds 1–8

Fig. 11 Optical band gap of 1–8 and vitamin E (9)

Fig. 12 Ground state dipole moment of 1–8 and vitamin E (9)
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properties. On the other hand thiophene compounds (6–8)
with electron donating substituent such as amine and hydroxy,
exhibit anti-radical properties. The radical scavenging efficacy
of such compounds, however, is decreased further upon alkyl-
ation. The order of radical scavenging activity is: Vitamin E >
6-OH > 7-NH2 > 8-NR2. Thus, in these compounds, the radi-
cal scavenging activity is directly related to the optical band
gap (Fig. 11), whereas inversely related to the dipole moment
of the thiophene compounds (Fig. 12). The anti-radical mech-
anism is very complex and in order to understand the mecha-
nism in detail, the thermodynamic parameters such as BDE,
IP, PA, PDE, ETE of the molecules (1–8) are calculated using
the eq. 2–6 and the data is shown in Table 2.

BDE ¼ EAr−X• þ EH•−EAr−XH ð2Þ

IP ¼ EAr−X
•þ

H−EAr−XH ð3Þ
PA ¼ EAr−X

− þ EH
þ−EArXH ð4Þ

PDE ¼ EAr−X
• þ EH

þ−EArX
•þ

H ð5Þ
ETE ¼ EAr−X

• þ Ee
−−EAr−X

− ð6Þ
where EAr-XH, EAr-X•, EAr-X

•+
H, EAr-X

−, EH•, EH
+, Ee

− are the
enthalpies of Ar-XH, Ar-X• radical, Ar-X•+H cationic radical,
anion Ar-X−, H radical, H+ cation, electron respectively
[67–80].

Many radical scavenging mechanisms are well known in
the literature [67–80]. These include hydrogen atom transfer
(HAT) [67–70], single electron transfer (SET) [70–73], radi-
cal adduct formation (RAF) [74], sequential proton loss and
electron transfer (SPLET) [75, 76], sequential electron proton
transfer [SEPT] [77–79], sequential proton loss hydrogen

Scheme 1 Some of the plausible radical scavenging mechanisms, HAT, SET, SPLET, SEPT.

Table 2 TDDFT computed
hydrogen bond dissociation
(BDE), ionization potential (IP),
proton dissociation (PDE), proton
affinity (PA) and electron transfer
(ETE) energy (Kcal/mol) of
ethenyl thiophenes (1–8)

Compound BDE ΔBDE IP ΔIP PDE ΔPDE PA ΔPA ETE ΔETE

Vitamin E 82.9 0 157.4 0 236.3 0 365.3 0 29.1 0

1-NO2 – – 177.0 19.6 – – – – – –

2-CN – – 172.6 15.1 – – – – – –

3-Cl – – 165.1 7.7 – – – – – –

4-H – – 164.5 7.0 – – – – – –

5-OCH3 – – 155.5 −1.9 – – – – – –

6-OH

IC50: 45 μM

89.5 6.6 156.6 −0.7 243.7 7.4 355.6 −9.68 45.5 16.4

7-NH2

IC50: 165 μM

99.1 16.1 148.3 −9.2 261.7 25.4 379.5 14.2 31.1 2.0

8-NR2

IC50: 322 μM

– – 141.5 −15.8 – – – –

ΔBDE =BDE-BDEvitamin E; ΔIP = IP-IPvitamin E; ΔPA= PA-PAvitamin E; ΔPDE = PDE-PDEvitamin E; ΔETE =
ETE-ETEvitamin E
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atom transfer (SPLHAT) [80] etc. (Scheme 1). The HAT
mechanism is associated with the hydrogen bond dissociation
enthalpy (BDE), whereas, SET is associated with ionization
potential (IP) of the antiradical. Similarly, SPLET is associat-
ed with proton affinity (PA) and electron transfer enthalpy
(ETE), whereas SPET is associated with both IP and PA of
the antiradical. Thus, thermodynamic parameters, such as
BDE, IP, PA, PDE, ETE provide most valuable information
in predicting the plausible mechanism.

FromTable 2, the IP energy of 1–4 is found to be very large
(IP: 164.17–177.03 Kcal/mol), as compared to 5–8 (IP:
141.55–156.63 Kcal/mol). In 5–8 and vitamin E, the trend
of IP energy is vitamin E ~ 6 > 7 > 8. and the trend of radical
scavenging efficacy is: vitamin E > 6 > 7 > 8. It is known that
electron withdrawing substituent stabilize the neutral mole-
cule, and destabilize the radical and radical cation, which leads
to a higher IP energy [69, 70]. On the other hand, electron
donating substituent stabilized the radical, radical cation and
destabilized the neutral molecule, which leads to decrease in
the IP energy [70, 72]. Thus, compound with higher antirad-
ical activity should have a lower IP energy to act through the
SET mechanism [71, 72]. Similarly, the proton dissociation
energy (PDE) provides useful information for the later step of
SET-PT mechanisms [81] (Scheme 2). The PDE of cationic
radical of vitamin E, 6 and 7 is found as 236 kcal/mol,
243 kcal/mol, and 261 kcal/mol respectively. Thus PDE is
larger for thiophene with strong electron donating amine

substituent and it requires higher energy for the dissociation
of proton from the radical cation intermediate. Thus, it is sug-
gested that these compounds may not follow anti-radical ac-
tivity through SET or SET-PT mechanism.

To confirm the hydrogen atom transfer (HAT) mecha-
nism, the BDE is calculated for 6–7 and vitamin E. The O-
H and N-H bond dissociation energy (BDEO-H, BDEN-H) is
little larger for 6 and 7 (89 Kcal/mol for 6 and 99 Kcal/mol
for 7) as compared to the vitamin E (82.97 Kcal/mol). In 6
and 7, the O-H and N-H bond dissociation energy is in-
creased by 6 Kcal/mol (ΔBDEO-H) and 16 Kcal/mol
(ΔBDEN-H), as compared to vitamin E respectively. The
trend of BDE is: 7 > 6 > vitamin E and the radical scaveng-
ing activity is also reduced in the order Vitamin E > 6 > 7.
This trend of BDE and anti-radical activities is in accord to
the HAT mechanism. Further, replacing the OH and NH2

with methoxy (5: -OCH3) and di-alkyl (8: -N(C4H9)2]
group, results in the reduction of anti-radical activity.
These suggest that thiophene compounds exhibit antiradical
activities through hydrogen atom transfer (HAT) mecha-
nism (Scheme 2). In general, the antiradical activity of phe-
nol and amine compounds occur through H atom transfer
mechanism (HAT). Such compounds have smaller BDE
with more stabilized phenoxyl or imine radical [62, 67–69,
81–88]. In thiophene compounds, 6 and 7, the BDE of N-H
bond is 10 kcal/mol higher than O-H bond. This indicates
that the imine radical is less stable than the phenoxyl radical

Scheme 2 Possible antiradical mechanisms in ethenyl thiophenes
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and thus, compound 7 exhibits less anti-radical activity
compared to the hydroxy compound 6.

The other possible mechanism is the sequential proton loss
and electron transfer (SPLET) mechanism via the anionic in-
termediate (Scheme 2). In this mechanism the role of PA is
important. The PA for phenyl N-H and phenol O-H bond is
379 kcal/mol and 355 kcal/mol respectively. In the present
thiophene compounds, the trend of PA energy is: 7 > 6 and
the antiradical activity is in the order 6 > 7. If the anion gen-
erate through proton abstraction by following the SPLET
mechanism as shown in Scheme 2, the phenoxyl anion of
ethenyl thiophene could be stabilized more as compared to
the aminyl anion and consequently decrease in PA for 6 as
compared to 7 and increase in the antiradical activity of 6.
However, the ETE of phenoxyl anion (6) is 14 Kcal/mol is
larger compared to amine anion (7), which is the second step
of SPLET pathway (ETE: 45 kcal/mol for 6, 31 kcal/mol for
7). A more stabilized anion requires higher energy to transfer
electron to the free radical [69, 86]. Thus, SPLET mechanism
can be ruled out. Thus, in 6 and 7 as the BDE is smaller than IP
and PA energy, the antiradical activity could be through ther-
modynamically controlled HAT mechanism.

Conclusion

In summary, the antiradical activities of p-phenyl substituted
ethenyl thiophenes were studied using DPPH assay and den-
sity functional theory. It is shown that ethenyls with strong
electron-donating substituent (NH2, OH) exhibit antiradical
activity, whereas ethenyls with electron withdrawing substit-
uent do not show antiradical activity. From the studies on the
optical properties, it is shown that ethenyl thiophene with
small ground state dipole moment and large optical band
gap, exhibits good antiradical properties.

From the studies on the thermodynamic parameters, it is
shown that amine and hydroxy substituted thiophenes have
smaller bond dissociation enthalpy (BDE) as compared to
ionization energy (IE) and proton affinity (PA). Thus, for
quenching of free radical, these compounds follow the ther-
modynamically controlled HAT mechanism. Ethenyls with
electron withdrawing substituent (NO2, CN, Cl) do not
show any antiradical properties owing to higher IP energy
and lack of loosely bound hydrogen atom. It is also note-
worthy to mention that the antiradical mechanism is very
complex and hence, kinetic and radical quenching studies
can provide more detail insights into the mechanism of ac-
tion. Overall, the present ethenyl thiophene exhibits substit-
uent dependent antiradical activity, which is interesting.
These result, however, provide a very useful information
in designing future molecules that exhibit efficient antirad-
ical activities.
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